用户名: 密码: 验证码:
黄渤海大气气溶胶卫星观测与时间序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气气溶胶通过散射和吸收太阳辐射影响气候,并影响云的形成及性质,同时还与人类健康、经济生活息息相关。中国沿岸地区经济发达、工业发展迅速,气溶胶与人类的关系更加密切。因此开展黄渤海区域大气气溶胶卫星观测和时间序列分析研究,获得其时空分布特征、变化趋势以及与其他气象水文要素之间的关系,具有重要的现实意义。
     本文收集了中国黄渤海区域(112~125°E,35~45°N)2000~2009年10年内MODIS气溶胶光学厚度(aerosol optical depth, AOD)月均标准数据(MOD08_M3),与AERONET的实测数据进行验证,精度符合设计要求。将AOD数据按陆地和海洋(陆海)像元及海洋像元两类分别进行经验模态分解(EMD),结合厄尔尼诺指数( El Nin~o index)和研究区海表温度讨论黄渤海海区气溶胶时间变化特征及成因。研究表明该陆海区域大气气溶胶光学厚度6月份多为全年最高,海洋区域最高值出现在4-7月之间;秋冬季(10-2月)气溶胶光学厚度达到最低;EMD分解获得的大于1年周期分量与南方涛动指数存在较高的相关性,其变化提前于南方涛动指数12个月,说明大气气溶胶同样受到全球气候变化的影响;黄渤海海域无海冰覆盖的海洋像元SST数据EMD分解获得的趋势项与对应像元AOD数据趋势项的相关系数为0.94,具有较高的相关性;渤海(38°-39°N,119°-120°E)像元AOD与SST的EMD趋势项走势基本一致,相关系数达到0.99,存在高度相关,结果显示海表温度与气溶胶存在逐年升高的共同趋势,分析认为这可能与研究区三面环陆的独特地理位置以及沿海经济区人口和工业密集排放的温室气体存在关联。
The atmospheric aerosol influences the climate by scattering and absorbing solar radiation, as well as cloud forming and its microphysics property. Aerosol is closely linked to human health and economy, especially in Chinese coastal area, where economy and industry grow fast. The study on the satellite observation and time series analysis of atmospheric aerosol in Yellow Sea and Bohai Sea, which can obtain its temporal and spatial distribution, trend, as well as the connection with other meteorological and hydrological factors, has a great significance.
     The monthly averaged standard MODIS data of atmospheric aerosol optical depth (AOD) from Yellow Sea and Bohai Sea(112~125°E,35~45°N), ranging from 2000~2009 are collected. The validity of data is proved by compared with AERONET data, designed accuracy is achieved. Variation of atmospheric aerosol specified by area of land-ocean/ocean is analyzed using Empirical mode decomposition (EMD), the time variation property and casualty is discussed together with El Nin~ o index and Sea Surface Temperature (SST) in the research area. The results show that the atmospheric aerosol optical depth mostly reaches the maximum value in June in land-ocean area,while the maximum value in ocean area appears in the time of April to July; In autumn and winter (from October to February), the atmospheric aerosol optical depth descends to its minimum; the sum of modes obtained by Emperical Mode Decomposition (EMD) whose characteristic period is more than one year shows a relatively high correlation with Southern Oscillation Index (SOI), and the phase is temporally 12 months ahead of SOI, which indicates that the atmospheric aerosol is influenced by global climate change. In Yellow Sea and Bohai Sea, the correlation coefficient between EMD based trends of atmospheric aerosol and SST in sea area without ice coverage in the whole year reaches 0.94; In a specifically selected area(38°-39°N,119°-120°E), the correlation coefficient betwend the two trends reaches as high as 0.99. The result shows SST and aerosol have the same ascending trend, which is dependent on the unique geographic location of the research area and the great amount of greenhouse gas produced by adjacent coastal industries.
引文
[1]戴昌达,姜小光,唐伶俐,遥感图像应用处理与分析,北京:清华大学出版社,2004:11-15.
    [2]王明星,郑循华,大气化学概论,北京:气象出版社,2005:1-15.
    [3] Kaufman Y J, Tanre D, Gordon H R, et al. Passive remote sensing tropospheric aerosols and atmospheric correction for the aerosol effect. Journal of Geophysical Research, 1997, 102(D14):16815-16830.
    [4]吴克勤,林宝法,祁冬梅译,2020年的海洋:科学、发展趋势和可持续发展面临的挑战,北京:海洋出版社,2004:54-58.
    [5] Regis B, Jean V, Remote sensing of aeroaols optical thickness over various sites using SeaWiFS or WEGETATION and ground measurements. Remote Sensing of Environment , 2003,86: 42-51.
    [6]毛节泰,张军华,王美华.中国大气气溶胶研究综述.气象学报,2002,60(5):625-634.
    [7]邱金恒,中国10个地方大气气溶胶1980-1994年间变化特征研究,大气科学,1997,21(6):725-733.
    [8]李放,吕达仁,北方地区气溶胶厚度中长期变化特征,大气科学,1996,20(4):385-394.
    [9]刘毅,周明煜,中国近海大气气溶胶的时间和地理分布特征,海洋学报,1999,21(1):32-40.
    [10]马玉娟,刘玉光,李艳芳等.青岛路上观测点的气溶胶光学厚度特征分析及与渤海气溶胶光学厚度的比较.海洋湖沼通报,2009,01:1-11.
    [11]刘亚豪,刘玉光,顾艳镇.渤海及北黄海气溶胶分布特征和大气校正研究.海洋湖沼通报,2008,03:13-14.
    [12] Stowe L L, Carey R M, Pellegrino P P. Monitoring the Mr. Pinatubo aerosol layer with NOAA/11 AVHRR data. Geophys. Res. Lett.,1992,19:159-162.
    [13] Husar R B, Prospero J M, Stowe L L. Characterization of tropospheric aerosols over the oceans with the NOAA Adwanced Very High Resolution Radiometer optical thickness operational product.J. Geophys. Res.,1997,102:16889-16909.
    [14] Chou M D, Chan P K, Wang M H. Aerosol radiative forcing derived from SeaWiFS-Retrived aerosol optical properties. Journal of the Atmospheric Sciences, 2002,59:748-757.
    [15] Long C S, Stowe L L, Using the NOAA/AVHRR to study stratospheric aerosol optical thickness following the Mt. Pinatubo eruption [J]. Geophysical Reasearch Letter. 1994, 21(20): 2215-2218.
    [16]陈本清,杨燕明.台湾海峡及周边海区气溶胶时空分布特征的遥感分析,环境科学学报,2008,28(12):2597-2604.
    [17]丛丕福,曲丽梅,陈艳拢等,渤黄海上空气溶胶遥感探测与分析,海洋环境科学,2008,27(2):增67-69.
    [18]邓学良,潘德炉,何冬燕等.卫星遥感中国海域人为和沙尘气溶胶时空分布的研究,海洋学报,2009,31(4):58-68.
    [19]张寿全,黄巍,王思敬,关于研究环渤海环境与发展预测的建议,科技导报,1994,12:50-52.
    [20]中国科学院海洋研究所地质研究室.1985.渤海地质.北京:科学出版社.
    [21]冯士筰,张经,魏皓,渤海环境动力学导论,北京:科学出版社,2007:1.
    [22]秦蕴珊等,黄海地质,北京:海洋出版社,1989.
    [23]国家海洋局. 2008年渤海海洋环境质量公报[2005-08]. http:// www.soa. gov.cn/ hyjww/ hygb/ yhsshyhjzlgb/ lbn/webinfo/2009/08/1238639586451342.htm.
    [24]李亚宁,华涛,周启星,环渤海地区环境污染问题演化及其对策,世界科技研究与发展,2006,28(5),48-51.
    [25]刘玉洁,杨忠东等,MODIS遥感信息处理原理与算法,北京:科学出版社.2001.1-20
    [26] Barnes W L, Pagano T S, Salomonson V V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer(MODIS) on EOS-AM1. Geoscience and Remote Sensing, IEEE Transactions on,1998,36(4):1088~1100
    [27]刘荣高,刘洋,刘纪远,MODIS科学数据处理研究进展,自然科学进展,2009,19(2):141-147
    [28] Whitby K Y. The physical characteristics of sulfur aerosol. Atmos. Environ,1978,12:135~159
    [29] Ahmad Z, Fraser R S. An iterative radiative transfer code for ocean-atmosphere system. J. Atmos. Sci.,1982,39:656~665.
    [30] Morel A, Prieur L.Analysis of variations in ocean color. Limnol. And Oceanogr., 1977,22:709~722.
    [31] Remer L A, Kaufman Y J, Tanre D et al, The MODIS Aerosol Algorithm, Products,andValidation [J] American Meteorological Society, 2005, 62:947-973.
    [32] Holben, B. N., Eck, T. F., Slutsker, I.等。AERONET—A federal instrument network and data archive for aerosol characterization. Remote Sens. Environ, 1998, 66: 1-16.
    [33]夏祥鳌,全球陆地上空MODIS气溶胶光学厚度显著偏高,科学通报,2006,51(19),2297-2303.
    [34]申彦波,王标,石广玉,2006年春季我国东部海域气溶胶光学厚度与沙尘天气,地球科学进展,2008,23(3):290-298.
    [35]赵葳,唐军武,高飞等,黄海、东海上空春季气溶胶光学特性观测分析,海洋学报,2005,27(2):46-53.
    [36] Huang N.E, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc.R.Soc.Lond.A.1998.
    [37] Farge M. Wavelet transforms and applications to turbulence. Ann Rev Fluid Mech.24.1992.
    [38]何正嘉,訾艳阳,张西宁,现代信号处理及工程应用,西安:西安交通大学出版社,2007:219-227.
    [39]林振山,汪曙光,近四百年北半球气温变化的分析_EMD方法的应用,热带气象学报,2004,20(1),90-96.
    [40]董银峰,李英民,赖明等,基于EMD和VARMA模型的地震动仿真,地震工程与工程振动,2007,27(3),15-21.
    [41] Deng Y J, Wang W, Qian C C. Boundary-processing-technique in EMD method and Hilbert transform.Chinese Science Bulletin,2001,46(11):954-961.
    [42] Huang D J, Zhao J P, Su J L. Practical implementation of Hilbert-Huang transform algorithm. Acta Oceanologica Sinica,2003,22(1):1-14.
    [43] Rilling G, Flandrin P, P. Goncalves P. On Empirical Mode Decomposition and its algorithms. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, 2003.
    [44]张真真,林振山,杜建丽等,基于EMD北海道地区50年降水及南方涛动的分析,安徽农业科学,2008,36(24),10562-10568.
    [45]翟盘茂,李晓燕,厄尔尼诺,气象出版社,2003.
    [46]许武成,王文,马劲松等.1951-2007年的ENSO事件及其特征,自然灾害学报,2009,18(4):18-24.
    [47]涂长望,中国天气与世界天气的波动及其长期预报中国夏季的旱涝的应用,中国近代科学论著丛刊,气象学,1919~1949,北京:科学出版社,1955,369~422.
    [48]张松,于非,刁新源等,渤、黄、东海海表温度年际变化特征分析,海洋科学,33(8),76-81.
    [49]张健,李长青,ENSO事件对中国东部降水的影响研究,首都师范大学学报(自然科学版),2002,23(4),72-78.
    [50] Angell J K, Comparison of variation in atmospheric quantities with sea suface temperature variations in the equatorial eastern Pacific Mon Wea Rew. 1981,109,230-243.
    [51]李晓燕,翟盘茂,ENSO事件指数及指标研究,气象学报,2000,58(1),102-109.
    [52]池建军,骆永军, Nin~o综合区对研究ENSO的效果评估,气象研究与应用,2009,30(1),8-11.
    [53]杨红,何春良,我国海域赤潮发生与海温及厄尔尼诺的相关分析,海洋湖沼通报,2009,02,1-6.
    [54]钟姗姗,ENSO十年际尺度变率的机制初探,热带海洋学报,2004,23(2),28-36.
    [55] Walton. C. C, Pichel,W. G.,& Sapper,J.F.The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. ,103,27 999-28 012.
    [56] Ose T., Y.K.Song,A. Kitoh. Sea surface tempaerature in the south China Sea-an index for Aisa Monsoon and ENSO system.J. Meteor. Soc. Japan, 1997, 75: 1091 - 1107.
    [57]李崇银,咸鹏,北太平洋海温年代纪变化与大气环流和气候的异常,气候与环境研究,2003,(3):258-273.
    [58] Lau K M, Lee J Y, Kim K M, etal. The North Pacific as a regulator of summertime climate over Eurasia and North America. J Clim, 2004,17:819-833.
    [59]蒋兴伟等译,海洋遥感导论,海洋出版社,2008,5:156-158.
    [60] Katsaros, K. B. The aqueous thermal boundary layer. Boundary-Layer Meteorol. , 1980, 18, 107-127.
    [61] McClain, E. P.,Pichel,W.,&Walton,C.C. Comparative performance of AVHRR-based Multi-channel Sea Surface Temperatures. J. Geophys. Res. , 90, 11587- 11601.
    [62] Reynolds, R. W., N. A. Rayner,T. M. Smith, etal , An improved in situ and SST analysis for clima. Journal of Climate, 2002,7:1609-1625.
    [63] Reynolds, R. W., Smith T. M., Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 1994,7: 929-948.
    [64]冯士筰,李凤岐,李少菁主编,海洋科学导论,北京:高等教育出版社,1999:445-446.
    [65]方国洪,王凯,郭丰义等,仅30年渤海水文和气象状况的长期变化及其相互关系,海洋与湖沼,2002,33(5):515-525.
    [66]徐希孺,遥感物理,北京:北京大学出版社,2005:343-346.
    [67]吉振明,高学杰,张冬峰等,亚洲地区气溶胶及其对中国区域气候影响的数值模拟,大气科学,2010,34(2):262-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700