用户名: 密码: 验证码:
基于同心光学系统的新型成像光谱仪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成像光谱仪将二维成像技术与光谱分析技术有机的结合在一起,可以同时采集目标的成像信息和光谱信息,实现被测目标的定性、定量、定时、定位分析,弥补了传统光学仪器中仅能进行单一的成像分析或光谱分析的不足。
     传统的光栅色散型成像光谱仪存在光谱弯曲和色畸变,难以同时实现高信噪比和高分辨率的应用需求。同心光学系统具有成像质量好、数值孔径高、光谱弯曲和色畸变小、结构简单紧凑等优点,将同心光学系统应用于成像光谱仪中,可以有效地解决成像光谱仪信噪比和分辨率的矛盾,研究基于同心光学系统的新型成像光谱仪具有重要的科学意义。
     鉴于此,本论文对基于同心光学系统的新型成像光谱仪进行了较为深入的研究。
     第一,利用光线追迹法建立了同心光谱仪像差分析模型,根据光栅波像差理论,推导了光栅参数对同心光谱仪像差的影响和光栅的最优化选择条件,分析了物面偏移对同心光谱仪的像差影响,加深了对同心光谱仪系统的理解,为同心光谱仪的光学设计提供了理论指导。
     第二,设计了两个同心光谱仪系统:凹面光栅同心光谱仪和凸面光栅同心光谱仪,分别建立了两个系统的数值计算模型,通过模型分析了系统的数值设计流程并进行了光学系统设计仿真。
     第三,设计了凸面光栅同心光谱仪的核心元件—凸面光栅,以凸面光栅同心成像光谱仪为实例,研究了基于同心光学系统的新型成像光谱仪光学设计方法。针对成像光谱仪的前置成像系统和同心光谱仪系统的孔径匹配问题,提出了采用多重结构优化设计思想,通过合理分配前端成像系统和后端光谱仪系统的像差,实现全谱段内均衡成像的一体化设计的方法。
     第四,根据同心成像光谱仪系统基本特点,提出了基于双光束干涉原理的干涉装调法,实现了凸面光栅同心光谱仪系统的高精度同心装调;利用谱图直读法控制前置成像系统和光谱仪系统的对接,完成同心成像光谱仪系统装调,有效的解决了同心成像光谱仪的装调问题。
     第五,设计了同心成像光谱仪光谱定标平台,实现了凸面光栅同心成像光谱仪的光谱定标,得到了凸面光栅同心成像光谱仪的实际光谱响应函数,对凸面光栅同心成像光谱仪的光谱定标进行了误差分析和实验,得到了预期的实验结果。
Imaging spectrometers combine the imaging with spectroscopy and acquire theimaging information and spectral information of the target simultaneously. It can getthe time, location, component and quantity characteristics of the target, make up thelack of single image or spectrum analysis in the traditional optical instruments.
     The traditional imaging spectrometer with grating has spectrum bend andchromatic distortion, it is hard to meet the requirements of high signal to noiseratio(SNR) and high resolution simultaneously. Concentric optical system has theadvantages of good performance, high numerical aperture, small distortion, compactand so on. The concentric optical system can effectively solve the contradictionbetween the signal to noise ratio and resolution of the imaging spectrometer. It hasgreat scientific significance to study the new imaging spectrometer based onconcentric optica optical configurations.
     In view of this, the imaging spectrometer based on the concentric opticalsystem is studied in this thesis.
     First, the aberration analysis model of concentric spectrometer with grating asthe dispersive element is established. According to the grating aberration theory, theimpact of the grating parameters on concentric spectrometer aberration is studied,the optimal conditions to select grating are given. The impact of object off onconcentric spectrum is analysised. The concentric spectrometer is deeply understanded. It provides a theoretical guidance for the optical design of concentricspectrometer.
     Second, concave grating spectrometer and convex grating spectrometer aredesigned. The numerical calculation models of the two spectrometers are establishedand the method and system simulation of parameters design is given by model.
     Third, as the core component of the imaging spectrometer with convex grating,the convex grating is designed. Integrated design method of imaging spectrometer isproposed taking the imaging spectrometer with convex grating as an example. Inorder to match the concentric spectrometer system and its fore-optics, the ideas ofmultiple structure optimization design is put forward. Through assigning theaberrations of the concentric spectrometer and its fore-optics reasonably, uniformimags of imaging spectrometer are achieved in the full spectrum by integrateddesign.
     Fourth, according to the characteristics of concentric imaging spectrometers, theinterferometric alignment method based on double-beam interference is put forward,a high precision alignment of concentric imaging spectrometer with convex gratingis achieved. The method of direct-reading spectrum is used to control the alignmentof he concentric spectrometer system and its fore-optics. In this way, alignment ofconcentric imaging spectrometer is achieved efficiently.
     Fifth, spectral calibration platform for the concentric imaging spectrometer isdesigned. Spectral calibration of the imaging spectrometer with convex grating iscarried out and its spectral response function is acquired. Error analysis of spectralcalibration and experiment are conducted and the expected results are obtained.
引文
[1] Alexander F.H., Goetz. Three decades of hyperspectral remote sensing of theEarth:A personal view, Remote Sensing of Environment,2009(113):S5-S16
    [2] Vane, G., Goetz, A. F. H.,&Wellman, J.(1984). Airborne ImagingSpectrometer: A new tool for remote sensing. IEEE Transactions onInternational Geoscience and Remote Sensing, GE-22,546549.
    [3] Goetz, A. F. H., Vane, G., Solomon, J., Rock, B. N.. Imaging spectrometry forEarth remote sensing. Science,1985(228),11471153.
    [4] Goetz, A. F. H., Herring M., The high resolution imaging spectrometer (HIRIS)for EOS. IEEE Transactions on Geoscience and Remote Sensing,1989(27):136144.
    [5] Nolin, A. W.,&Dozier, J.(1993). Estimating snow grain-size using AVIRISdata. Remote Sensing of Environment,44,231238.
    [6] Vane, G., Green, R. O., Chrien, T. G., Enmark, H. T., Hansen, E. G., Porter,W.M.(1993).The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).Remote Sensing of Environment,44,117126.
    [7] Martin,M. E.,&Aber, J. D.(1997). High spectral resolution remote sensing offorest canopy lignin, nitrogen and ecosystem processes. EcologicalApplications,7:431443.
    [8] Painter, T. H., Roberts, D. A., Green, R. O.,&Dozier, J.(1998). The effect ofgrain size on spectral mixture analysis of snow-covered area from AVIRISdata. Remote Sensing of Environment,65:320332.
    [9] Zarco-Tejdada P.J,Miller J.R,Haboudane D,Tremblay N. Apostol,s. Detectionof ChloroPhyll Fluorescence in Vegetation from Airbome Hyperspectral CASIImagery in the Red Edge Specrtal Region. International Geoscience andRemote Sensing Symposium(IGARSS).2003,1:598-600
    [10] McKeown Dvaid M,Jr. Cochran,Steven Douglas,et al. Fusion of HYDICEhyperspectral data with panchromatic imagey for cartographice fatureextraction. IEEE Transactions on Geoscience and Remote Sensing.1999,37(3):1261-1277
    [11]张斧.成像光谱技术发展的科学背景和现状.激光与红外.1994,24(1):23-26
    [12] Smith, M. O., Ustin, S. L., Adams, J. B., et al. Vegetation in deserts.1. Aregional measure of abundance from multispecrtral images. Remote Sensingof Environment,1990,31:126.
    [13] Swayze, G. A., Smith, K. S., Clark, et al. Using imaging spectrometry to mapacidic mine waste. Environmental Science and Technology,2000,34:4754
    [14] Spivka L.F,Arkhipkin O. P,Nurgaliev S.G.. Shagarova L.V. Remote estimationof cereal areas in Kazakhstan using hyperspectral radiometer MODISdata.Issledovanie Zemli iz Kosmosa.2003,(2):80-85
    [15]王丽霞,王慧,高军.星载超光谱成像技术应用及现状分析.航天返回与遥感.2000,21(1).40-47
    [16]薛永祺,王建宇.机载成像光谱仪的发展[J].成像光谱技术,1991:1-12.
    [17] P Mouroulis, David A. Thomas. Trade Studies in Multi/hyperspectral ImagingSystems Final Report[R],1998, in USA.
    [18]唐攀科,李永丽,李国斌,等.成像光谱遥感技术及其在地质中的应用[J].矿产与地质,2006,20(2):160-165.
    [19] H.Gumbel, System considerations of hyper/ultra spectroradiometric sensors.Proc.SPIE,1996,2821:138-170.
    [20]陈荣,张鹰,王晶晶.高光谱遥感技术在悬沙水体研究中的应用[J].苏州科技学院学报,2007,24(2):48-53.
    [21] J.Fisher, J.A.Antoniades, C.Rollins, et al.. Hyperspectral imaging sensor forthe coastal environment[J]. Proc.SPIE,1998,3482:179-186
    [22]许洪,王向军.多光谱、超光谱成像技术在军事上的应用[J].红外与激光工,2007,36(1):13-17.
    [23] D R Lobb, Imaging spectrometers using concentric optics[J]. Proc. SPIE,1997,3118,339–347.
    [24] G. Baudin, R. Bessudo, J. L. Bezy, M. A. Cutter, and D. R. Lobb, Mediumresolution imaging spectrometer (MERIS), in Future European and JapaneseRemote-Sensing Sensors and Programs, P. N. Slater, ed., Proc. Soc. Photo-Opt.Instrum. Eng.1490,102-113(1991).
    [25] Gendrin A,Mangold N,Arvidson R,et al.Sulfates in martian layered terrains:The OMEGA/Mars express view[J].Science,2005,307:1587-1591.
    [26] Langevin Y,Poulet F,Bibring J P,et al.Sulfates in the north Polar region ofmars detected by OMEGA/Mars express[J].Science,2005,307:1584-1586.
    [27] J.Ph. Combe, S. Le Mouelic, C. Sotin, et al.Analysis of OMEGA/Mars Expressdata hyperspectral data using a Multiple-Endmember Linear SpectralUnmixing Modle(MELSUM):Methodology and first results,Planetary andSpace Science,2008,56:951-957
    [28] Murchie S.,Arvidson R.,Beisser K.,et al,Compact Reconnaissance ImagingSpectrometer for Mars(CRISM)on Mars ReconnaissanceOrbiter(MRO),112,E05S03,2007
    [29] Mouroulis P, Green RO, Chrien TG, Design of pushbroom imagingspectrometer for optimum recovery of spectroscopic and spatial information,Applied Optics.2000,13:39
    [30] Pieters C.M.,et al.,Character and spatial distribution of OH/H2O on the surfaceof the Moon seen by M3on Chandrayaan-1.Science,2009,326,568
    [31] P. Mouroulis, R. O. Green, D. W. Wilson. Optical design of a coastal oceanimaging spectrometer, Opt. Express,2008,16:9087-9095
    [32] P. Mouroulis, B. van Gorp, R. O. Green, et al. Design of an Airborne PortableRemote Imaging Spectrometer (PRISM) for the Coastal Ocean
    [33] Reininger F.M.,Dami M.,Paolinetti R.,Pieri S.,Falugiani S.,Visibleinfraredmapping spectrometer–visible channel(VIMS-V),in Instrumentation inAstronomy VIII,Crane E.R.and Crawford D.L.,eds., Proc.SPIE,1994,2198:239–250,;
    [34] Pearlman J.,Barry P.S.,Segal C.C.,Shepanski J.,Beiso D.,Carman S.L.,Hyperion,a space-based imaging spectrometer,IEEE Transactions onGeoscience and Remote Sensing,2003,41:1160–1173
    [35]黄元申,倪争技.同心三反射镜光学系统研究[J],光学仪器,2005, Vo l.27(2):42-46
    [36]黄元申,陈家璧.凸面光栅Offner结构成像光谱仪的傅里叶分析[J].光学仪器,2007,29(6):40-43.
    [37]刘光宏,吴刚,王秋平等,Offner成像光谱仪建模及像差分析[J],光学学报,2011,31(3),22001
    [38]童庆禧,张兵,郑兰芬,高光谱遥感的多学科应用,电子工业出版社,2006,1-4。
    [39] Vane Gregg, Goetz Alexander F H. Terresttrial imaging spectrometry: currentstatus, future trends, Remote Sens. Environ,1993,44:117-126
    [40] Francesco D, Jens N, Benjamin K, et al. Improving radiometry of imagingspectrometers by using programmable spectral regions of interest[J].Photogrammetry and Remote Sensing,2009,64:631-639.
    [41] Robert O, Green, Michael L, et al. Imaging spectroscopy and the airbornevisible/infrared imaging spectrometer(AVIRIS)[J]. REMOTE SENS.ENVIRON,1998,65:227-248.
    [42]童庆禧,张兵,郑兰芬.高光谱遥感-原理、技术与应用[M].北京:高等教育出版社,2006,6:49-51
    [43] J. Fisher,W. C. Welch. Survey and Analysis of Fore-Optics for HyperspectralImaging Systems[J],Proc.SPIE,2006,6206:62062R.
    [44]蒋青松.成像光谱仪的光谱分辨率技术.红外.2001.第10期:1-10
    [45]郑玉权,禹秉熙.成像光谱仪分光技术概览[J].遥感学报,2002,6(1):75-79.
    [46]汪逸群,颜昌翔,苗春安.星载高分辨率超光谱成像仪分光方式的选择[J].中国光学与应用光学,2009,2(4):304-308.
    [47] J.Fisher, M.M.Baumback, J.H.Bowles, et al.. Comparison of low-costhyperspectral sensor [J]. Proc.SPIE,1998,3428:23-30
    [48]于立民.傅里叶成像光谱技术研究[D].上海:中国科学院上海技术物理研究所,2004.
    [49] Barducci A.,De Cosmo V.,Marcoionni P.,Pippi I.,ALISEO:a new stationaryimaging interferometer,SPIE,5546:262-270,2004
    [50] Elvidge C.D.,Chen Z.,Groeneveld D.P.,Detection of trace quantities of greenvegetation in1990AVIRIS data,Remote Sensing of Environment,1993.44,2-3:271-279
    [51]何杰,罗崇泰,马勉军等,一种新型可调谐红外滤光片的设计和应用,大学物理,2006,25(12),5-11。
    [52]徐晓轩,林海波,俞钢.小型线性可变滤光片分光的可见成像光谱仪及其特性研究[J].光谱学与光谱分析,2002,22(5):713-717.
    [53]童庆禧,张兵,郑兰芬.高光谱遥感-原理、技术与应用[M].北京:高等教育出版社,2006,6:49-51。
    [54]何志平.推帚式成像光谱仪几何及光谱定标关键技术研究[D].上海:中国科学院上海技术物理研究所,2009.
    [55] L. Mertz, Concentric spectrographs, Appl. Opt,1977,16:3122–3124.
    [56]郁道银.工程光学[M].北京:机械工业出版社,2006,2-3.
    [57]黄元申,倪争技,庄松林.光栅成像光谱仪同心光学系统研究[J].光学仪器,2005,27(6):38-42.
    [58]郁道银.工程光学[M].北京:机械工业出版社,2006,104-127.
    [59] James C. Wyant. Optical Testing and Testing Instrumentation[M], Arizon:University of Arizona Press,1999:16-17.
    [60] Welford W T著.陈晃明,梁丽轩(译),对称光学系统的像差[M],北京:科学出版社,1982
    [61] C. G. Wynne, Monocentric telescopes for microlithography, Opt. Eng.26,300-303(1987).
    [62] Noda H. Namioka T, Seya M, Geometric theory of grating[J].Optical society ofAmerica,1974,64(8):1031~1036
    [63] P. Mouroulis, R. O. Green, Spectral response evaluation and computation forpushbroom imaging spectrometers, Proc. SPIE,2007,66670G:1–12
    [64] J. Dyson. Unit Magnification Optical System without Seidel Aberrations. J.Opt.Soc. Am.1959,49:713–716.
    [65] Offner A.,Unit power imaging catoptric anastigmat, U.S.PatentNo.3,748,015,1973
    [66] T. Namioka. Theory of the concave grating I. J. Opt. Soc. Am.,1959,49(5):446-460
    [67] A. Offner, Annular field systems and the future of optical microlithography,Opt. Eng.26,294-299(1987).
    [68] Chrisp M.P., Aberrations of holographic toroidal grating systems,AppliedOptics,1983,22:1508-1518
    [69] C. H. F. Velzel. A general theory of the aberrations of diffraction gratings andgrating like optical instrument. J. Opt. Soc. Am.,1976,66:346-353
    [70] S. Singh. Rowland mounting of a holographic ellipsoidal diffraction grating.Opt. Lett.,1992,17(5):311-313
    [71] P. D. Maker, R. E. Muller, and D. W. Wilson, Diffractive optical elements onnon-flat substrates using electron beam lithography, US Patent. No.6,480,333,assigned to California Institute of Technology, Pasadena, CA (1998).
    [72] C. H. F. Velzel. On the imaging properties of holographic gratings. J. Opt. Soc.Am.,1977,67:1021R.
    [73] Iwanaga and T. Oshio. Aberration reduced mechanically ruled grating forsimple rotational mounting. J. Opt. Soc. Am.,1979,69(11):1538-1546
    [74] M. Larsson, M. Ekberg, F. Nikolajeff, and S. H rd, P. D. Maker, and R. E.Muller, Proximity-compensated kinoforms directly written by E-beamlithography, SPIE Proc. CR49(1993).
    [75] Daniel W. Wilson, Paul D. Maker, Richard E. Muller, et al..Recent advances inblazed grating fabrication by electron-beam lithography [J],Proc.SPIE,2003,5173:115-126.
    [76] Pantazis Mouroulis, Frank T. Hartley, Richard E. Muller, et al. Gratingfabrication through X-ray lithography[J],Proc.SPIE,2003,5173:108-114.
    [77] Yoshitate Takakura, Rigorous integral approach to the problem of scatteringfrom a modulated periodic medium obtained through conformal mapping [J], J.Opt. Soc. Am. A199512,1283-1289.
    [78]祝绍箕,邹海兴,包学诚等.衍射光栅.北京:机械工业出版社,1986
    [79] M. C. Hutley. Diffraction gratings[M]. New York: Academic press,1982
    [80] H.A. Macleod, THIN-FILM OPTICAL FILTERS(译)[M],国防工业出版社,1969
    [81] DAVIS C O, KAPPUS M E, BOWLES J H, et al. Calibration, characterization,and first results with the Ocean PHILIS hyperspectral imager [J]. SPIE,1999,3753:160-168
    [82] D. R. Lobb, Theory of concentric designs for grating spectrometers[J], Appl.Opt.1994:33,2648–2658
    [83] Welford W T著.陈晃明,梁丽轩(译),对称光学系统的像差[M],北京:科学出版社,1982
    [84] Paul W. Nugent, Joseph A. Shaw,Michael Kehoe, Casey Smith, Thomas Moon,and Rand Swanson. Measuring the modulation transfer function of imagingspectrometers at infinite focus with roof-line images. Proc. of SPIE Vol.6661,66610M,(2007)1-8
    [85]郁道银.工程光学[M].北京:机械工业出版社,2006,269-290.
    [86]薛庆生,用于空间大气遥感的临边成像光谱仪研究[D],中国科学院长春光学精密与物理研究所,2010
    [87]邱松发,毛精华.光谱仪器装配与调整[M].北京:机械工业出版社.
    [88] James C. Wyant. Optical Testing and Testing Instrumentation [M], Arizon:University of Arizona Press,1999:19-22.
    [89] THOMAS G C, ROBERT O G, MICHAEL L. Accuracy of the spectral andradiometric laboratory calibration of the airborne visible/infrared imagingspectrometer(AVIRIS)[J]. SPIE,1990,1298:37-49.
    [90] AMOLD G T, FITZGERALD M F, GRANT P S, et al. MODIS AirborneSimulator Radiometric Calibration [J]. SPIE,1996,2820:56-66.
    [91] LUSHALAN L, PETER J, DARREL G, et al.. Performance characterization ofthe hyperion imaging spectrometer instrument [J]. SPIE,2004,4135:264-275.
    [92] JERRY Z, DANIEL G, ROBERT M. Calibration procedures and measurementsfor the COMPASS hyperspectral imager[J]. SPIE,2004,5425:182-188.
    [93] YANG Y, Spectral calibration of hyperspectral imager [J], Infrared,2006,27(8):24-26.
    [94] SHU Rong, XUE Yong-qi, YANG Yi-de. Calibration and application ofairborne pushbroom Hyperspectral imager(PHI)[J]. Proceedings of SPIE,2004,5234:668-675.
    [95]潘明忠,亓洪兴,肖功海,等.便携式地面成像光谱辐射计的设计[J].红外,2010,31(1):1-7
    [96]王建宇.成像光谱仪的光谱响应函数及光谱分辨能力[J].成像光谱技术,1991:44-50.
    [97]王建宇.成像光谱仪光谱分辨率的分析[J].红外,1990,9(4):277-286.
    [98] Johnson L F, Hlavka C A, Peterson D L. Multivariate analysis of AVRIS datafor canopy biochemical estimation along the Orengon Transect[J]. RemoteSensing of Envrionment.1994,47:216-230
    [99] Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation rededge reflectance1. An inverted-Gaussian reflectance modal [J]. InternationalJournal of Remote Sensing.1990,11:121-127
    [100] Miller J R, Wu J, Boyer M G, et al. Season patterns in leaf reflectance rededge characteristics [J]. International Journal of RomateSensing.1991,12(7):1509-1523
    [101] Boochs F. Shape of the red edge as vitality indicator for plants [J]. InternationalJournal of Remote Sensing,1990,11(10):1741-1753
    [102] Gates D M, Keegan H J, Schleter J C, et al. Spectral properties of plants[J],Applied Optics,1965,4(1):11-12
    [103] Philip H S, Shirley M D. Remote Sensing: The Quantitative ApproachBerkshire: McGrawHill[M] International Book Company.1978:147-168.
    [104]童庆禧,张兵,郑兰芬.高光谱遥感-原理、技术与应用[M].北京:高等教育出版社,2006,6:22-23。
    [105] National Bureau of Statistics of China. China Statistical Yearbook [M],2007.
    [106] Sivakumar Servakaranpalayam. S, Potential applications of hyperspectralimaging for the determination of total soluble solids, water content andfirmness in mango[D], Canada,2006
    [107] SUN Tong,XU Huirong,YING Yi-bin,Progress in Application of NearInfrared Spectroscopy to Nondestructive On-line Detection of Products/FoodQuality[J]. Spectroscopy and Spectral Analysis,2009,29(1):122-126
    [108] Kim M S, Chen Y R, P M eh l M. Hyperspectral reflectance and fluorescenceimaging system for food quality and safety[J]. Transact ions of the ASAE,2001,44(3):721-729.
    [109] Mehl P M, Chao K, Kim M, et al. Detection of defects on selected applecultivars using hyperspectral and multispectral image analysis[J]. AppliedEngineering in Agriculture,2002,18(2):219-226.
    [110] A lan M, Lefcout, Moon S. Kim. Technique for normalizing intensityhistograms of images when approximate size of the target is known: Detectionof feces on apples using fluorescence imaging [J]. Computers and Electronicsin Agriculture,2006,50:135-147
    [111] A lan M, Lefcout, Moon S Kim, et al. Systematic app roach for usinghyperspectral imaging data to develop multispectral imaging systems:Detection of feces on apples[J]. Computers and Electronics in Agriculture,2006,54:22-35.
    [112] Masateru Nagata, Jasper G Tallada, Taiichi Kobayashi, et al. Predictingmaturity quality parameters of strawberries using hyperspectral imaging[C].Paper Number:043033.2004ASAE Annual International Meeting,Ontario,Canada,1-4August,2004.
    [113] Hong Tiansheng, Li Zhen, Wu Chunyin, et al. Review of hyperspectral imagetechnology for non-destructive in spection of fruit quality[J], Transactions ofthe CSAE,2007,23(11):280-285
    [114] Yan-kun Peng, Ren-fu Lu, Biology and Technology,2007,8753,1-11.
    [115] FU Xia-ping, YING Yi-bin, LU Hui-shan, et al. Detection of Pear FirmnessUsing Near Infrared Diffuse Reflectance Spectroscopy [J]. Spectroscopy andSpectral Analysis,2007,27(5):911-915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700