用户名: 密码: 验证码:
凹面变线距光栅的二维线密度分布测试及软X射线平场光谱仪的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光栅作为重要的分光元件,在光谱技术领域发挥着重要作用。近年,随着激光、全息等技术的发展,使得光栅制作工艺水平得到很大的进步,一些高级光栅被制作出来,并得到广泛使用。凹而变线距光栅是像差矫正光栅中的一种,其不仅具有凹面光栅分光、聚焦的特性,同时又能通过改变光栅表而不同位置的刻线密度使得不同波长的光成像在一个平面附近,有利于采用CCD等平面探测器接收光谱,实现快速全波段光谱分析。随着阵列探测器技术的快速发展和日益成熟,凹面变线距光栅的应用领域迅速拓展并逐渐显示出其独特的优势。
     本文研究了凹面变线距光栅的以下三部分内容:凹面光栅二维刻线密度分布测试系统、平场凹面变线距光栅光学系统的高精度波长标定方法以及凹面变线距光栅在平场光谱仪器中的应用。
     首先,光栅的刻线密度参数是影响光栅分光和成像性能的最重要物理参数,发展光栅刻线密度的高精度测试技术具有重要的意义。一方面,光栅作为产品或商品,用户需要检验其指标是否满足设计要求;另一方面,通过对光栅的检测,可以发现光栅制作工艺过程中存在的问题,有助于提高光栅的加工制作工艺水平;第三,对于一块现成的光栅,获得精确的光栅刻线密度参数,对设计光栅光学系统、分析光学系统像差以及根据现有光栅参数进行光学系统优化等多方面具有重要的作用。此外,光栅的刻线密度精度还会直接影响光谱仪的波长标定精度。因此对光栅刻线密度进行高精度测试,具有重要的实际意义。
     对于凹面变线距光栅,其表面不同位置的刻线密度并不相等,因此对光栅中心单点的线密度测量或一维线密度测量,已无法满足测量需求。在论文第3章中,建立了光栅的二维刻线密度测试系统,可实现对光栅表面任意一点的线密度进行高精度测量。采用基于光栅衍射方程的衍射测量法作为本文线密度测试方法,并以Littrow光路,以获得最小的系统误差。首次实现了对光栅的二维刻线密度分布的测量装置,获得两块光栅的线密度测试数据。并首次在光栅线密度衍射法测试系统中,发现全息光栅的弯曲刻线条纹,可以利用此测试系统,实现对光栅刻线弯曲程度进行测试。定义光栅线密度测试误差△N与实际线密度N之问的比值为测量精度,最终测试系统的绝对测量精度可达3.4×10-5。
     其次,一个光学系统在投入使用之前,必须经过波长标定这一环节,以确定探测器感光面上的任意一点所对应的波长。波长标定精度直接影响仪器的正常使用,如在化学分析、等离子体温度诊断、天体速度测量等一些应用领域,对波长精度有着非常高甚至近乎苛刻的要求。因此,研究高精度波长标定技术,具有重.要的意义。在论文第4章研究波长标定的另一重要目的是为后文软X射线平场光谱仪的研制预先提供研究基础。用一块工作在可见光波段的凹面变线距光栅,搭建了一台小型平场光谱仪,用于专门研究高精度波长标定方法。提出一种基于光栅衍射方程、直接以光学系统的结构参数作为拟合变量、以光学分光系统的波长分布函数作为波长标定模型的参数拟合波长标定方法。与常用的基于多项式拟合的波长标定方法相比,参数拟合波长标定具有更高的波长标定精度。其次,由于标定模型是以光学系统物理参数(如光栅线密度、入射角、入射臂等光学元件相对位置参数)作为拟合变量,通过本文提出的参数拟合波长标定可以反算出这些参数,进而评价实际光学系统的准直、安装水平,对光学系统的调试具有指导作用。此外,本章提出的参数拟合波长标定方法,并不局限凹面变线距光栅光学系统,还可以作为采用平面阵列探测器的光学系统的一种普适方法,并对其他光学系统具有参考价值。
     最后,在第5章给出了凹面变线距光栅在光谱仪器中的应用实例,从光学系统设计、像差考虑、光谱分辨率分析、仪器设计、调试安装等多个方面,系统地介绍了凹面变线距光栅光谱仪器的研制方法和过程。采用凹面变线距光栅作为分光元件,为中国科学院等离子体物理研究所的先进实验超导托卡马克装置研制一套高分辨率宽谱段、紧凑型,具有空间分辨的软X射线-极紫外波段光谱仪。在托卡马克运行过程中,其内部的等离子体中的杂质会引起大量的辐射损失,制约所能获得的等离子体的品质,影响托卡马克高参数、准稳态运行。利用光谱仪对托卡马克内部等离子体的发射光谱进行诊断,是研究托卡马克等离子体芯部杂质输运的重要手段。研制的光谱仪器波长覆盖范围10A-500A,空间覆盖范围900mm。分长、短两个波段设计。在10A-100A的短波段,光谱分辨率为0.06A@35A;在50A-500A的长波段,其光谱分辨率为0.15A@200A,光谱分辨率指标达到世界同类装置水平。日前,该套光谱仪器已成为研究EAST芯部杂质输运的常规诊断仪器,为实现EAST高参数稳态运行提供重要的物理支持。
As an important optical element, gratings play a key role in the field of spectroscopy field. In recent years, with the development of laser and holographic technology, the grating manufacturing level has got a profound progress. Advanced gratings are produced and have been widely used. Concave varied line space gratings, as one kind of aberration corrected holographic grating, have the ability to diffract and focus different wavelengths along a plane, which facilities the spectrum recording by CCDs and other kind of array detectors. This realizes the fast and full spectrum recording by a single exposure. With the rapid development of array detector technology, the application fields of concave varied line space gratings are expanding quickly. The unique features of concave varied line space gratings will be exploited gradually in the near future.
     This paper consists three parts:grating2D groove density measuring system, the high accuracy wavelength calibration methods for flat field spectrograph with concave varied line space gratings and the application of concave varied line space grating in a soft x-ray spectrograph which is used as a Tokamak plasma diagnostics tool.
     Groove density of grating is an important parameter that affects the diffraction and imaging performance of a spectrograph or spectrometer. As a product, a grating should undergo factory test and customer acceptance test to make sure its groove distribution meets the application requirements. By the testing, the groove distribution error in grating manufacturing process can be found and corrected. For grating users, the actual parameters of grating groove density will be used for the final optical system optimization during the installation. Moreover, the accuracy of gratings' groove density will affect the wavelength calibration directly. Therefore the high-accuracy measurement of grating groove density is of great significance.
     The grating groove density of concave varied line space gratings varies on the different positions on the grating surface; therefore the measurement of the groove density only on the center or just one-dimensional measurement cannot fulfill the demand. In chapter3, a2-dimension measurement setup for grating groove density is established, which achieves high-accuracy measurement of the groove density at any point of a grating. The diffraction measurement method based on the grating diffraction equation and the Littrow configuration is proposed which has the advantage of smaller measuring error. The groove densities of2gratings are tested. It is first time that the2D grating groove density distribution is measured by diffraction method. It is the first time that the curved grooves in holographic grating are observed by our measuring system. This measurement setup could be used to measuring the curvature of the grooves. The accuracy of measurement is defined as the ratio of the RMS error of grating groove density△N and the nominal groove density N. The measuring accuracy of the groove density is about3.4×10-5in our experiment.
     The wavelength calibration for a spectrometer/spectrograph is an essential procedure before its use. Wavelength calibration for a flat field spectrograph is to determine the wavelength value and the pixel number of the array detector. The wavelength precision is important in the fields such as Tokamak plasma temperature diagnoses and astronomy observation. In chapter4, a wavelength calibration method is proposed which is applied to a soft X-ray flat field spectrometer (Ref to chapter5). A visible range flat field spectrometer with a concave varied line space grating is developed to study high accuracy wavelength calibration method. A parameter-fitting wavelength calibration method has been proposed. In this new method, the physical parameters (grating groove density and relationships between different optical elements such as incident angle, incident arms, et al) of the spectrometer are included in the wavelength calibration model. Compared to the common-used wavelength calibration method, like polynomial fitting, the proposed wavelength calibration method can reach higher wavelength calibration accuracy. As the calibration model uses the physical parameters of the optical system that means these parameters can be computed by the wavelength fitting process. So we can use the wavelength method to evaluate the installation, d alignment and adjust of the spectrometer system. By way, the proposed wavelength calibration method not only can be applied to concave varied line space grating based spectrograph, but also to other spectrograph adopting plane array detectors.
     Chapter5presents an example of the concave varied line space grating used in soft x-ray spectrographs. The optical system design, structural design, installation and adjustment are described in details. The spectrometers are developed for the Experimental Advanced Superconducting Tokamak (EAST) for Institute of Plasma Physics of Chinese Academy of Science. It is compact in dimension, has high wavelength resolution, covering wide wavelength range and the spatial resolved ability. The impurities in plasma cause lot of radiation loss, which limits the quality of the plasma and affects the high-quality and quasi-steady-state operation of Tokamak. Spectrometer is an important tool to study the impurities transportation in the plasma. There are two spectrometers to cover the wavelength range of10A-500A and the plasma zone area of900mm is covered in space. One spectrometer for short wavelength range of10A-100A, its spectral resolution is0.06A at35A; another spectrometer covers long wavelength range of50A-500A, its spectral resolution is0.15A at200A. Test results show that both spectrometers reach the same spectral resolution among the similar instruments in the world. At present, both spectrometers have been used as a general diagnostic tool for the plasma impurities study which supports a lot to the research of EAST.
引文
[1]Butler L R P, Laqua K. Nomenclature, symbols, units and their usage in spectrochemical analysis—ix. Instrumentation for the spectral dispersion and isolation of optical radiation[J]. Spectrochimica Acta Part B:Atomic Spectroscopy.1996,51(7):645-664.
    [2]Rowland H. Preliminary notice of results accomplished on the manufacture and theory of gratings for optical purposes[J]. Phil. Mag. Suppl.1882,84(13):469-474.
    [3]Harrison G R, Loewen E G. Ruled gratings and wavelength tables[J]. APPLIED OPTICS. 1976,15(7):1744-1747.
    [4]Beutler H G. The theory of the concave grating[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1945,35(5):311-350.
    [5]Harada T, Kita T. Mechanically ruled aberration-corrected concave gratings[J]. Appl Opt. 1980,19(23):3987-3993.
    [6]Kita T, Harada T, Nakano N, et al. Mechanically ruled aberration-corrected concave gratings for a flat-field grazing-incidence spectrograph[J]. Appl Opt.1983,22(4):512-513.
    [7]Nakano N, Kuroda H, Kita T, et al. Development of a flat-field grazing-incidence xuv spectrometer and its application in picosecond xuv spectroscopy[J]. Appl Opt.1984,23(14): 2386.
    [8]Harada T, Takahashi K, Sakuma H, et al. Optimum design of a grazing-incidence flat-field spectrograph with a spherical varied-line-space grating[J]. Appl Opt.1999,38(13): 2743-2748.
    [9]Hutley M. Diffraction gratings[M]. Academic Press,1982.
    [10]Rittenhouse D. Explanation of an optical deception[J]. Trans. Amer. Phil. Soc.1786(2): 37-42.
    [11]Parker A R. A geological history of reflecting optics[J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE.2005,2(2):1-17.
    [12]Warner D J. Rowland's gratings:contemporary technology[J]. Vistas in Astronomy.1986,29: 125-130.
    [13]Strutt J W, Rayleigh L. On the manufacture and theory of diffraction gratings[Z]. Philos. Mag.,1874193-205.
    [14]Wood R W. The echellette grating for the infra-red[J]. Philos. Mag.1910,6(20):770-778.
    [15]Labeyrie A, Flamand J. Spectroscopic performance of holographically made diffraction gratings[J]. Opt. Commun.1969,5(1).
    [16]Schmahl G. Holographically made diffraction gratings for the visible, uv and soft x-ray region[J]. J. Spectrosc. Soc. Japan.1974(23):3-11.
    [17]Namioka T, Seya M, Noda H. Design and performance of holographic concave gratings[J]. JAPANESE JOURNAL OF APPLIED PHYSICS.1976,15(7):1181-1197.
    [18]Hettrick M C, Bowyer S. Variable line-space gratings-new designs for use in grazing-incidence spectrometers[J]. APPLIED OPTICS.1983,22(24):3921-3924.
    [19]Hettrick M C. Aberrations of varied line-space grazing-incidence gratings in converging light-beams[J]. APPLIED OPTICS.1984,23(18):3221-3235.
    [20]Palmer C. Diffraction grating handbook[M]. Newport Corporation.
    [21]Haber H. The torus grating[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. 1950,40(3):153-165.
    [22]Mouroulis P, Maker P D. Convex grating types for concentric imaging spectrometers[J]. APPLIED OPTICS.1998,37(31):7200-7208.
    [23]Prieto-Blanco X, Couce B. Analytical design of an offner imaging spectrometer[J]. OPTICS EXPRESS.2006,14(20):9156-9168.
    [24]佟亚军,吴刚,周全,等.Offner成像光谱仪的设计方法[J].光学学报.2010(04).
    [25]Palmer C. THEORY OF 2ND-GENERATION HOLOGRAPHIC DIFFRACTION GRATINGS[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION.1989,6(8):1175-1188.
    [26]Namioka T. ASPHERIC WAVE-FRONT RECORDING OPTICS FOR HOLOGRAPHIC GRATINGS[J]. APPLIED OPTICS.1995,34(13).
    [27]Shafer A B, Megill L R. Optimization of czerny-turner spectrometer[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1964,54(7):879.
    [28]Simon J M, Fantino A N. Czerny-turner monochromator-astigmatism in the classical and in the crossed beam dispositions[J]. APPLIED OPTICS.1986,25(20).
    [29]Rosfjord K M, Gaylord T K. Constant-bandwidth scanning of the czerny-turner monochromator[J]. APPLIED OPTICS.2000,39(4):568-572.
    [30]Fastie W G. Image forming properties of the ebert monochromator[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1952,42(9):647-651.
    [31]Fastie W G. A small plane grating monochromator[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1952,42(9):641-647.
    [32]Monk G S. A mounting for the plane grating[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA AND REVIEW OF SCIENTIFIC INSTRUMENTS.1928,17(5):358-364.
    [33]Kaneko T, Seya M. Monk-gillieson monochromator[J]. APPLIED OPTICS.1971,10(2): 367.
    [34]Koike M. Grazing-incidence monk-gillieson monochromator based on surface normal rotation of a varied-line-spacing grating[J]. APPLIED OPTICS.2002,41(1):245-257.
    [35]Howard J N. The monk-gillieson mount[J]. APPLIED OPTICS.1966,5(9):1466.
    [36]Amemiya K. Design of a variable-included-angle monk-gillieson monochromator with varied-line-spacing gratings[J]. JOURNAL OF SYNCHROTRON RADIATION.2004: 171-176.
    [37]Namioka T. Theory of the concave grating.l.[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1959,49(5):446-460.
    [38]祝绍箕等.衍射光栅[M].机械工业出版社,1986.
    [39]刘斌,楼俊,刘正坤,等.压弯光栅线密度检测[J].光学精密工程.2006(6):986-989.
    [40]朱向冰,付绍军,叶为全,等.对变线距光栅干涉测量中的环形条纹的分析[J].光学精密工程.2002(6):634-638.
    [41]Cocco D, Sostero G. High precision measurements of the groove density of diffraction gratings[C]. SAN DIEGO, CA:SPIE-INT SOC OPTICAL ENGINEERING,1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA,2000.
    [42]Cocco D, Sostero G, Zangrando M. Technique for measuring the groove density of diffraction gratings using the long trace profiler[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2003,74(7):3544-3548.
    [43]Liu B, Wang Q P, Xu X D, et al. Measurements of groove density for concave gratings with the long trace profiler[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2006,77(0461064).
    [44]Liu B, Lou J, Fu S J, et al. Two-dimensional measurement of groove spacing for plane VLS gratings using the long trace profiler:2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems[Z]. NEW YORK:IEEE,2006:1-3, 556-558.
    [45]陈锵,王秋平,余小江,等.变间距光栅刻线密度的测试精度分析[J].核技术.2001(7):557-563.
    [46]陈锵,胡中文,余小江,等.变间距光栅刻线密度测试系统的性能评价[J].核技术.2004(1).
    [47]Hu Z W, Chen Q, Yu X J, et al. Groove density measurements for the VLS grating by diffraction method[M]. SYNCHROTRON RADIATION INSTRUMENTATION, MELVILLE:AMER INST PHYSICS,2004:705,823-826.
    [48]Hu Z W, Liu Z P, Wang Q P. Determination of groove spacings for concave diffraction gratings[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2004,75(11):4419-4422.
    [49]佟亚军,吴刚,周全,等.Offner成像光谱仪的设计方法[J].光学学报.2010(04):1148-1152.
    [50]Elder F R, Langmuir R V. Radiation from electrons in a synchrotron[Z].1947:71,829-830.
    [51]Namioka T. Theory of the concave grating.3. Seya-namioka monochromator[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1959,49(10):951-961.
    [52]Tan K H, Coatsworth L L. Mark-iv grasshopper grazing-incidence monochromator for the canadian synchrotron radiation facility (csrf)[J]. CANADIAN JOURNAL OF PHYSICS. 1982,60(2).
    [53]Chen C T, Smith N V. Double-headed dragon monochromator for soft-x-ray circular-dichroism studies[Z].1990:29.
    [54]Dietz E, Bradshaw A M. A high-flux toroidal grating monochromator for the soft-x-ray region[J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT.1985,239(2):359-366.
    [55]Fujisawa M, Agui A, Kakizaki A, et al. Varied line-spacing plane grating monochromator for undulator beamline[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.1996,67(2):345-349.
    [56]Amemiya K, Ohta T. Design of a holographically recorded plane crating with a varied line spacing for a soft x-ray grazing-incidence monochromator[J]. JOURNAL OF SYNCHROTRON RADIATION.1996:282-288.
    [57]Aksela S, Debrito A N, Svensson S. Performance of the modified sx-700 plane grating monochromator at the finnish beamline in max-lab[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.1994,65(4):831-836.
    [58]Aksela S, Nyholm R. Study of different sx-700 monochromator designs for the undulator beamline (b151) at max-lab[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.1992,63(1): 1252-1255.
    [59]Riemer F. Bessy sx-700 uhv monochromator-design-features and kinematic concept[J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH.1983,208(1-3): 313-314.
    [60]Namioka T, Koike M. Aspheric wave-front recording optics for holographic gratings[J]. APPLIED OPTICS.1995,34(13):2180-2186.
    [61]Namioka T, Seya M, Noda H. Design and performance of holographic concave gratings[J]. JAPANESE JOURNAL OF APPLIED PHYSICS.1976,15(7):1181-1197.
    [1]Beutler H G. The Theory of the Concave Grating[J]. Journal of the Optical Society of America.1945,35(5):311-350.
    [2]Namioka T. Theory of the Concave Grating. Ⅰ[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1959,49(5):446-460.
    [3]Namioka T. Theory of the Concave Grating. Ⅲ. Seya-Namioka Monochromator[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1959,49(10):951-961.
    [4]Namioka T. Theory of the Concave Grating. Ⅱ. Application of the Theory to the Off—Plane Eagle Mounting in a Vacuum Spectrograph[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1959,49(5):460-466.
    [5]Namioka T, Seya M, Noda H. Design and Performance of Holographic Concave Grating[J]. Japan Journal Of Industrial And Applied Physics.1976.
    [6]Haber H. THE TORUS GRATING[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1950,40(3):153-165.
    [7]Noda H, Namioka T, Seya M. DESIGN OF HOLOGRAPHIC CONCAVE GRATINGS FOR SEYA-NAMIOKA MONOCHROMATORS[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1974,64(8):1043-1048.
    [8]Noda H, Namioka T, Seya M. RAY TRACING THROUGH HOLOGRAPHIC GRATINGS[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1974,64(8): 1037-1042.
    [9]Noda H, Harada Y, Koike M. HOLOGRAPHIC GRATING RECORDED USING ASPHERIC WAVEFRONTS FOR A SEYA-NAMIOKA MONOCHROMATOR[J]. APPLIED OPTICS.1989,28(20):4375-4380.
    [10]佟亚军.软X射线光栅单色器精密测试及成像光谱仪研究[D].上海:中国科学院研究生院,2010.
    [11]胡中文.广义光栅方程与光栅线密度测试及二维CCD全谱光谱仪的研制[D].合肥:中国科学技术大学,2005.
    [12]余小江.NSRL表面物理光束线[D].巾国科学技术大学,2002.
    [13]Beutler H G. The theory of the concave grating[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1945,35(5):311-350.
    [14]Namioka T. Theory of the concave grating.1.[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1959,49(5):446-460.
    [15]Katayama T, Takahash. A. Optical transfer function of concave grating spectrometer based on wave optical method[J]. JAPANESE JOURNAL OF APPLIED PHYSICS.1970,9(12): 1509.
    [16]Noda H, Namioka T, Seya M. Geometric theory of grating[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1974,64(8):1031-1036.
    [17]Harada T, Kita T. Mechanically ruled aberration-corrected concave gratings[J]. Appl Opt. 1980,19(23):3987-3993.
    [18]Kita T, Harada T, Nakano N, et al. Mechanically ruled aberration-corrected concave gratings for a flat-field grazing-incidence spectrograph[J]. Appl Opt.1983,22(4):512-513.
    [19]Palmer C, Mckinney W R. Imaging properties of varied line-space (vls) gratings with adjustable curvature[M]. THEORY AND PRACTICE OF SURFACE-RELIEF DIFFRACTION GRATINGS:SYNCHROTRON AND OTHER APPLICATIONS, BELLINGHAM:SPIE-INT SOC OPTICAL ENGINEERING,1998:3450,87-102.
    [20]Harada T, Kita T. MECHANICALLY RULED ABERRATION-CORRECTED CONCAVE GRATINGS[J]. APPLIED OPTICS.1980,19(23):3987-3993.
    [21]Hettrick M C. ABERRATIONS OF VARIED LINE-SPACE GRAZING-INCIDENCE GRATINGS IN CONVERGING LIGHT-BEAMS[J]. APPLIED OPTICS.1984,23(18): 3221-3235.
    [22]Grange R. Aberration-reduced holographic spherical grating for Rowland circle spectrographs[J]. Applied Optics.1-992,31(19).
    [23]Kita T, Harada T. USE OF ABERRATION-CORRECTED CONCAVE GRATINGS IN OPTICAL DEMULTIPLEXERS[J]. APPLIED OPTICS.1983,22(6):819-825.
    [24]Chowdhury A, Joshi R A, Kumbhare S R, et al. Development of a flat-field XUV spectrograph for laser plasma interaction sutdues[J].1999.
    [25]Harada T, Takahashi K, Sakuma H, et al. Optimum design of a grazing-incidence flat-field spectrograph with a spherical varied-line-space grating[J]. Appl Opt.1999,38(13): 2743-2748.
    [26]Koike M, Namioka T. Grazing-Incidence Monk-Gillieson Monochromator Based on Surface Normal Rotation of a Varied-Line-Spacing Grating[J]. Applied Optics.2002.
    [27]Koike M, Namioka T, Gullikson E, et al. Varied-line-spacing laminar-type holographic grating for the standard soft X-ray flat-field spectrograph[M]. BELLINGHAM:SPIE-INT SOC OPTICAL ENGINEERING,2000:4146,163-170.
    [28]Amemiya K, Ohta T. Design of a variable-included-angle Monk±Gillieson monochromator with varied-line-spacing gratings[J]. Journal of Synchrotron Radiation.2004.
    [29]Chen C T. Concept and design procedure for cylindrical element monochromators for synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research A.1987: 595-604.
    [30]Namioka T, Koike M. ANALYTICAL REPRESENTATION OF SPOT DIAGRAMS AND ITS APPLICATION TO THE DESIGN OF MONOCHROMATORS[J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT.1992,319(1-3):219-227.
    [31]Namioka T, Koike M, Content D. GEOMETRIC-THEORY OF THE ELLIPSOIDAL GRATING[J]. APPLIED OPTICS.1994,33(31):7261-7274.
    [32]Masui S, Namioka T. Geometric aberration theory of double-element optical systems[J], JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION.1999,16(9):2253-2268.
    [33]Lai B, Cerrina F. SHADOW-A SYNCHROTRON RADIATION RAY TRACING PROGRAM[J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT.1986,246(1-3):337-341.
    [34]Welnak C, Chen G J, Cerrina F. SHADOW-A SYNCHROTRON-RADIATION AND X-RAY OPTICS SIMULATION TOOL[J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT.1994,347(1-3):344-347.
    [35]Del Rio M S, Canestrari N, Jiang F, et al. SHADOW3:a new version of the synchrotron X-ray optics modelling package[J]. JOURNAL OF SYNCHROTRON RADIATION.2011, 18(Part 5):708-716.
    [36]Macadam D L. Focus of a concave grating spectrograph[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1933,23(5):178-181.
    [37]Masui S, Namioka T. Geometric aberration theory of double-element optical systems[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION.1999,16(9):2253-2268.
    [38]Noda H, Namioka T, Seya M. GEOMETRIC THEORY OF GRATING [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1974,64(8):1031-1036.
    [39]Gilberg E, Hanus M J, Foltz B. HIGH-RESOLUTION CONCAVE GRATING GRAZING-INCIDENCE SPECTROMETER FOR THE SPECTRAL REGION OF ULTRASOFT X-RAYS [J]. REVIEW OF SCIENTIFIC INSTRUMENTS.1981,52(5):662-672.
    [1]Beutler H G. THE THEORY OF THE CONCAVE GRATING[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1945,35(5):311-350.
    [2]Namioka T. THEORY OF THE CONCAVE GRATING.1.[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1959,49(5):446-460.
    [3]Harada T, Kita T. MECHANICALLY RULED ABERRATION-CORRECTED CONCAVE GRATINGS[J]. APPLIED OPTICS.1980,19(23):3987-3993.
    [4]Senba Y, Kishimoto H, Miura T, et al. Measurement of groove density variation of varied-line-space grating for high-resolution soft X-ray monochromator[J]. ADVANCES IN METROLOGY FOR X-RAY AND EUV OPTICS IV.2012,8501(850104).
    [5]Korotkov V I, Pulkin S A, Vitushkin A L, et al. Laser interferometric diffractometry for measurements of diffraction grating spacing[J]. APPLIED OPTICS.1996,35(24): 4782-4786.
    [6]Erskine D J, Edelstein J. High-resolution broadband spectral interferometry[J]. FUTURE EUV/UV AND VISIBLE SPACE ASTROPHYSICS MISSIONS AND INSTRUMENTATION.2003,4854:158-169.
    [7]朱向冰,何世平,付绍军,等.云纹法检测变线距光栅的线密度[J].光学精密工程.2002,10(3):285-289.
    [8]朱向冰,付绍军,叶为全,等.变线距光栅线密度的干涉测量[J].光学学报.2003,23(11):1354-1358.
    [9]王铷,唐欣,叶超,等.二维变线距光栅密度的检测[J].实验力学.2004,19(3):324-328.
    [10]Oster G, Zwerling C, Wasserman M. THEORETICAL INTERPRETATION OF MOIRE PATTERNS[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1964,54(2): 169.
    [11]Meadows D M, Johnson W O, Allen J B. GENERATION OF SURFACE CONTOURS BY MOIRE PATTERNS[J]. APPLIED OPTICS.1970,9(4):942.
    [12]Katyl R H. MOIRE SCREENS CODED WITH PSEUDO-RANDOM SEQUENCES[J]. APPLIED OPTICS.1972,11(10):2278.
    [13]Yokozeki S, Patorski K. MOIRE FRINGE PROFILE PREDICTION METHOD AND ITS APPLICATION TO FRINGE SHARPENING[J]. APPLIED OPTICS.1978,17(16): 2541-2547.
    [14]Kleinknecht H P, Meier H. LINEWIDTH MEASUREMENT ON IC MASKS AND WAFERS BY GRATING TEST PATTERNS[J]. APPLIED OPTICS.1980,19(4):525-533.
    [15]Bryngdahl O. CHARACTERISTICS OF SUPERPOSED PATTERNS IN OPTICS[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1976,66(2):87-94.
    [16]Qian S N, Jark W, Sostero G, et al. Precise measuring method for detecting the in situ distortion profile of a high-heat-load mirror for synchrotron radiation by use of a pentaprism long trace profiler[J]. APPLIED OPTICS.1997,36(16):3769-3775.
    [17]Takacs P Z, Feng S K, Church E L, et al. Long Trace Profile Measurements On Cylindrical Aspheres[J]. SPIE.1988.
    [18]Qian S N, Jark W, Takacs P Z. THE PENTA-PRISM LTP-A LONG-TRACE-PROFILER WITH STATIONARY OPTICAL HEAD AND MOVING PENTA PRISM[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.1995,66(3):2562-2569.
    [19]Takacs P Z, Qian S N, Colbert J. Design Of A Long Trace Surface Profiler[C]. SPIE,1987.
    [20]Liu B, Lou J, Fu S J, et al. Two-dimensional measurement of groove spacing for plane VLS gratings using the long trace profiler[J].2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Vols 1-3.2006:556-558.
    [21]Zeng D H, Xiao T Q, Du G H, et al. New long trace profiler based on phase plate diffraction for optical metrology of SSRF[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2006, 77(0933059).
    [22]Lim J, Rah S. Technique for measuring the groove density of a diffraction grating with elimination of the eccentricity effect[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2004, 75(3):780-782.
    [23]Cocco D, Sostero G, Zangrando M. Technique for measuring the groove density of diffraction gratings using the long trace profiler[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2003,74(7):3544-3548.
    [24]Liu B, Wang Q P, Xu X D, et al. Measurements of groove density for concave gratings with the long trace profiler[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2006,77(0461064).
    [25]胡中文.广义光栅方程与光栅线密度测试及二维CCD全谱光谱仪的研制[D].中国科学技术大学,2005.
    [26]陈锵.变间距光栅刻线密度的测量[D].中国科学技术大学,2002.
    [27]Yoon T H, Il Eom C, Chung M S, et al. Diffractometric methods for absolute measurement of diffraction-grating spacings[J]. OPTICS LETTERS.1999,24(2):107-109.
    [28]Yoon T H, Il Eom C, Chung M S, et al. Diffractometric methods for absolute measurement of diffraction-grating spacings[J]. OPTICS LETTERS.1999,24(2):107-109.
    [29]Hu Z W, Liu Z P, Wang Q P. Determination of groove spacings for concave diffraction gratings[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2004,75(11):4419-4422.
    [30]Hu Z W, Chen Q, Yu X J, et al. Groove density measurements for the VLS grating by diffraction method[J]. SYNCHROTRON RADIATION INSTRUMENTATION.2004,705: 823-826.
    [31]陈锵,胡中文,余小江,等.变间距光栅刻线密度测试系统的性能评价[J].核技术.2004,27(1):9-13.
    [32]陈锵,王秋平,余小江,等.变间距光栅刻线密度的测试精度分析[J].核技术.2001,24(7):557-563.
    [33]刘斌.变曲率光栅的成像特性研究及相关测试技术[D].中国科学技术大学,2006.
    [1]Koike M, Yamazaki T, Harada Y. Design of holographic gratings recorded with aspheric wave-front recording optics for soft x-ray flat-field spectragraphs[J]. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA.1999,103(Sp. Iss. SI): 913-918.
    [2]Bacon C P, Mattley Y, Defrece R. Miniature spectroscopic instrumentation:applications to biology and chemistry[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2004,75(1):1-16.
    [3]Harada T, Takahashi K, Sakuma H, et al. Optimum design of a grazing-incidence flat-field spectrograph with a spherical varied-line-space grating[J]. Appl Opt.1999,38(13): 2743-2748.
    [4]Brownrigg J T. Wavelength calibration methods for low-resolution photodiode-array spectrometers[J]. APPLIED SPECTROSCOPY.1993,47(7):1007-1014.
    [5]Sadler D A. Automatic wavelength calibration procedure for use with an optical spectrometer and array detector[J]. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY.1995, 10(3):253-257.
    [6]Wang Q P. A simple method for wavelength calibration of monochromators with a sine drive[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.1995,66(2):2284-2286.
    [7]Abbott M J, Jelinsky P, Millerbagwell A M, et al. The calibration of the euve spectrometers.1.Wavelength calibration and resolution[J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES.1996,107(1):451-466.
    [8]Busch K W, Rabbe D, Dundee B. Wavelength calibration of a dispersive near-infrared spectrometer using trichloromethane as a calibration standard[J]. APPLIED SPECTROSCOPY.2000,54(9):1321-1326.
    [9]Liu K. L. Investigation of wavelength calibration for an echelle cross-dispersion spectrometer[J]. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY.2003,18(10): 1177-1184.
    [10]李新,张国伟,寻丽娜,等.短波红外平场光谱仪的波长定标[J].光学学报.2008(5):902-906.
    [11]Whitmore J B, Murphy M T, Griest K. Wavelength calibration of the vlt-uves spectrograph[J]. ASTROPHYSICAL JOURNAL.2010,723(1):89-99.
    [12]Scotti F, Bell R E. High accuracy wavelength calibration for a scanning visible spectrometer[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2010,81.
    [13]Gaigalas A K, Wang L L, He H J, et al. Procedures for wavelength calibration and spectral response correction of ccd array spectrometers[J]. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY.2009,114(4):215-228.
    [14]白力,廖宁放,栗兆剑,et al. Study on the wavelength calibration of type iii concave grating spectrometry system[J].中国光学快报(英文版).2004,2(3):174-176.
    [15]Tseng C H, Ford J F, Mann C K, et al. Wavelength calibration of a multichannel spectrometer[J]. APPLIED SPECTROSCOPY.1993,47(11):1808-1813.
    [16]徐中民,禹秉熙.对pc2000-pc/104型光谱仪的波长定标[J].光学精密工程.2004(1): 11-14.
    [17]Zhang Z H, Wang S R,Huang Y, et al. High-precision wavelength calibration of wide-band monochromator[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS.2012,32(10): 2870-2874.
    [18]Cho J H, Gemperline P J, Walker D. Wavelength calibration method for a ccd detector and multichannel fiber-optic probes[J]. APPLIED SPECTROSCOPY.1995,49(12):1841-1845.
    [19]Warden E S, Moos H W. Penning discharge as a photoelectric euv spectroscopy source[J]. APPLIED OPTICS.1977,16(7):1902-1904.
    [20]Finley D S, Bowyer S, Paresce F, et al. Continuous discharge penning source with emission-lines between 50 a and 300 a[J]. APPLIED OPTICS.1979,18(5):649-654.
    [21]Bowyer S. Continuous emission source covering the 50-300-angstrom band[J]. APPLIED OPTICS.1993,32(34):6930-6933.
    [22]曹健林.Penning放电真空紫外光源[J].光学精密工程.1985(3):63-64.
    [23]曹健林,陈星旦.Penning(?)匕源的电学、光谱学特性[J].光学精密工程.1986(4):1-8.
    [24]Steinmetz T, Wilken T, Araujo-Hauck C, et al. Laser frequency combs for astronomical observations[J]. SCIENCE.2008,321 (5894):1335-1337.
    [25]Li C H, Benedick A J, Fendel P, et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1)[J]. NATURE.2008,452 (7187):610-612.
    [26]Newbury N R. Low-noise fiber-laser frequency combs (Invited)[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS.2007,24 (8):1756-1770.
    [27]Diddams S A, Ye J, Hall J L, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. PHYSICAL REVIEW LETTERS.2000,84 (22): 5102-5105.
    [28]Youngquist R C, Simmons S M, Belanger A M. Spectrometer wavelength calibration using spectrally resolved white-light interferometry[J]. OPTICS LETTERS.2010,35(13).
    [29]Beutler H G. The theory of the concave grating[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1945,35(5):311-350.
    [30]Harada T, Kita T. Mechanically ruled aberration-corrected concave gratings[J]. Appl Opt. 1980,19(23):3987-3993.
    [31]Martinsen P, Jordan B, Mcglone A, et al. Accurate and precise wavelength calibration for wide bandwidth array spectrometers[J]. APPLIED SPECTROSCOPY.2008,62(9).
    [32]Roscoe H K, Fish D J, Jones R L. Interpolation errors in uv-visible spectroscopy for stratospheric sensing:implications for sensitivity, spectral resolution, and spectral range[J]. APPLIED OPTICS.1996,35(3):427-432.
    [33]Ozdemir D, Mosley M, Williams R. Effect of wavelength drift on single-and multi-instrument calibration using genetic regression[J]. APPLIED SPECTROSCOPY.1998, 52(9):1203-1209.
    [34]De Cuyper J P, Hensberge H. Wavelength calibration at moderately high resolution[J]. ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES.1998,128(2):409-416.
    [35]杨怀栋,徐立,陈科新,等.光电探测器对光谱仪器精度的影响[J].光谱学与光谱分析.2005(9):1520-1523.
    [36]程万胜,赵杰,蔡鹤皋.Cod像素响应非均匀的校正方法[J].光学精密工程.2008(2):314-318.
    [37]Martinsen P, Mcglone V A, Jordan R B, et al. Temporal sensitivity of the wavelength calibration of a photodiode array spectrometer[J]. APPLIED SPECTROSCOPY.2010,64(12): 1325-1329.
    [38]Schmidt P O, Kimeswenger S, Kaufl H U. A new generation of spectrometer calibration techniques based on optical frequency combs[J]. THE 2007 ESO INSTRUMENT CALIBRATION WORKSHOP.2008:409-412.
    [39]Du X W, Li C Y, Xu Z, et al. Accurate Wavelength Calibration Method for Flat-Field Grating Spectrometers[J]. APPLIED SPECTROSCOPY.2011,65(9):1083-1086.
    [1]邱励俭.聚变能及其应用[M].北京市:科学出版社,2008.
    [2]石秉仁.磁约束聚变原理与实践[M].北京市:原子能出版社,1999.
    [3]Wesson J, Campbell D J. Tokamaks[M]. Clarendon Press,2004.
    [4]Shimada M, Mukhovatov V, Kirneva N, et al. Progress in the ITER Physics Basis-Chapter 1: Overview and summary[J]. NUCLEAR FUSION.2007,47(6):S1-S17.
    [5]Mukhovatov V, Chudnovskiy A N, Gribov Y, et al. Overview of physics basis for ITER[J]. PLASMA PHYSICS AND CONTROLLED FUSION.2003:A235-A252.
    [6]Fonck R J, Ramsey A T, Yelle R V. Multichannel grazing-incidence spectrometer for plasma impurity diagnosis-spred[J]. APPLIED OPTICS.1982,21(12):2115-2123.
    [7]Yoshikawa M, Okamoto Y, Kawamori E, et al. Absolute calibration of space-resolving soft x-ray spectrograph for plasma diagnostics[J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT.2001,467(Part 2):1533-1536.
    [8]Chowdhuri M B, Morita S, Goto M, et al. Spectroscopic comparison between 1200 grooves/mm ruled and holographic gratings of a flat-field spectrometer and its absolute sensitivity calibration using bremsstrahlung continuum[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2007,78(2).
    [9]Clementson J, Beiersdorfer P, Magee E W. Grazing-incidence spectrometer on the sspx spheromak[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2008,79(10F53810).
    [10]Lapierre A, Lopez-Urrutia J, Baumann T M, et al. Compact soft x-ray spectrometer for plasma diagnostics at the heidelberg electron beam ion trap[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2007,78(12310512).
    [11]Kondo K, Oda T, Okada H, et al. Spectrum identification of Heliotron E plasma impurities by a time-resolving grazing incidence spectrometer with a multichannel detector[J]. Japanese journal of applied physics.1988,27:1287.
    [12]Kadota K, Otsuka M, Fujita J. Space-and Time-Resolved Study of Impurities by Visible Spectroscopy in High Density Regime of JIPP T-II Tokamak Plasma[J]. Research report. 1979,374:1-16.
    [13]Beiersdorfer P, Magee E W, Trabert E, et al. Flat-field grating spectrometer for high-resolution soft x-ray and extreme ultraviolet measurements on an electron beam ion trap[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2004,75(10Part 2):3723-3726.
    [14]Beiersdorfer P, Bitter M, Roquemore L, et al. Grazing-incidence spectrometer for soft x-ray and extreme ultraviolet spectroscopy on the National Spherical Torus Experiment[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2006,77(10F30610).
    [15]Fan P Z, Zhang Z Q, Zhou J Z, et al. Stigmatic grazing-incidence flat-field grating spectrograph[J]. APPLIED OPTICS.1992,31(31):6720-6723.
    [16]Utter S B, Brown G V, Beiersdorfer P, et al. Grazing-incidence measurements of 1-shell line emission from highly charged fe in the soft x-ray region[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.1999,70(1 Part 2):284-287.
    [17]Beiersdorfer P, Bitter M, Roquemore L, et al. Grazing-incidence spectrometer for soft x-ray and extreme ultraviolet spectroscopy on the national spherical torus experiment[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2006,77(10F30610).
    [18]Clementson J, Beiersdorfer P, Magee E W. Grazing-incidence spectrometer on the sspx spheromak[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2008,79(10F53810).
    [19]Chowdhuri M B, Morita S, Goto M. Characteristics of an absolutely calibrated flat-field extreme ultraviolet spectrometer in the 10-130 angstrom range for fusion plasma diagnostics[J]. APPLIED OPTICS.2008,47(2):135-146.
    [20]Stratton B C, Ida K, Ramsey A T. SPRED SPECTROGRAPH UPGRADE HIGH-RESOLUTION GRATING AND IMPROVED ABSOLUTE CALIBRATIONS[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.1986,57(8):2043-2045.
    [21]Hodge W L, Moos H W. GRAZING-INCIDENCE TIME-RESOLVING SPECTROGRAPH FOR MAGNETIC FUSION PLASMA DIAGNOSTICS[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.1984,55(1):16-24.
    [22]Yamazaki T, Gullikson E, Miyata N, et al. Comparison of mechanically ruled versus holographically varied line-spacing gratings for a soft-x-ray flat-field spectrograph[J]. APPLIED OPTICS.1999,38(19):4001-4003.
    [23]Koike M, Sano K, Gullikson E, et al. Performance of laminar-type holographic grating for a soft x-ray flat-field spectrograph in the 0.7-6 nm region[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.2003,74(2):1156-1158.
    [24]Koike M, Yamazaki T, Harada Y. Design of holographic gratings recorded with aspheric wave-front recording optics for soft x-ray flat-field spectrographs[J]. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA.1999,103(Sp. Iss. SI): 913-918.
    [25]Harada T, Kita T. Mechanically ruled aberration-corrected concave gratings[J]. Appl Opt. 1980,19(23):3987-3993.
    [26]Kita T, Harada T, Nakano N, et al. Mechanically ruled aberration-corrected concave gratings fora flat-field grazing-incidence spectrograph[J]. Appl Opt.1983,22(4):512-513.
    [27]Harada T, Takahashi K, Sakuma H, et al. Optimum design of a grazing-incidence flat-field spectrograph with a spherical varied-line-space grating[J]. Appl Opt.1999,38(13): 2743-2748.
    [28]Beutler H G. The theory of the concave grating[J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1945,35(5):311-350.
    [29]Lai B, Cerrina F. SHADOW:A synchrotron radiation ray tracing program[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment.1986,246(1-3):337-341.
    [30]Welnak C, Chen G J, Cerrina F. SHADOW:A synchrotron radiation and X-ray optics simulation tool[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.1994,347(1-3):344-347.
    [31]王秋平,陈锵,余小江,等.新型精密狭缝的设计[J].航空精密制造技术.2001(4):6-8.
    [32]Her I. A LINEAR SCHEME FOR THE DISPLACEMENT ANALYSIS OF MICROPOSITIONING STAGES WITH FLEXURE HINGES[J]. JOURNAL OF MECHANICAL DESIGN.1994,116(3):770-776.
    [33]Xu W. Flexure hinges for piezoactuator displacement amplifiers:Flexibility, accuracy, and stress considerations[J]. PRECISION ENGINEERING-JOURNAL OF THE AMERICAN SOCIETY FOR PRECISION ENGINEERING.1996,19(1):4-10.
    [34]Du X W, Li C Y, Xu Z, et al. Accurate Wavelength Calibration Method for Flat-Field Grating Spectrometers[J]. APPLIED SPECTROSCOPY.2011,65(9):1083-1086.
    [35]张伟,石跃江,王秋平,等EAST全超导托卡马克高分辨率EUV光谱仪诊断系统[J].核技术.2011(08):613-617.
    [36]Shen Y, Du X, Zhang W, et al. Space-resolved extreme ultraviolet spectrometer system for impurity behavior research on experimental advanced superconducting Tokamak[J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT.2013,700:86-90.
    [37]杜学维,沈永才,李朝阳,等.极紫外平场光栅光谱仪的研制和性能测试[J].光谱学与光谱分析.2012(08):2270-2274.
    [38]Du X W, Shi Y J, Zhang W, et al. Flat-field EUV spectrometer and its performance test by Penning discharge source[M]. Proc. of SPIE Vol.8197,81971A (2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700