用户名: 密码: 验证码:
(Ga,In)_2S_3-基硫卤玻璃的组成、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正文:由于在光开关、1.3μm稀土掺杂光纤放大器等通讯领域可能获得重要应用,Ga_2S_3-基硫卤玻璃的光学非线性属性和稀土掺杂后的光谱发射性能引起了人们广泛关注。基于同主族元素In和Ga化学性质的类似,可以推测In_2S_3-基硫卤玻璃也应该具有同样的潜在应用。但是,据本文作者所知,关于Ga_2S_3-基和In_2S_3-基硫卤玻璃结构与性能的研究文献极少,特别是关于In_2S_3-基硫卤玻璃的基础研究文献几乎没有。由于光学非线性属性以及掺入基础玻璃中的稀土离子光谱发射性能均与玻璃的微结构和基础性质有非常密切的关系,因此,上述硫卤玻璃的组成、结构与性能研究具有重要的理论意义和应用价值。
     本文利用金相显微镜、X-射线衍射谱、X-射线光电子能谱、拉曼散射、综合热分析、紫外-可见-近红外光谱和红外光谱等技术对四个准三元体系GeS_2-Ga_2S_3-KCl、GeS_2-Ga_2S_3-CsCl、GeS_2-In_2S_3-KCl、GeS_2-In_2S_3-CsCl的组成、结构与性能关系进行了深入研究和分析,获得了下述主要结论:
     首次确定了GeS_2-In_2S_3-KCl和GeS_2-In_2S_3-CsCl准三元体系的玻璃形成区;
     通过探讨Cs~+局部配位环境及其对Ga_2S_(4/2)Cl_2桥式单元的影响,首次成功解释了玻璃Ga_2S_3-2CsCl和桥式分子Ga_2S_6拉曼谱相似和变化的原因;
     通过深入分析碱金属卤化物引入所产生的微结构单元变化、引入阳离子M~+(M=K、Cs)的局部配位状态及其对微结构单元镓硫氯混合四面体GaS_(4-x)Cl_x和共边镓硫氯混合四面体Ga_2S_(4/2)Cl_2的影响,成功地阐释了所研究准三元体系GeS_2-Ga_2S_3-K(Cs)Cl中各组成系列样品的拉曼谱归属和演变;
     首次研究了准三元体系GeS_2-In_2S_3-K(Cs)Cl玻璃的拉曼谱,并通过探讨该准三元体系中可能形成的微结构单元、引入阳离子M~+(M=K、Cs)的局部配位及其对微结构单元铟硫氯混合四面体InS_(4-x)Cl_x和铟硫氯混合八面体InS_(6-x)Cl_x的影响成功给出了各组成系列玻璃拉曼谱归属及演变的微结构缘由。
     碱金属氯化物以下述方式进入玻璃微结构:阳离子M~+是以Cl为最近邻配位的单壳层形式均匀分散于玻璃网络中;在碱金属氯化物掺杂的Ga_2S_3-基硫卤玻璃中,阴离子Cl~-通过形成镓硫氯混合四面体的方式进入玻璃网络;而在碱金属氯化物掺杂的In_2S_3-基硫卤玻璃中,阴离子Cl~-则是通过形成铟硫氯混合多面体(主要是铟硫氯混合四面体InS_(4-x)Cl_x和少量铟硫氯混合八面体InS_(6-x)Cl_x)的方式进入玻璃网络;
     随着碱金属氯化物含量增加,玻璃的Urbach吸收边逐渐向短波方向移动、红外透过截至波长基本上没有发生变化、玻璃转变温度下降、耐水性变差;
     GeS_2-Ga(In)_2S_3-CsCl准三元体系中由于引入CsCl使微结构发生变化,导致了电子态密度的变化,从而使Urbach吸收边随样品组成变化而发生移动;并根据CsCl引入对玻璃微观结构单元影响的分析解释了CsCl掺量增加使玻璃耐水性下降的原因;
     GeS_2-Ga(In)_2S_3-KCl准三元体系中,具有最佳玻璃形成能力的玻璃组成分别为:0.6GeS_2-0.2Ga_2S_3-0.2KCl、0.7GeS_2-0.15In_2S_3-0.15KCl。
Content: Recently Ga2S3-based chalcohalide glasses have attracted much attention according to their possible applications such as ultra-fast all optical switching, rare-earth doped 1.3um fiber amplifier, and etc. In addition, based on the similarity of chemical properties with Ga and In, it can be anticipated that ln2S3-based Chalcohalide glasses also be the leading candidates in the above-mentioned fields. However, to our knowledge, there are few reports about Ga2S3-based especially In2S3-based chalcohalide glasses. Considering the intimate relation among the above-mentioned applications, microstructure and basic properties of materials, understanding and utilization of the basic studying findings are worthwhile from theoretical and practical viewpoints.
    Utilizing the techniques such as X-Ray diffraction, Raman spectra, Comprehensive thermal analysis, UV-Vis-Near IR and FTIR, and etc., probing and analysis has been made systematically about the relationships of composition, structure and properties within four pseudo-ternary systems: GeS2-Ga2S3-KCl, GeS2-Ga2S3-CsCl, GeS2-In2S3-KCI and GeS2-In2S3-CsCI. The obtained conclusions are as follows:
    The glass-forming regions within GeS2-In2S3-K(Cs)Cl systems were reported firstly.
    Similarities and changes of Raman spectra between GaS CsCI glass and bridged molecular Ga2Cl6 were ascribed successfully based on the local surroundings of Cs+and its influence on bridged units Ga2S6-xCIx.
    Ascriptions and evolutions of Raman spectra within GeS2-Ga2S3-K (Cs) Cl systems were made reasonably in terms of micro-structural variation originating from the introduction of MCI (M=K,Cs) such as: local surroundings of M+ ions and its effect on mixed tetrahedral GaS4-xClx together with edge-shared tetrahedral Ga2S6-xClx.
    Raman spectra of samples within GeS2-In2S3-K(Cs)Cl systems were reported for the first time. Furthermore, assignments and shifts of spectra on every component serial had been elucidated reasonably according to micro-structural transformation resulting from composition changes.
    Among the glassy micro-structural network, alkali chlorine MCl(M=K,Cs) exists as the flowing forms: M* ions as Cl for its nearest coordination; Cl atoms enter into glassy network as tetrahedral GaS4.xClx within GeS2-Ga2S3-K (Cs) Cl systems; while Cl atoms enter into amorphous net as tetrahedral(InS4.xClx;mainly)and octahedral (InS6-xClx;lessly) units within GeS2-In2S3-K(Cs)CI systems.
    With the increase of MCI amount, there is a shift toward shorter wavelength about glassy Urbach absorption edge; a decline of glass transition temperature; and a drop on glassy water-resistance within the above-mentioned four systems.
    Within GeS2-Ga(In)2S3-CsCI systems, the shift about Urbach absorption edge was reasonably ascribed inspiring from the effect of CsCI on the electronic DOS(density of States); and the descending of water-resistance following the increase of CsCI content was explained successfully based on the effect of CsCI on glassy micro-structural units.
    Originating from the research of comprehensive thermal properties about the two pseudo-ternary systems: GeS2-Ga(ln)2S3-KCI, the compositions having the best glass-forming abilities were found out: 0.6GeS2-0.2Ga2S3-0.2K.CI 0.7GeS2-0.15In2S3-0.15KCI.
引文
[1] M F Churbanov. Recent advances in preparation of high-purity chalcogenide glasses in the USSR. Journal of Non-Crystalline Solids, 1992, 140: 324-330.
    [2] 刘增基.光纤通信.曲安:西安电子科技大学出版社,2001:1-5
    [3] P J Halogenide, chalcogenide and chalcohalogenide glasses: materials, models, and application. Journal of Non-Crystalline Solids, 1989, 112: 15-22
    [4] J Lueas. Infrared glasses. Current Opinion in Solid State and Materials Science, 1999, 4: 181-187
    [5] S K Govindarajan. Synthesis and characterization of chalcogenide glasses for fiber optic light sources in the 2 to 10μm region: [PHD paper]. New Jersey: The State University of New Jersey, 2001.
    [6] J.扎齐斯基主编,干福熹.侯立松等译.玻璃与非晶态材料.北京:科学出版社,2001
    [7] Z U Borisova. Glassy semiconductors. New York: Plenum Press.
    [8] J S Sanghera, J Heo, J D Mackenzie. Chalcohalide glasses. Journal of Non-Crystalline Solids, 1988, 103: 155-178
    [9] J Heo, J D Mackenzie. Chalcohalide glasses Ⅰ. Synthesis and properties of Ge-S-Br and Ge-S-I glasses. Journal of Non-Crystalline Solids, 1989, 111: 29-35
    [10] J. X Yang, Q Chen, W Jiang and H Ye. The effects of Te, Ⅰ atoms on the properties and structure of Ge-As-Se system glass. Journal of Non-Crystalline Solids 1995, 184: 302-308.
    [11] J S Sanghera, V Q Nguyen, P C Pureza, F H Kung, R Miklos, and I D Aggarwal. Fabrication of low-loss IR transmitting Ge_(30)As_(10)Se_(30)Te_(30) glass fibers. Jouranl of Light wave technology, 1994. 12 (5): 737-741.
    [12] T Yu lvanova, A A Man'shina, A V Kurochkin, and etc. Er~(3+) to glass matrix energy transfer in Ga-Ge-S: Er~(3+) system. Journal of Non-Crystalline Solids, 2002, 298(1): 7-14
    [13] B Aitken, and M A Newhouse. Ga-and/or In-containing AsGe sulphide glasses. Gaand r or In-containing AsGe sulphide glasses. U.S. Patent, 5,389,584, 1995.
    [14] C Y Gyu, H K Yong, J L Byoung, and etc. Emission properties of the Er~(3+): ~4I_(11/2)→~4I_(13/2) transition in Er~(3+) and Er~(3+)/Tm~(3+)-doped Ge-Ga-As-S glasses. Journal of Non-Crystalline Solids, 2000, 278(1-3): 137-144.
    [15] H T Amorim, M T Araujo, E A Gouveia and etc. Infrared to visible frequency upconversion in erbium-doped Ga_2S_3-La_2O_3 chalcogenide glass. Optical materials, 1998, 10(3): 241-244.
    [16] Z H Zhou, H Nasu, T Hashimoto and etc. Non-linear optical properties and structure of Na_2S-GeS_2 glasses. Journal of Non-Crystalline Solids, 1997, 215: 61-67.
    [17] K Itoh, H Yanagita, H Tawarayama, and etc. Pr~(3+) doped InF_3/GaF_3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3μm. Journal of Non-Crystalline Solids, 1999, 256-257: 1-5
    [18] G J Sgei, V Krasteva, D Hensley. The effect of compositional variations on the properties of rare-earth doped Ge-S-I chalcohalide glasses. Journal of Non-Crystalline Solids, 1997, 222: 235-242
    [19] P Nemec, B Frumarov(?), M Frumar, J Oswald. Journal of Physics and Chemistry of Solids, 2000, 61(10): 1583-1589
    [20] J F Viens, C Meneghini, A Villeneuve, and etc. Journal of lightwave
    
    technology, 1999, 17(7): 1184-1191.
    [21] M Yamashita, H Yamanaka. Formation and ionic conductivity of Li_2S-GeS_2-Ga_2S_3 glasses and thin films. SOLID STATE IONICS, 2003, 158(1-2): 151-156
    [22] T Usuki, F Araki, O Uemura, and etc. Structure changes during amorphization of Ge-Se alloys by mechanical milling. Materials Transactions, 2003, 44(3): 344-350.
    [23] L L Neindre, F Smektala, K L Foulgoc, X H Zhang and J Lucas. Tellurium halide optical fibers. Journal of Non-Crystalline Solids, 1998, 242: 99-103
    [24] Y Yoneda, S Morimoto, T Yamashita. chalcogenide glass fiber. United States Patent, 2000, Patent number: 6,074,968
    [25] J Nishii, T Yamashita, T Yamagishi. Chalcogenide glass fiber with a core-cladding structure. Appl. Optics, 1989, 28: 5122-5127.
    [26] J S Sanghera, I D Aggarwal, L Busse, and etc. Development of low-loss IR transmitting chalcogenide glass fibers. SPIE, 1995, 2396: 71-77.
    [27] T Kanamori, Y Terunuma, S Takahashi, and T Miyashita. Chalcogenide glass fibers for mid-infrared transmission. J.Lightwave Technol, 1984, 2: 607-612.
    [28] F Smektala, K L Foulgoc, L L Neindre, C Blancheti(?)re, X H Zhang and J Lucas. TeX-glass infrared optical fibers delivering medium power from a CO_2 laser. Optical Materials, 1999, 13: 271-276
    [29] J S Sanghera, I D Aggarwal. Infrared fiber optics, Boca Raton, FL: CRC Press, 1998: 325-335.
    [30] J S Sanghera, I D Aggarwal. Development of chalcogenide glass fibers at NRL. Journal of Non-Crystalline Solids, 1997, 213-214: 63-67
    [31] 陈国荣,继健.高纯透红外硫系玻璃材料的制备.硅酸盐通报,1997,(4):63-69
    [32] J S Sanghera, L E Busse, I D Aggarwal. Effect of scattering centers on the optical loss of As_2S_3 glass fibers in the infrared. J. Appl. Phys, 1994, 75: 4885-4891
    [33] M F Churbanov. Recent advances in preparation of high-purity ehalcogenide glass in the USSR. Journal of Non-Crystalline Solids, 1992, 140: 324-330
    [34] G G Devyatykh, E M Dianov, V G Plotnichenko, and et al. Heterophase Impurity Inclusions In Optical Fibers Made From Chalcogenide Glasses. Vysok. Vesch. 1990, 4: 192-197.
    [35] J S Sanghera and I D Aggarwal. Active and passive chalcogenide glass optical fibers for IR applications: a review. Journal of Non-Crystalline Solids, 1999, 256&257: 6-16
    [36] N J Pitt. New materials for optical waveguides, SPIE, 1987, 799: 25-30
    [37] J S SANGHERA, L B SHAW, L E BUSSE, and etc. Development and Infrared Applications of Chalcogenide Glass Optical Fibers. Fiber and Integrated Optics, 2000, 19(3): 251-274
    [38] 张久明.硫卤玻璃的组成、结构与性能研究:[博士学位论文].武汉:武汉理工大学材料学院,1999.
    [39] S Shunichi, K Igarashi, and M Taniwaki, K Tanimoto and Y Kikuchi. Multihundred-watt CO laser power delivery through chaicogenide glass fibers. Appl. Phys. Lett. 1993, 62 (7): 669-671
    [40] L E Busse, J.A.Moon, J S Sanghera, and I D Aggarwal. Chalcogenide fibers enable delivery of mid-infrared laser radiation. Laser Focus World, 1996, 32: 143-150.
    [41] F Smektala, K L Foulgoc, L L Neindre, C Blancheti(?)re, X Zhang and J Lucas.
    
    TeX-glass infrared optical fibers delivering medium power from a CO_2 laser. Optical Materials, 1999, 13: 271-276
    [42] J Nishii, S Morimoto, I Inagawa, R lizuka, T Yamashita, and T Yamagishi. Recent trends and advances in chalcogenide glass fiber technology: Areview. J. Non-Cryst. Solids, 1992, 140: 199-208.
    [43] L L Neindre, F Smektala, K L Foulgoc, X H Zhang and J Lucas. Tellurium halide optical fibers. Journal of Non-Crystalline Solids, 1998, 242: 99-103
    [44] I D Aggarwal, L E Busse, L B Shaw, B Cole, and J S Sanghera. IR transmitting fiber and pplications: High-power delivery, sources, andamplifiers. In Prec. Diode Laser Technology Review, 1998, 4, Albuquerque, NM.
    [45] L Busse, J Moon, J S Sanghera, I D Aggarwal, J Harrington, and K K Lure. High optical power transmission through glass clad infrared fiber. In Prec. Of 1995 IRIS Specialty Group on Materials. Ann Arbor, MI: Erim, 237-246.
    [46] K Awazu, S Ogino, A Nagai, and etc. Midinfrared free electron laser power delivery through a chalcogenide glass fiber. Rev. Sci. Instrum., 1997, 68 (12): 4351-4352
    [47] L B Shaw, L E Busse, V Nguycn, and etc. Delivery of FEL laser energy at 6.1μm and 6.45μm with chalcogenide fibers. CLEO, 2000: 502
    [48] E V Stepanov, A I Kouznetsov, P V Zyrianov. Multicomponent fiber-optical gas sensor based on MIR tunable diode lasers. Infrared Physics & Technology, 1996, 37(1): 149-153
    [49] B Mizaikoff, R G(?)bel, R Krska, and etc. Infrared fiber-optical chemical sensors with reactive surface coatings. Sensors and Actuators B: Chemical, 29(1-3): 58-63
    [50] Y G Vlasov, A V Legin, E A Bychkov, and etc. Chemical Sensors Based Muti-Element System For Sea Environmental Monitoring And Control. IEEE, 1994: 341-345
    [51] S Hocd(?), C Boussard-Pl(?)del, G Fonteneau, and etc. Recent developments in chemical sensing using infrared glass fibers. Journal of Non-Crystalline Solids, 2000, 274: 17-22
    [52] Y G Vlasov, A V Legin, E A Bychkov and M I Ozernoy. Chemical Sensors Based Mari-Element System For Sea Environmental Monitoring And Control.IEEE, 1994, 341-345
    [53] F Gan Structure, properties and applications of chalcohalide glasses: a review. Journal of Non-Crystalline Solids, 1992, 140: 184-193
    [54] M Druy. Infraredfiberoptics, Chapter 8 eds. J.S.Sanghera, I.D.Aggarwal, Boca Raton, FL: CRC Press, 1988, 305-323.
    [55] G Nau, F Bucholtz, K J Ewing, and etc. Fiber optic reflectance sensor for the cone penetrometer. SPIE, 1995, 2504: 291-296
    [56] J S Sanghera, G Nau, P C Pureza, and etc. U. S. Patent, 5,525,800, 1996
    [57] B Rigas, P T Wong. Human colon adenocarcinoma cell ines display infrared spectroscopic features of malignant colon tissues. Cancer Research, 1992, 52: 84-88
    [58] J S Sanghera, I D Aggarwal. Active and passive applications of chalcogenide glass optical fibers. In: Prec. 18th Int. Congress on Glass, 1998, Francisco, CA.
    [59] T Ueda, KYamada, and T Sugita. Measurement of grinding temperature of ceramics using infrared radiation pyrometer with optical fiber. J.Eng.Ind., 1992, 114: 317-322
    [60] N S Kapany, R J Simms. Recent developments in infrared fiber optics. Infrared Phys., 1965, 5: 69-80
    [61] J Nishii, T Yamashita, T Yamagishi, and etc. Coherent infrared fiber image bundle.
    
    Appl.Phys.Letts., 1991, 59: 2639-2641.
    [62] V. Lyubin, M. Klebanov, S. Shtutina, and etc. Fabrication and testing of microlens arrays for the IR based on chalogenide glassy resists. Journal of Non-Crystalline Solids, 1996, 198-200: 766-768
    [63] D B Talley, L B Shaw, J S Sanghera and etc. Scanning near field infrared microscopy using chalcogenide fiber tips. Materials Letters, 2000, 42: 339-344
    [64] M M McGuire, Karim N Jallad, D Ben-Amotz, and etc. Chemical mapping of elemental sulfur on pyrite and arsenopyrite surfaces using near-infrared Raman imaging microscopy. Applied Surface Science, 2001, 178: 105-115
    [65] I D Aggarwal, J Sanghera, D Schaafsma. Near-field optical microscope with infrared fiber probe. U.S. Patent, 6,285,811, 2001-09-4
    [66] D T Schaafsma, J S Sanghera. Infrared optical fiber coupler. U.S. Patent, 5,949,935, 1999-09-07
    [67] T Schweizer, B N Samson, R C Moore, and etc. Rare-earth doped chalcogenide glass fiber laser. Electron. Lett. 1997, 33(5): 414-416
    [68] A Mori, Y Ohishi, T Kanamori, and etc. Optical amplification with neodymium-doped ehalcogenide glass fiber. Appl.Phys.Lett., 1997, 7010: 1230-1232.
    [69] J Wenzel, K Wei, D P Machewirth, E Snitzer, and etc. Pr~(3+) -doped Ge-GA-S glasses for 1.3μm optical fiber amplifiers. Journal of Non-crystalline Solids, 1995, 182: 257-261
    [70] Y B Shin, C K Yang, J Heo. Optimization of Dy~(3+)-doped Ge-Ga-As-S-CsBr glass composition and its 1.31μm emission properties. Journal of Non-Crystalline Solids, 2002, 298(2-3): 153-159
    [71] L B Shaw, D T Schaafsma, B J Cole, and etc. Rare earth doped glass fibers as infrared sources for IRSS. SPIE, 1998, 3369: 42-47
    [72] Y G Mourzina, J Schubert, W Zander, and etc. Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions. Electrochimica Acta, 2001, 47(1-2): 251-258
    [73] M Asobe, T Ohara, I Yokohama, and etc. Abrication of Braggg rating in ehalcogenide glass fiber using the transverse holographic method. Electron.Lett., 1996, 32: 1611]1613
    [74] E Lopez-Lago, V Couderc, L Griscom. All-optical poling of a ehalcohalogenide glass. Optical Materials, 2001, 16, (4): 413-416
    [75] S Spalter, G Lenz, R E Slusher, and etc. Highly nonlinear chalcogenide glass for ultrafast all optical switching in optical TDM communication systems. In: Optical Fiber Communication Conference, 2000, vol3: 137-139
    [76] H Nasu, Z H Zhou, T Hashimoto, and etc. Non-linear optical properties and structure of Na_2S-GeS_2 glasses. Journal of Non-Crystalline Solids, 1997, 215: 61-67
    [77] K Tsurugi. Sudoh, Yoshiaki Nakano, Kunio Tada. Wavelength Trimming by External Light Irradiation—Post-Fabrication Lasing Wavelength Adjustment for Multiple-Wavelength Distributed-Feedback Laser Arrays. IEEE Journal of selected topics in quantum electronics, 1997, 3(2): 577-583
    [78] P G Kazansky, St J Phlip, Takebe Hiromichi. Glass fiber poling and application. Journal of lightwave technology, 1997, 15(8): 1484-1997
    [79] Q Liu, X Zhao, T Katsuhisa, and etc. Second-harmonic generation in Ge-As-S glasses
    
    by electron beam irradiation and analysis of the poling mechanism. Optical communication, 2001, 198: 187-192
    [80] J Qiu, J Si, K Hirao. Photoinduced stable second-harmonic generation in chalcogenide glasses. Optcal letters, 2001, 26(12): 914-916
    [81] M F Churbanov. High-purity chaicogenide glasses as materials for fiber optics. Journal of Non-Crystalline Solids, 1995, 184: 25-29
    [82] J Lucas. Infrared glasses. Current Opinion in Solid State and Materials Science, 1999, 4(2): 181-187
    [83] L B Shaw, B Cole, P A Thielen, and etc. Mid-Wave IR and Long-Wave IR Laser Potential of Rare-Earth Doped Chalcogenide Glass Fiber. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2001, 48(9): 1127-1137
    [84] (日)木村磐根编;杨明君,孙晓东,郭雪消译.光通信与无线通信系统.北京:科学出版社2001.
    [85] 刘增基.光纤通信.西安:西安电子科技大学出版社.2001.
    [86] M Naftaly and A Jha, G J Wayne. 1.3μm Fluorescence quenching in Pr-doped glasses. Journal of Applied Physics, 1998, 84(4): 1800-1804
    [87] Y Ohishi, A Mori, T Kanamori, and etc. Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3-μm fiber amplifiers. Appl. Phys. Lett., 1994, 65(1): 13-15
    [88] S M Lima, T Catunda, M L Baesso, and etc. Thermal-opticla properties of GA:La:S glasses measured by thermal lens technique. Journal of Non-Crystalline Solids, 1999, 247: 222-226
    [89] D W Hewak, B N Samson, J A Medeiros Neto, and etc. Emission at 1.3μm from Dy-doped Ga:La:S glass. Electronics letters, 1994, 30(12): 968-969
    [90] J Heo, Y B Shin, S H Park, and etc. Optical fiber for light amplifier. United States Patent, 6,272,277, 2001-08-07.
    [91] J Heo, Y B Shin, S H Park, and etc. Ge-Ga-S-based glass composition having light amplifying characteristic and apparatus for optical communications using the same. United States Patent 6,148,125, 1998-11-04
    [92] B G Aitken, M A Newhouse. Ga-and/or In-containing AsGe sulfide glasses. United States Patent, 5,389,584, 1994, 04-11
    [93] V Krasteva, D Hensley, G Sigei Jr. The effect of compositional variations on the properties of rare-earth doped Ge-S-I chalcohalide glasses. Journal of non-Crystalline Solids, 1997, 222: 235-242
    [94] J Heo, D J Mackenzie. Chalcohalide Glasses Ⅲ. Vibrational spectra of Ge-S-I glasses. Journal of non-Crystalline Solids, 1989, 113: 246-252
    [95] L Koudelka, M Pisarcik. Raman study of short-range order in Ge_xS_yI_z glasses. Journal of non-Crystalline Solids, 1989, 113: 239-245
    [96] Y B Shin, C K Yang, J Heo. Optimization of Dy~(3+)-doped Ge-Ga-As-S-CsBr glass composition and its 1.31μm emission properties. Journal of Non-Crystalline Solids, 2002, 298(2-3): 153-159
    [97] Y B Shin, J Heo. Mid-infrared emissions and multiphonon relaxation in Dy~(3+)-doped chalcohalide glasses. Journal of Non-Crystalline Solids, 1999, 253(1-3): 23-29
    [98] J R Hector, J Wang, D Brady. Spectroscopy and quantum efficiency of halide-modified
    
    gallium-lanthanum sulfide glasses doped with praseodymium. Journal of Non-Crystalline Solids, 1998, 239(1-3) 176-180
    [99] M Asobe, T Kanamori, K Kubodera. Application of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches. IEEE Journal of Quantum electronics, 1993, 29(8): 2325-2333
    [100] V K Tikhomirov, S A Tikhomirova. On the mechanism of non-linear optical attenuation at 1.3-1.5μm in arsenic sulfide and tellurium oxide glasses. Journal of Non-Crystalline Solids, 2001, 284(1-3): 193-197
    [101] K S Bindra, H Bookey, A K Kar, B S Wherrett, V K Tikhomirov, A Jha. Nonlinear optical properties of GeS_2 based glasses at telcom wavelentgths. In: IEEE 2000, CTHC-Nonlinearities in glasses and poled materials. Page 285.
    [102] E Lopez-Lago, V Couderc, L Griscom, and etc. All-optical poling of a chalcohalogenide glass. Optical Materials, 2001, 16(4): 413-416
    [103] J Animesh, X Liu, A K Kar, and etc. Inorganic glasses as Kerr-like media. Current Opinion in Solid State & Materials Science, 2001, 5: 475-479
    [104] A M Richard, X Long, S R J Bruack. Recent advances in the second-order nonlinear optical properties of amorphous silica materials. SPIE, 1994, 2289: 98-109
    [105] P G Kazansky, P St J Russell, H Takebe. Glass fiber poling and applications. Journal of lightwave technology, 1997, 15(8): 1484-1491
    [1] 陈玮,王德强,程继健,蒋幼梅,梁振华.Ga_2S_3-GeS_2-KCl系统玻璃的研究.华东理工大学学报,1998,24(0):467-483
    [2] D Wang, J Cheng & W Chen. Formation and properties of Ga_2S_3-GeS_2-KX (X=Cl, Br, I) glasses. Phys. Chem. Glasses, 2001, 42(2): 139-143
    [3] Y S Tver'yanovich, V V Aleksandrov, I V Murin and E G Nedoshovenko. Glass-forming ability and cationic transport in gallium containing chalcohalide glasses. Journal of Non-Crystalline Solids, 1999, 256-257: 237-241
    [4] 王英华.X光衍射技术基础.北京:原子能出版社,1993.298-321
    [5] 张久明.As_2Te_3-基硫卤玻璃光纤材料的基础研究.:[硕士学位论文].武汉:武汉理工大学材料复合新技术国家重点实验室,1996
    [6] 蒋洋.卤化物玻璃结构研究.:[硕士学位论文].武汉:武汉理工大学材料复合新技术国家重点实验室,1992
    [7] 闵新民,邓志平,李嘉宇,赵修建.Te-Se-I玻璃及添加As和Ge元素的结构、性能与量子化学计算研究.计算物理,1997,14(1):111-114
    [8] P Andrea, M Marcela, F Marceio, A Bibiana. X-ray analysis of GeSeAg glasses. Journal of Non-Crystalline Solids, 2000, 273: 30-35.
    [9] L Cervinka, L Tichy, J Bergerova. X-ray analysis of the structure of Ge-S-Ag glasses. Journal of Non-Crystalline Solids, 1998, 232-234: 335-340
    [10] S Kasumi, U Osamu, U Takeshi, K Yasuo. The structure of amorphous As-X-I(X:S, Se). Journal of Non-Crystalline Solids, 1995, 192-293: 286-291
    [11] J.扎齐斯基 主编.干褕熹,侯立松等译.材料科学与技术丛书(第九卷)玻璃与非晶态材料.北京:科学出版社.148-240
    [12] 陈培榕,邓勃.现代仪器分析实验与技术.北京:清华大学出版
    
    社,1999.120-132
    [13] O Hideki, M Kiyoto, O Seinosuke. Raman scattering and photodarkening of amorphous Ge_(1-X)S_X (0≤X≤0.62) films. Journal of Non-Crystalline Solids, 2000, (270) 1-3: 147-153
    [14] N M Gasanly, A Aydinli, H Ozkan, et el. Temperature dependence of the first-order Raman scattering in GaS layered crystals. Solid state commun, 2000, 116(3): 147-151
    [15] M P Fontana, B Rosi, Z Ivanova, et el. Raman scattering in Ge-S-Ga glasses. Philos Meg B, 1987, 56(4): 507-514
    [16] S Sugai. Stochastic random network model in Ge and Si chalcogenide glasses. Phys Rev B, 1987, 35(3): 1345-1361.
    [17] M L Toullec, P S Christensen, J Lucas, et al. A new family of vitreous materials: the Cesium aluminum or gallium thiohalide glasses. Mat. Res. Bull., 1987, 22(11): 1517-1523
    [18] A Y Ramos, N Watanabe, O L AIves, et al. Structural characterisation of CsCl incorporation in Ga_2S_3-La_2S_3 glasses. Journal of Non-Crystalline Solids, 2002, 304(1-3): 182-187
    [19] Y Masashi, SToru, T Keiji. A resonance Raman scattering study of localized states in Ge-S glasses. Journal of Non-Crystalline Solids, 1998, 232-234: 715-720
    [20] J Heo, Y J Min, S Y Ryou. Raman spectroscopic analysis on the solubility mechanism of La~(3+0 in GeS_2-Ga_2S_3 glasses. Journal of Non-Crystalline Solids, 1998, 238(1-2): 115-123
    [21] 中本一雄.无机和配位化合物的红外利拉曼光谱.北京:化学工业山版社,1991:208.Y X Zhongben. Infrared and Raman spect ra of inorganic and coordinat ion compounds. Beijing: Press of chemical industry, 1991: 208.
    [22] J Heo. 1.3-μm-emission properties and local structure of Dy~(3+) in chaicohalide glasses. Comptes Rendus Chimie, 2002, 5(11): 739-749
    [23] I R Beattie, T Gilson, P Cocking. The vibrational spectrum of Ga_2Cl_6. J Chem Soc A, 1967: 702-704.
    [24] G Lucovsky, F L Galener, R C Keezer, R H Geils, H A Six. Structural interpretation of the infrared and Raman spectra of glasses in the alloy system Ge_(1-x)-S_x. Physical review B, 1974, 10(12): 5134-5146
    [25] M Yamaguchi, T Shibata, A Tanaka K. resonance Raman scattering study of localized states in Ge-S glasses. J Non-Cryst Solids, 1998, 232-234: 715-720
    [26] 刘振海,畠山立子,陈学思等.聚合物量热测定.北京:化学工业出版社,2002.143~167
    [27] W Zhou. Method for exploring glass-forming regions in new systems. Journal of non-Crystalline Solids, 1996, 201: 251-261
    [1] A Tverjanovich, Y S Tveryanovich and S Loheider. Raman spectra of gallium sulfide based glasses. J. Non-Crystal. Solids, 1996, 208(1-2): 49-55
    [2] Y S Tveryanovieh, V V Aleksandrov, I V Murin, et el. J. Non-Crystal.Solids, 1999, 256-257: 237-241
    [3] A Piarristeguy, M Mirandou, M Fontana, B Areondo. X-ray analysis of GeSeAg glasses. Journal of Non-Crystalline Solids, 2000, 273: 30-35.
    [4] L Cervinka, L Tichy, J Bergerova. X-ray analysis of the structure of Ge-S-Ag glasses.
    
    Journal of Non-Crystalline Solids, 1998, 232-234: 335-340
    [5] S Kasumi, U Osamu, U Takeshi, K Yasuo. The structure of amorphous As-X-I(X:S,Se). Journal of Non-Crystalline Solids, 1995, 192-293: 286-291
    [6] I R Beattie, T Gilson, P Cocking. The vibrational spectrum of Ga_2Cl_6. J.Chem.Soc. A, 1967: 702-704.
    [7] C Julien, S Barnier, I Ivanov, M Guittard, M P Pardo, A Chilouet. Vibrational studies of copper thiogallate solid solutions. Materials Science and Engineering B, 1999, 57: 102-109.
    [8] 元素网www.webelements.com
    [9] N M Gasanly, A Aydnl, H (?)zkan, and etc. Temperature dependence of the first-order Raman scattering in GaS layered crystals. Solid State Communications, 2000, 116(3): 147-151
    [10] C A Evans, K H Tan, S P Tapper, M J Tayior. Vibrational spectra and metal-metal bonding in the hexahalogenodigallate(Ⅱ) ions, Ga_2X_6~(2-)(X=Cl,Br, I). J. Chem. Soc., Dalton Trans., 1973: 988-1000.
    [11] 中本一雄.无机和配位化合物的红外和拉曼光谱.北京:化学工业出版社,1991.560-569
    [12] M C Kuchta, G Parkin. Terminal chalcogenido complexes of Group 13 and 14 elements. Coordin Chem Rev, 1998, 176: 323-372.
    [13] R W Berg, N J Bjerrum. Raman study of Gallium Chlorosulphides in chloride melts. Polyhedron, 1983, 2(3): 179-181.
    [14] M L Toullec, P S Christwnsen, J Lucas. A new family of vitreous materials: the Cesium Aluminum or gallium thiohalide glasses. Mat Res Bull, 1987, 22: 1517-1523.
    [15] A Y Ramos, N Watanabe, O L Aires, L C Barbosa. Structural characterisation of CsCl incorporation in Ga_2S_3-La_2S_3 glasses. Journal of Non-Crystalline Solids, 2002, 304(1-3): 182-187.
    [16] G Lucovsky, D Neufville, F L Galeener. Study of the optic modes of Ge_(0.3)S_(0.7) glass by infrared and Raman spectroscopy. Phys.Rev. B, 1974, 9: 1591-1597.
    [17] P M Bridenbaugh. G P Espinosa, J E Griffiths, J C Philips, J P Remeika. Microscopic origin of the companion A_1 Raman line in glassy Ge(S,Se)_2. Phisical Review B, 1979, 20(10): 4140-4145
    [18] 方容川.固体光谱学.合肥:中国科技大学山版社,2000.282-323
    [19] 陈培榕,邓勃.现代仪器分析实验与技术.北京:清华大学出版社,1999.103-119
    [20] B G Aitken, C W Ponader. Physical properties and Raman spectroscopy of GeAs sulphide glasses. Journal of Non-Crystalline Solids, 1999, (256-257): 143-148
    [21] Z G Ivanova, V S Vassilev, E Cernoskova, Z Cernosek. Physicochemical, structural and fluorescence properties of Er-doped Ge-S-Ga glasses. Journal of Physics and Chemistry of Solids, 2003, 64(1): 107-110
    [22] J Heo, Y J Min, S Y Ryou. Raman spectroscopic analysis on the solubility mechanism of La~(3+) in GeS_2-Ga_2S_3 glasses. Journal of Non-Crystalline Solids, 1998, 238(1-2): 115-123
    [23] M P Fontana, B Rosi, Z lvanova, et al. Raman scattering in Ge-S-Ga glasses. Philos Mag B, 1987, 56(4): 507-514
    [24] C J Carmalt. Amido compounds of gallium and indium. Coordination Chemistry
    
    Reviews, 2001, 223 (1): 217-264
    [25] D A Atwood. Cationic group 13 complexes. Coordination Chemistry Reviews, 1998, 176 (1): 407-430
    [26] L G Hwa, J G Shiau, S P Szu. Polarized Raman scattering in lanthanum gallogermanate glasses. Journal of Non-Crystalline Solids, 1999, 249(1): 55-61
    [27] V V Poborchii. Raman Spectra of Sulfur, Selenium or Tellurium Clusters Confined in Nano-Cavities of Zeolite A. Solid Slate Communications, 1998, 107(9): 513-518
    [28] 杨南如.无机非金属材料测试方法.武汉:武汉理工大学出版社,2001,223-252
    [29] 陈培榕,邓勃.现代仪器分析实验与技术.北京:清华大学出版社,1999,103-119
    [30] 杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉:正艺大学出版社,2000,277-365
    [31] J S Sanghera, I D Aggarwal. Development of chalcogenide glass fiber optics at NRL. Journal of Non-Crystalline Solids, 1997, 213-214(12): 63-67
    [32] 大连理工大学无机化学教研室.无机化学.北京:高等教育出版社,1990,670-720
    [33] 方俊鑫,殷之文.电介质物理学.北京:科学出版社,1998:16-83
    [34] M. Seki, K Hachiya, K Yoshida. Photoluminescence and states in the bandgap of germanium sulfide glasses. Journal of Non-Crystalline Solids, 2003, 315(1-2): 107-113
    [1] 大连理工大学无机化学教研室.无机化学.北京:高等教育出版社,1990,519-543
    [2] Z G Ivanova, V S Vassilev, E Cernoskova, Z Cernosek. Physicochemicai, structural and fluorescence properties of Er-doped Ge-S-Ga glasses. Journal of Physics and Chemistry of Solids, 2003, 64(1): 107-110
    [3] A Tverjanovich, Y S Tveryanovich, S Loheider. Raman spectra of gallium sulfide based glasses. Journal of Non-Crystalline Solids, 1996, 208(1-2): 49-55
    [4] M P Fontana, B Rosi, Z Ivanova, et al. Raman scattering in Ge-S-Ga glasses. Philos Mag B, 1987, 56(4): 507-514
    [5] J Heo, Y J Min, S Y Ryou. Raman spectroscopic analysis on the solubility mechanism of La~(3+) in GeS_2-Ga_2S_3 glasses. Journal of Non-Crystalline Solids, 1998, 238(1-2): 115-123
    [6] Z Boncheva-Mladenova, Z G Ivanova. A study of glass phases of the germanium-sulphur-indium system. Journal of Non-Crystalline Solids, 1978, 30: 147-153
    [7] V V Poborchii. Raman Spectra of Sulfur, Selenium or Tellurium Clusters Confined in Nano-Cavities of Zeolite A. Solid State Communications, 1998, 107(9): 513-518
    [8] C Vigreux, L Binet, D Gourier, B Piriou. Formation by Laser Impact of Conducting β-Ga_2O_3-In_2O_3 Solid Solutions with Composition Gradients. Journal of Solid State Chemistry, 2001, 157(1): 94-101.
    [9] C I Merzbacher, D A McKeown. Raman spectroscopic studies of BaO-Ga_2O_3-GeO_2 glasses. Journal of Non-Crystalline Solids, 1995, 183 (1-2): 61-72
    [10] S Sungping, S Chanping, H Luu-Gen. Structure and properties of lanthanum galliogermanate glasses. Journal of Non-Crystalline Solids, 1998, 240 (1-3): 22-28
    [11] T Hiromichi, M H iroki, M Kenji. Compositional variation in the structure of Ge-S glasses. Journal of non-Crystalline Solids, 2001, 291 (1-2): 14-24.
    [12] O Hideki, M Kiyoto, O Seinosuke. Raman scattering and photodarkening of amorphous Ge_(1-X)S_X (0≤X≤0.62) films. Journal of Non-Crystalline Solids, 2000, 270(1-3): 147-153
    
    
    [13] 中本一雄.无机和配位化合物的红外和拉曼光谱.北京:化学工业山版社.1991:560-600.
    [14] 方容川.固体光谱学.合肥:中国科学技术大学出版社.282-323
    [15] Y Xiong, Y Xie, G Du, X Tian, Y Qian. A Novel in Situ Oxidization-Sulfidation Growth Route via self-Purification Process to β-In_2S_3 Dendrites. Journal of Solid State Chemistry, 2002. 166(2): 336-340.
    [16] K Lars, M J Taylor. Spectroscopic characterisation of indium(Ⅲ) chloride and mixed ligand complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2002, 58(5): 953-957
    [17] 中本一雄.无机和配位化合物的红外和拉曼光谱.北京:化学工业出版社,1991:208.Y Zhongben. Infrared and Raman spectra of inorganic and coordinat ion compounds. Beijing: Press of chemical industry, 1991: 208.
    [18] 高家武.高分子材料近代测试技术.北京:航空航天大学出版社,1994.
    [19] 陆昌伟.热分析质谱法.上海:上海科学技术文献出版社,2001.
    [20] 杨南如.无机非金属材料测试方法,武汉:武汉理工大学出版社,2001:185:220.
    [21] W Zhou. Method for exploring glass-forming regions in new systems. Journal of non-Crystalline Solids, 1996, 201: 251-261
    [22] 大连理工大学无机化学教研室.无机化学.北京:高等教育出版社,1990,670-720
    [1] 王英华.x光衍射技术基础.北京:原子能出版社,1993
    [2] 黄胜涛.非晶态材料的结构和结构分析.北京:科学出版社,1987
    [3] O Uemura, T Usuki, M Inoue, and etc. Local atomic order of Ge-Se-Br glasses. Journal of Non-Crystalline Solids, 2001, 293-295: 792-798
    [4] T Usuki, O Uemura, S Iwabuchi. Short-range order in Ge-As-S-I glasses. Journal of non-Crystalline Solids, 1998, 232-234: 688-693.
    [5] C I Merzbacher, D A McKeown. Raman spectroscopic studies of BaO-Ga_2O_3-GeO_2 glasses. Journal of Non-Crystalline Solids, 1995, 183 (1-2): 61-72
    [6] S Sungping, S Chanping, H Luu-Gen. Structure and properties of lanthanum galliogermanate glasses. Journal of Non-Crystalline Solids, 1998, 240 (1-3): 22-28
    [7] P M Bridenbaugh, G P Espinosa, J E Griggiths, and etc. Microscopic origin of the companion A_1 Raman line in glassy Ge(S,Se)_2. Physical review B, 1979, 20(10): 4140-4144.
    [8] Z Cerno(?)ek, E Cerno(?)kov(?), L Bene(?). Raman scattering in GeS_2 glass and its crystalline polymorphs compared. Journal of Molecular Structure. 1997, 435(2): 193-198
    [9] T Hiromichi, M Hiroki, M Kenji. Compositional variation in the structure of Ge-S glasses. Journal of non-Crystalline Solids, 2001, 291 (1-2): 14-24.
    [10] J Heo, D J Mackenzie. Chalcohalide glasses Ⅲ. Vibratinal spectra of Ge-S-I glasses. Journal of Non-crystalline Solids, 1989, 113: 246-252.
    [11] J Heo, J D Mackenzie. Chalcohalide glasses Ⅱ. Vibratinal spectra of Ge-S-Br glasses. Journal of Non-crystalline Solids, 1989, 113: 1-13.
    [12] A B Seddon, M A Hemingway. Thermal characterization of infrared-transmitting Ge-S-I glasses. Journal of Non-crystalline Solids, 1993, 161: 323-326.
    [13] V Nathalie, B Stefano. Effects of isotopic disorder on the Raman spectra of crystals: theory and ab initio calculations for diamond and germanium. Computational Materials
    
    Science, 2000, 17(2-4): 395-399
    [14] T Hiromichi, M Hiroki, M Kenji. Compositional variation in the structure of Ge-S glasses. Journal of Non-crystalline Solids, 2001, 291(1-2): 14-24
    [15] C Vigreux, L Binet, D Gourier, B Piriou. Formation by Laser Impact of Conducting β-Ga_2O_3-In_2O_3 Solid Solutions with Composition Gradients. Journal of Solid State Chemistry, 2001, 157(1): 94-101.
    [16] N N Greenwood, D J Prince, B P Straughan. The vibrational spectra and structure of Indium (Ⅲ) Chloride, Bromide and Iodide. J. Chem. Soc. A, 1968: 1694-1696
    [17] Y Xiong, Y Xie, G Du, etc. A Novel in Situ Oxidization-Sulfidation Growth Route via self-Purification Process to β-In_2S_3 Dendrites. Journal of Solid State Chemistry, 2002, 166(2): 336-340
    [18] K Lars, M J Taylor. Spectroscopic characterisation of indium(Ⅲ) chloride and mixed ligand complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2002, 58(5): 953-957
    [19] R M Almeida, A A Kharlamov, J Heo. Vibrational spectra and structure of heavy metal oxide glasses. Journal of Non-Crystalline Solids, 1996, 202(3): 233-240
    [20] V V Poborchii. Raman Spectra of Sulfur, Selenium or Tellurium Clusters Confined in Nano-Cavities of Zeolite A. Solid State Communications, 1998, 107(9): 513-518
    [21] T Keiji, Y Masashi. Resonant Raman scattering in GeS_2. Journal of Non-Crystalline Solids, 1998, 227-230, Part 2: 757-760
    [22] I Fejsa, V Mitsa, D Bletskan. Raman spectra of X-GeS zeolite matrices and the structure of As-Ge_2S_3 glasses. Journal of molecular structure, 1999, 480-481 (4): 695-697.
    [23] K Yamaguchi, T Yoshida, H Minoura. Structural and compositional analyses on indium sulfide thin films deposited in aqueous chemical bath containing indium chloride and thioaeetamide. Thin Solid Films, 2003, 431-432: 354-358
    [24] 中本一雄,无机和配位化合物的红外和拉曼光谱.北京:化学工业出版社.1991:208.Y Zhongben. Infrared and Raman spectra of inorganic and coordinat ion compounds. Beijing: Press of chemical industry, 1991: 208.
    [25] 陈培榕,邓勃.现代仪器分析实验与技术.北京:清华大学出版社,1999:62-84
    [26] 元素网www.webelements.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700