用户名: 密码: 验证码:
RDF图数据管理的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
语义Web使跨应用、企业和团体的数据共享与重用成为可能,而RDF是语义Web的基础,其数据模型是RDF图。与已有数据模型不同,RDF图是有向超图,能够表达隐含语义,富含文本信息,且规模庞大。这些特点造成RDF图数据管理中存在存储设计难度大,查询处理复杂且效率低,查询结果排序困难等问题。针对以上问题,本文对RDF图数据管理中的若干关键技术展开研究。
     首先,本文研究了隐含数据查询过程中的自反传递闭包计算问题,提出了一种基于有向图素数编码标记机制的方法:PLSD。PLSD将任意有向图上结点间可达关系(属性的自反传递性)计算转化为标记中整数的整除关系计算。与传统基于forward chaining和backward chaining的推理相比,PLSD能够更有效地实现RDF图中自反传递闭包的计算。实验表明PLSD优于同类其它标记机制。
     其次,针对RDF图的有向超图特点,本文提出了一种原生的RDF图存储方法:PI。该方法能够有效避免由数据模型不一致而导致的数据模型转换开销。它还具有降低存储空间开销,易于实现各种图论算法,聚簇存储RDF图有向边等特点。PI存储上结合PLSD等推理策略的语义查询系统,在LUBM测试基准实验中综合性能指标要高于对比系统。
     对于RDF图中的文本信息,本文提出以资源文档为索引和查询基本单位的细粒度关键词查询方法。克服了以RDF文档为单位的粗粒度关键词查询方法难与语义查询结合的问题,提高了语义查询和关键词查询的综合查全率和查准率。
     最后,在查询结果排序方面,提出在本体层次上对概念与关系重要性的排序方法CARRank。基于CARRank实现了实例数据层资源全局重要性排序和结合查询结果相似度与资源全局重要性的综合排序。CARRank算法利用本体中概念和关系相互增强的迭代方式计算概念重要性和关系权重,避免了对资源统计信息的依赖。并给出了其收敛性的理论证明和实验检验。实验验证了基于CARRank算法的概念重要性排序与关系权重的合理性。
     原型系统在中文新闻等领域的成功应用验证了本文工作的价值和意义。
Based on the Resource Description Framework (RDF), the Semantic Web pro-vides the ability of data sharing and reusing across applications, enterprises, and com-munity boundaries. The RDF graph is the fundamental data model of RDF, and it isquite different from the traditional data models. Consequently, it presents new chal-lenges to the traditional data management approaches. First, an RDF graph is a hy-pergraph that requires a more complex storage scheme. Second, implicit semanticinformation and full-text information in an RDF graph complicate the process of queryevaluation. Third, since web-scale RDF graphs are very common, an effective rankingscheme is indispensable. In this thesis, we tried to solve the above problems and havedone the following work.
     We study the computation of re?exive and transitive closure in the inference en-gine, and propose a prime number labeling scheme, called PLSD, for directed graphs.PLSD translates the reachability between nodes in a directed graph, i.e. re?exivity andtransitivity, into the divisibility between integers in their labels. In comparison withthe conventional forward and backward chaining approaches, PLSD can compute there?exive and transitive closure more efficient. The experimental results also show thatthe performance of PLSD is better than that of other labeling schemes.
     In terms of the hypergraph property of the RDF graph model, we propose a nativeRDF graph storage approach called PI. It avoids“impedance mismatch”existing inthe transformation between two inconsistent data models. PI has several advantages:1) it reduces the cost of space; 2) it makes it easier for the implementation of differ-ent graph-based algorithms; and 3) it clusters directed edges in an RDF graph. Weimplemented a semantic query system based on this storage approach and the PLSDinference approach described above. Experimental results using the LUBM benchmarkshow that the proposal approaches outperform the existing approaches with respect tothe combined metric.
     In terms of the large scale full-text information in an RDF graph, we propose a finegrained keywords search approach which takes RDF resource as the unit of indexingand retrieving. In this way, keywords search and semantic query can be combinedseamlessly.
     For query result ranking, we propose three levels of ranking on the RDF graphmodel: 1) ranking the importance of concepts and relations on the level of ontology; 2)ranking the global importance of resources based on the results of ranking concepts andrelations; and 3) ranking based on keywords search similarity and global importanceof resources. The algorithm for ranking on the level of ontology is named CARRank.It mutually reinforces the importance of concepts and the weights of relations in theiteration process. We present a proof for the convergence of CARRank. Experimentsand evaluations indicate the effectiveness of the proposed ranking algorithms.
     Finally, the proposed approaches and algorithms have been applied to a prototypesystem. The system has been successfully utilized for managing semantic data in thefield of Chinese news, which also indicates the practical significance of the researchwork in this thesis.
引文
1即Native,通常指数据存储系统的内部模型依赖于数据本身的特点。
    2 http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets
    3 http://rdf.dmoz.org/
    4 http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
    5 http://dbpedia.org/
    6 http://www.geonames.org/ontology/
    7 http://www.govtrack.us/demo/census/
    1 http://swoogle.umbc.edu/
    2 http://musicbrainz.org/
    3 http://challenge.semanticweb.org/
    1 www.mysql.com
    2 www.postgresql.org
    3 http://intellidimension.com/
    [1] Berners-Lee T, Hendler J, Lassila O. The Semantic Web. Scientific American, 2001,284(5):35–43.
    [2] W3C . Resource Description Framework (RDF): Concepts and Abstract Syntax, 2004.http://www.w3.org/TR/rdf-concepts/.
    [3] Berners-Lee T. Artificial Intelligence and the Semantic Web, July, 2006.http://www.w3.org/2006/Talks/0718-aaai-tbl/Overview.html.
    [4] W3C . Extensible Markup Language (XML) 1.0, 2006. http://www.w3.org/TR/xml/.
    [5]刘升平,林作铨,梅婧,等.一种XML的模型论语义.软件学报, 2006, 17(5).
    [6] W3C . SPARQL Query Language for RDF, 2007. http://www.w3.org/TR/rdf-sparql-query/.
    [7] W3C . RDF Vocabulary Description Language 1.0: RDF Schema, 2004.http://www.w3.org/TR/rdf-schema/.
    [8] Studer R, Benjamins V. R, Fensel D. Knowledge Engineering: Principles and Methods.Data & Knowledge Engineering, 1998, 25(1-2):161–197.
    [9] W3C . OWL: Web Ontology Language Semantics and Abstract Syntax, 2004.http://www.w3.org/TR/owl-absyn/.
    [10] W3C . Rule Interchange Format Working Group, 2005. http://www.w3.org/2005/rules/.
    [11]朱礼军,陶兰,黄赤.语义万维网的概念、方法及应用.计算机工程与应用, 2004,40(3):79–83,119.
    [12] W3C . W3C Semantic Web Activity, 2007. http://www.w3.org/2001/sw/.
    [13] Berners-Lee T. Semantic Web Road Map, September, 1998.http://www.w3.org/DesignIssues/Semantic.html.
    [14] Hayes J. A Graph Model for RDF: [Master Thesis]. August, 2004.
    [15] Mart′?nez-Morales A. A, Vidal M.-E. A Directed Hypergraph Formal Model for RDF. Pro-ceedings of Joint ODBIS & SWDB Workshop on Semantic Web, Ontologies, Databasesand Information Systems, SWDB-ODBIS07, 2007.
    [16] W3C . RDF Semantics, 2004. http://www.w3.org/TR/rdf-mt/.
    [17] Mun?oz S, Pe′rez J, Gutierrez C. Minimal Deductive Systems for RDF. In: Franconi E, KiferM, May W, editors, Proceedings of Proceedings of the European Semantic Web Conference,ESWC2007. Springer-Verlag, 2007.
    [18] Aleman-Meza B, Hakimpour F, Budak , et al. SwetoDblp ontology of Computer Sciencepublications. Web Semantics: Science, Services and Agents on the World Wide Web, 2007,In Press, Corrected Proof.
    [19] Beckett D. Scalability and Storage: Survey of Free Software / Open Source RDF storagesystems, 2003. http://www.w3.org/2001/sw/Europe/reports/rdf scalable storage report/.
    [20] Magkanaraki A, Karvounarakis G, Anh T. T, et al. Ontology Storage and Querying. Tech-nical Report 308, Foundation for Research and Technology Hellas, Institute of ComputerScience, Information System Laboratory, April, 2002.
    [21] Furche T, Linse B, Bry F, et al. RDF Querying: Language Constructs and EvaluationMethods Compared. Proceedings of Reasoning Web, 2006. 1-52.
    [22]鲍文,李冠宇.本体存储管理技术研究综述.中国科技论文在线, 2007.
    [23] Kiryakov A. OWLIM: Balancing between Scalable Repository and Light-weight Reasoner.Proceedings of Developer’s Track of WWW2006, 2006.
    [24] Kopena J, Regli W. C. DAMLJessKB: A Tool for Reasoning with the Semantic Web. IEEEIntelligent Systems, 2003, 18(3):74–77.
    [25] Broekstra J, Kampman A, Harmelen F. Sesame: A Generic Architecture for Storing andQuerying RDF and RDF Schema. Proceedings of ISWC’02: Proceedings of the FirstInternational Semantic Web Conference on The Semantic Web, London, UK: Springer-Verlag, 2002. 54–68.
    [26] McBride B. Jena: Implementing the RDF Model and Syntax Specification. Proceedings ofSemWeb, 2001.
    [27] Carroll J. J, Dickinson I, Dollin C, et al. Jena: Implementing the Semantic Web Recommen-dations. Proceedings of WWW Alt.’04: Proceedings of the 13th international World WideWeb conference on Alternate track papers & posters, New York, NY, USA: ACM Press,2004. 74–83.
    [28] Harris S, Gibbins N. 3store: Efficient Bulk RDF Storage. Proceedings of PSSS, 2003.
    [29] Bechhofer S, Horrocks I, Turi D. The OWL Instance Store: System Description. Proceed-ings of CADE. 177-181.
    [30] Pan Z, He?in J. DLDB: Extending Relational Databases to Support Semantic Web Queries.Technical Report LU-CSE-04-006, Dept. of Computer Science and Engineering, LehighUniversity, 2004.
    [31] Alexaki S, Christophides V, Karvounarakis G, et al. The ICS-FORTH RDFSuite: ManagingVoluminous RDF Description Bases. Proceedings of SemWeb, 2001.
    [32] Park M.-J, Lee J, Lee C.-H, et al. An Efficient and Scalable Management of Ontology.Proceedings of DASFAA, 2007. 975-980.
    [33] Ma L, Su Z, Pan Y, et al. RStar: An RDF Storage and Query System for Enterprise ResourceManagement. Proceedings of CIKM’04: Proceedings of the thirteenth ACM internationalconference on Information and knowledge management, New York, NY, USA: ACM Press,2004. 484–491.
    [34] Zhou J, Ma L, Liu Q, et al. Minerva: A Scalable OWL Ontology Storage and InferenceSystem. Proceedings of ASWC, 2006. 429-443.
    [35] Angles R, Gutie′rrez C. Querying RDF Data from a Graph Database Perspective. Proceed-ings of ESWC, 2005. 346-360.
    [36] Bo¨nstro¨m V, Hinze A, Schweppe H. Storing RDF as a Graph. Proceedings of LA-WEB’03: Proceedings of the First Conference on Latin American Web Congress, Washington,DC, USA: IEEE Computer Society, 2003. 27.
    [37] Wood D, Gearon P, Adams T. Kowari: A Platform for Semantic Web Storage and Analysis.Proceedings of XTech, 2005.
    [38] Harth A, Decker S. Optimized Index Structures for Querying RDF from the Web. Proceed-ings of LA-WEB’05: Proceedings of the Third Latin American Web Congress, Washing-ton, DC, USA: IEEE Computer Society, 2005. 71.
    [39] Chen Y, Ou J, Jiang Y, et al. HStar - A Semantic Repository for Large Scale OWL Docu-ments. Proceedings of ASWC, 2006. 415-428.
    [40] Cai M, Frank M. RDFPeers: A Scalable Distributed RDF Repository Based on a StructuredPeer-to-Peer Network. Proceedings of WWW’04: Proceedings of the 13th internationalconference on World Wide Web, New York, NY, USA: ACM Press, 2004. 650–657.
    [41] Nejdl W, Wolf B, Qu C, et al. EDUTELLA: A P2P Networking Infrastructure Based onRDF. Proceedings of WWW’02: Proceedings of the 11th international conference onWorld Wide Web, New York, NY, USA: ACM Press, 2002. 604–615.
    [42] Ding L, Pan R, Finin T, et al. Finding and Ranking Knowledge on the Semantic Web.Proceedings of ISWC, 2005. 156–170.
    [43] Christophides V, Karvounarakis G, Plexousakis D, et al. Optimizing Taxonomic SemanticWeb Queries Using Labeling Schemes. Journal of Web Semantics, 2004, 1(2):207–228.
    [44] Karvounarakis G, Alexaki S, Christophides V, et al. RQL: A Declarative Query Languagefor RDF. Proceedings of WWW’02: Proceedings of the 11th international conference onWorld Wide Web, New York, NY, USA: ACM Press, 2002. 592–603.
    [45] Staab S, Angele J, Decker S, et al. Semantic Community Web Portals. Proceedings ofProceedings of the 9th international World Wide Web conference on Computer networks: the international journal of computer and telecommunications netowrking, Amsterdam,The Netherlands, The Netherlands: North-Holland Publishing Co., 2000. 473–491.
    [46] K. Sheykh Esmaili H. A. A Categorization Scheme for Semantic Web Search Engines.Proceedings of 4th ACS/IEEE International Conference on Computer Systems and Appli-cations (AICCSA-06), Sharjah, UAE, 2006. 171–178.
    [47] Zhang L, Yu Y, Zhou J, et al. An Enhanced Model for Searching in Semantic Portals.Proceedings of WWW’05: Proceedings of the 14th international conference on WorldWide Web, New York, NY, USA: ACM Press, 2005. 453–462.
    [48] Finin T, Mayfield J, Joshi A, et al. Information Retrieval and the Semantic Web. Proceed-ings of HICSS’05: Proceedings of the Proceedings of the 38th Annual Hawaii InternationalConference on System Sciences (HICSS’05) - Track 4, Washington, DC, USA: IEEE Com-puter Society, 2005. 113.1.
    [49] Zhang Y, Vasconcelos W, Sleeman D. OntoSearch: An Ontology Search Engine. Pro-ceedings of Proceedings The Twenty-fourth SGAI International Conference on InnovativeTechniques and Applications of Artificial Intelligence (AI-2004), Cambridge, UK, 2004.
    [50] Ding L, Finin T, Joshi A, et al. Swoogle: A Search and Metadata Engine for the SemanticWeb. Proceedings of CIKM’04: Proceedings of the thirteenth ACM international confer-ence on Information and knowledge management, New York, NY, USA: ACM Press, 2004.652–659.
    [51] Patel C, Supekar K, Lee Y, et al. OntoKhoj: A Semantic Web Portal for Ontology Search-ing, Ranking and Classification. Proceedings of WIDM’03: Proceedings of the 5th ACMinternational workshop on Web information and data management, New York, NY, USA:ACM Press, 2003. 58–61.
    [52] Brin S, Page L. The Anatomy of a Large-Scale Hypertextual Web Search Engine. ComputerNetworks, 1998, 30(1-7):107–117.
    [53] Guo Y, Pan Z, He?in J. LUBM: A Benchmark for OWL Knowledge Base Systems. Journalof Web Semantics, 2005, 3(2-3):158–182.
    [54] Agrawal R, Borgida A, Jagadish H. V. Efficient Management of Transitive Relationships inLarge Data and Knowledge Bases. Proceedings of SIGMOD’89: Proceedings of the 1989ACM SIGMOD international conference on Management of data, New York, NY, USA:ACM Press, 1989. 253–262.
    [55] Wu X, Lee M. L, Hsu W. A Prime Number Labeling Scheme for Dynamic Ordered XMLTrees. Proceedings of ICDE’04: Proceedings of the 20th International Conference on DataEngineering, Washington, DC, USA: IEEE Computer Society, 2004. 66.
    [56] Forgy C. L. On the Efficient Implementation of Production Systems: [PhD Thesis]. Com-puter Science Department, Carnegie-Mellon University, 1979.
    [57] Shen W, Qu Y. An RDF Storage and Query Framework with Flexible Inference Strategy.Proceedings of APWeb, 2006. 166-175.
    [58] Dewey M. Decimal classification and relative index. Albany N. Y.: Forest Pr., 1979, 1979.
    [59] Gavoille C, Peleg D. Compact and Localized Distributed Data Structures. Distrib. Comput.,2003, 16(2-3):111–120.
    [60] Dietz P. F. Maintaining Order in a Linked List. Proceedings of STOC’82: Proceedingsof the fourteenth annual ACM symposium on Theory of computing, New York, NY, USA:ACM Press, 1982. 122–127.
    [61] Dietz P, Sleator D. Two Algorithms for Maintaining Order in a List. Proceedings of STOC’87: Proceedings of the nineteenth annual ACM conference on Theory of computing, NewYork, NY, USA: ACM Press, 1987. 365–372.
    [62] Li Q, Moon B. Indexing and Querying XML Data for Regular Path Expressions. Proceed-ings of VLDB’01: Proceedings of the 27th International Conference on Very Large DataBases, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001. 361–370.
    [63] Wirth N. Type Extensions. ACM Trans. Program. Lang. Syst., 1988, 10(2):204–214.
    [64] A¨?t-Kaci H, Boyer R, Lincoln P, et al. Efficient Implementation of Lattice Operations. ACMTrans. Program. Lang. Syst., 1989, 11(1):115–146.
    [65] Caseau Y. Efficient Handling of Multiple Inheritance Hierarchies. ACM SIGPLAN Notices,1993, 28(10):271–287.
    [66] Krall A, Vitek J, Horspool R. N. Near Optimal Hierarchical Encoding of Types. Proceedingsof ECOOP, 1997. 128-145.
    [67] Cormen T. H. Introduction to Algorithms. Cambridge, Mass. [u.a.]: MIT Press, 2005, 2.ed., 6. printing edition, 2005. Literaturverz. S. [1127] - 1143.
    [68]严蔚敏,吴伟民.数据结构(C语言版).北京,清华大学出版社, 2002.
    [69] Group T. P. G. D. PostgreSQL 8.0.14 Documentation, 2005.http://www.postgresql.org/docs/8.0/interactive/index.html.
    [70] Liu B, Hu B. An Evaluation of RDF Storage Systems for Large Data Applications. Pro-ceedings of SKG, 2005. 59.
    [71] Agrawal R, Somani A, Xu Y. Storage and Querying of E-Commerce Data. Proceedings ofVLDB’01: Proceedings of the 27th International Conference on Very Large Data Bases,San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001. 149–158.
    [72] Alexaki S, Christophides V, Karvounarakis G, et al. On Storing Voluminous RDF Descrip-tions: The Case of Web Portal Catalogs. Proceedings of WebDB, 2001. 43-48.
    [73] Haase P, Broekstra J, Eberhart A, et al. A Comparison of RDF Query Languages. Pro-ceedings of Proceedings of the Third International Semantic Web Conference, Hiroshima,Japan, 2004. 502-517.
    [74] Bailey J, Bry F, Furche T, et al. Web and Semantic Web Query Languages: A Survey.In: Eisinger N, Ma?uszy ski J, editors, Proceedings of Reasoning Web, First InternationalSummer School 2005, 2005. 35–133.
    [75] Karvounarakis G, Magkanaraki A, Alexaki S, et al. RQL: A Functional Query Languagefor RDF. In: Gray P. M. D, Kerschberg L, King P. J. H, et al., editors, Proceedings of TheFunctional Approach to Data Management: Modelling, Analyzing and Integrating Hetero-geneous Data. Springer-Verlag, 2004. 435-465.
    [76] Decker S, Brickley D, Saarela J, et al. A Query and Inference Service for RDF. Proceedingsof Proceedings of the W3C Query Language Workshop (QL-98), Boston, MA, December3-4, 1998. http://www.w3.org/TandS/QL/QL98/.
    [77] Berger S, Bry F, Bolzer O, et al. Xcerpt and visXcerpt: Twin Query Languages for theSemantic Web. Proceedings of Proceedings of 3rd International Semantic Web Conference,Hiroshima, Japan (7th–11th November 2004), 2004.
    [78] W3C . Algae RDF Query Language, 2004. http://www.w3.org/2004/05/06-Algae/.
    [79] Olson M, Ogbuji U. The Versa Specification, 2004.http://uche.ogbuji.net/tech/rdf/versa/etc/versa-1.0.xml.
    [80] Pe′rez J, Arenas M, Gutierrez C. Semantics and Complexity of SPARQL. Proceedings ofInternational Semantic Web Conference, 2006. 30-43.
    [81]陈妍.大规模Ontology数据的存储和查询技术研究: [硕士学位论文].中国人民大学,2006.
    [82] Horrocks I, Patel-Schneider P. F. Reducing OWL Entailment to Description Logic Satisfia-bility. Journal of Web Semantics, 2004, 1:345–357.
    [83] Horst H. J. Completeness, Decidability and Complexity of Entailment for RDF Schemaand a Semantic Extension Involving the OWL Vocabulary. Journal of Web Semantics,2005, 3(2-3):79–115.
    [84] Hillyer M. Managing Hierarchical Data in MySQL, 2006. http://dev.mysql.com/tech-resources/articles/hierarchical-data.html.
    [85] Li H, Wang Y, Qu Y, et al. A Reasoning Algorithm for pD*. Proceedings of ASWC, 2006.293-299.
    [86] Silberschatz A, Korth H. F, Sudershan S. Database System Concepts. New York, NY, USA:McGraw-Hill, Inc., 1998.
    [87] Baeza-Yates R, Riberiro-Neto B. Modern Information Retrieval. New York: ACM, May,1999.
    [88] Horrocks I. The FaCT System. Proceedings of TABLEAUX’98: Proceedings of the Inter-national Conference on Automated Reasoning with Analytic Tableaux and Related Meth-ods, London, UK: Springer-Verlag, 1998. 307–312.
    [89] Baader F, Calvanese D, McGuinness D. L, et al., editors. The Description Logic Handbook:Theory, Implementation, and Applications. New York, NY, USA: Cambridge UniversityPress, 2003.
    [90] Baader F, Sattler U. An Overview of Tableau Algorithms for Description Logics. StudiaLogica, 2001, 69:5–40.
    [91] Yu Y, Wang H, Wang C, et al. SPARK: Adapting Keyword Query to Semantic Search.Proceedings of ISWC, 2007.
    [92] Wang C, Xiong M, Zhou Q, et al. PANTO: A Portable Natural Language Interface toOntologies. Proceedings of ESWC, 2007. 473-487.
    [93] Liu X, Chen M, Yang G. Latent Semantic Indexing in Peer-to-Peer Networks. Proceedingsof ARCS, 2004. 63-77.
    [94] Chirita P.-A, Costache S, Nejdl W, et al. Beagle++: Semantically Enhanced Searching andRanking on the Desktop. Proceedings of The Semantic Web: Research and Applications.Springer Berlin / Heidelberg, 2006. 348–362.
    [95] Castells P, Fern??ndez M, Vallet D. An Adaptation of the Vector-Space Model forOntology-Based Information Retrieval. IEEE Transactions on Knowledge and Data En-gineering, 2007, 19(2):261–272.
    [96] Vallet D, Ferna′ndez M, Castells P. An Ontology-Based Information Retrieval Model. Pro-ceedings of ESWC, 2005. 455-470.
    [97] Buitelaar P, Eigner T, Declerck T. OntoSelect: A Dynamic Ontology Library with Supportfor Ontology Selection. Proceedings of The Demo Session at the ISWC, 2004.
    [98] Brandes U, Erlebach T. Network Analysis : Methodological Foundations. Berlin [u.a.]:Springer, 2005, 2005.
    [99] Kleinberg J. M. Authoritative Sources in a Hyperlinked Environment. Journal of the ACM,1999, 46(5):604–632.
    [100] Lempel R, Moran S. SALSA: the Stochastic Approach for Link-structure Analysis. ACMTrans. Inf. Syst., 2001, 19(2):131–160.
    [101] Nie Z, Zhang Y, Wen J.-R, et al. Object-level Ranking: Bringing Order to Web objects.Proceedings of WWW, 2005. 567-574.
    [102] Balmin A, Hristidis V, Papakonstantinou Y. ObjectRank: Authority-Based Keyword Searchin Databases. Proceedings of VLDB, 2004. 564-575.
    [103] Geerts F, Mannila H, Terzi E. Relational Link-based Ranking. Proceedings of VLDB, 2004.552-563.
    [104] Alani H, Brewster C. Ontology Ranking Based on the Analysis of Concept Structures.Proceedings of K-CAP’05: Proceedings of the 3rd international conference on Knowledgecapture, New York, NY, USA: ACM Press, 2005. 51–58.
    [105] Stojanovic N, Studer R, Stojanovic L. An Approach for the Ranking of Query Results inthe Semantic Web. Proceedings of International Semantic Web Conference, 2003. 500-516.
    [106] Bamba B, Mukherjea S. Utilizing Resource Importance for Ranking Semantic Web QueryResults. Proceedings of SWDB, 2004. 185-198.
    [107] Zhuge H, Zheng L. Ranking Semantic-linked Network. Proceedings of WWW (Posters),2003.
    [108] Neches R, Fikes R, Finin T, et al. Enabling Technology for Knowledge Sharing. AI Mag.,1991, 12(3):36–56.
    [109] James W. The principles of psychology. Harvard, 1890. (Harvard ed. 1983).
    [110] Fogaras D. Where to Start Browsing the Web? Proceedings of IICS, 2003. 65-79.
    [111] Ortega J. M, Rheinboldt W. C. Iterative Solution of Nonlinear Equations in Several Vari-ables. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2000.
    [112]施仁杰.马尔科夫链基础及其应用.西安,西安电子科技大学出版社, 1992.
    [113] Leighton H. V, Srivastava J. First 20 Precision among World Wide Web Search Ser-vices (Search Engines). Journal of the American Society for Information Science, 1999,50(10):870–881.
    [114] Liang B, Tang J, Wu G, et al. SWARMS: A Tool for Exploring Domain Knowledge onSemantic Web. Proceedings of AAAI 2005 Workshop: Contexts and Ontologies:Theory,Practice and Applications, 2005. 120-123.
    [115] IPTC . NewsMLTM1.2 Guidelines V1.00, 2004.
    [116] Brickley D, Miller L. FOAF Vocabulary Specification 0.9, 2007. http://xmlns.com/foaf/0.1/.
    [117] Liang B, Tang J, Wu G, et al. SWARMS: A Tool for Domain Exploration in Semantic Weband its Application in FOAF Domain. Proceedings of Demo Session of ASWC, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700