用户名: 密码: 验证码:
超(超)临界机组锅炉燃烧特性试验与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超(超)临界机组由于主/再热蒸汽参数提高,机组热效率比国内现有平均水平明显提高,且具有显著的节能和改善环境的效果。未来火电建设将主要是发展高效率、高参数的超临界(SC)和超超临界(USC)火电机组。由于国内技术引进后对国内煤源问题考虑不充分,由此导致了锅炉恶性结渣和燃烧不稳定等问题。另外,锅炉原设计为燃油点火,技术引进后为了节省用油,将燃烧器改为无油点火和燃油点火共用,需要对超(超)临界机组锅炉进行燃烧优化。论文以此为研究背景进行燃烧特性试验与优化方案的研究,主要内容如下。
     通过数值模拟试验对600MW超临界LNASB燃烧器旋流燃烧锅炉进行了预测,通过实际工业试验进行了验证和分析。以解决锅炉恶性结焦为出发点,研究了旋流强度及二次风量对燃烧器热态温度场、空气动力场分布的影响;研究了燃烧器给粉方式、二次风变化对炉膛内部NOx生成的影响,对燃烧器原始结构和各改进方案空气动力场、温度场和NOx生成特性进行了对比和分析。
     采用数值模拟试验和实际工业试验相结合的方式,对一台1000MW超超临界机组HT-NR3燃烧器对冲旋流燃烧锅炉燃烧不稳定现象进行了研究,研究了燃烧器一、二次风口形状对燃烧器热态温度场、空气动力场分布的影响,对燃烧器改进结构与原始结构NOx生成特性进行对比。对燃烧器原始结构和三个改进方案进行了对比分析。
     600MW超临界旋流燃烧锅炉LNASB燃烧器具有以下特点。外二次风对射流扩展角影响较大,内二次风对回流区影响明显,内二次风风量及旋流强度过大时容易引起火焰气流冲刷水冷壁。内二次风对NOx影响较大,内二次风关闭时炉膛出口NOx下降22%。回流区根部距离随中心风速的增大而增大,燃烧器喷口处温度随中心风的退出上升明显,燃烧器中心给粉方式下火焰离喷口距离可有效地增加。同时,可以有效的降低锅炉NOx的生成。
     1000MW超超临界HT-NR3燃烧器旋流燃烧锅炉计算与试验结论如下。二次风扩口轴向长度及角度较大时,燃烧器火焰形状宽而短,NOx生成量较少,煤质较差时燃烧不稳定。二次风筒锥口轴向长度及角度减小后,燃烧器燃烧稳定性有所增强,锅炉NOx生成和排放量增加不明显。二次风扩口轴向长度减少1/2时燃烧稳定性明显增强,NOx排放量无明显增加,为最佳改进方案。
     对一台1000MW超超临界机组双切圆锅炉的燃烧特性进行了数值模拟试验预测,同时进行了实际工业试验研究。研究了燃烧器喷口布置、喷口形状及一、二次风速对燃烧器热态空气动力场、温度场分布的影响,对燃烧器原始结构和各改进结构空气动力场及温度场进行了分析。
     一、二次风速对炉膛空气动力场结构影响非常大,切圆直径随一次风速增大而变小,随二次风速的增大而增大。在燃烧器喷口形状不变的情况下,火焰刚性随一次风口尺寸的增大而增强。燃烧器喷口形状与布置方式不同时,燃烧器区域NOX生成与分布不同,锅炉各方案情况下NOx排放变化不明显。燃烧器一次风粉喷口通流面积扩大1倍,给粉量增加20%的情况下燃烧器区域温度明显升高,NOX生成量有所增加,在下侧布置辅助风情况下,炉膛水平截面气流充满度较好,NOX生成与前者相比无明显增加。
With supercritical (SC) and ultra supercritical (USC) power unit main/reheat steam parameters increase, the unit thermal efficiency being improved than the national average, which have a significant effect on energy conservation and environmental improvement. Construction of thermal power plants in the future will mainly develop high efficiency and high parameters of SC and USC power unit.Due to introduction of technology on domestic coal sources considered inadequate, thereby leading to malignant slagging and combustion instability problems in boiler. In addition, original design of boiler is fuel ignition, after the introduction of technology, in order to save oil, change the burner to oilless ignition and fuel ignition share, all this need to optimize SC and USC power unit boiler combustion. Papers about this research study on combustion characteristics and ation of the object main contents are as follows.
     600MW supercritical LNASB combustion swirl burner boiler was predicted by numerical simulation test anduse the actual industrial test to vertify and analysis. To solve boiler coking in malignant as a starting point, the influence of secondary swirling intensity and air flow on the distribution of temperature and flow field were studied. The influence of mode on the burner to the powder and secondary changes on NOx formation in the furnace were studied. Air force field, temperature field and NOx formation characteristics on the burner original structure and the improvement scheme are compared and analyzed.
     The numerical simulation test combined with actual industrial test, combustion instability phenomena on a1000MW ultra-supercritical units HT-NR3burner hedge hydrocyclone combustion boiler are studied, the original structure of burner and three improving programs were compared.
     The numerical simulation test and actual industry experiment had shown as follows, the extended corner was impacted obviously by the external secondary air. The recirculation zone is hardly affected by the inner secondary air. Increasing the flow and swirling intensity of the inner secondary air could make the flame deviation and adherence. The inner secondary air have a great influence on NOx, when the inner secondary air is off, NOX in the furnace exit fell by22%. The recirculation zone root distance increased with the center air speed,the temperature of burner nozzle increased with central air exit significantly, the flame from the nozzle distance on burner center powder feeding can be increased effectively.
     1000MW ultra-supercritical units HT-NR3burner Conclusions are drawn as follows, when the Secondary outlet expanding angle and the axial length are large, the flame shape is short and wide, effluent concentrations of NOx is low, Coal combustion is unstable when the quality of coal is bad.When the Secondary outlet expanding angle is small and the axial length is short, combustion stability of coal center rich and original structure about burner are both increased, NOx emission is not increased obviously. The combustion stability could effectively increase when the axial length of secondary expanding outlet was reduced to1/2, NOx emission is not improved obviously, which was the best improvement program.
     The combustion process of a1000MW ultra supercritical dual tangential circle boiler was numerically studied and in the actual industrial experiment study. The influence of the nozzle structure and the primary and secondary air velocity on the distributions of thermal flow and temperature field was studied. The flow field and temperature field with the burners of being improved structure were compared with the original ones.
     The primary and secondary air velocity have a greatimpact on the thermal flow within the burner's combustion area. Diameter of the tangent circle decreases with the increasing of primary air velocity but increases with the increasing of secondary air velocity. In the shape of the burner nozzle under the same circumstances, increasing the dimension of the primary air nozzle can increase the rigidity of the flame. For different burner jet structure and arrangement, NOx generation and distribution performance is different correspondingly, while the NOx emission change is unobvious for different boiler design schemes. As flow area of the primary coal powder tube jet is enlarged by100%, that is, the coal feeding is increased by20%, temperature around the burner zone rises significantly and NOx generation also increases. When there arranged one layer of auxiliary air from the burner undersurface, the combustion characteristic is promoted and NOx generation increases lightly.
引文
[1]陈听宽,危师让.超临界机组的发展和关键技术[J].In:电力科学技术讲座.2001,北京:中国电力出版社
    [2]徐通模,袁益超,陈干锦,等.超大容量超超临界锅炉的发展趋势[J].动力工程,2003,23(3):2363-2368.
    [3]岑可法,周昊,池作和.大型电站锅炉安全及优化运行技术.2003,北京:中国电力出版社.
    [4]吴少华,李君,李振中.超超临界燃煤发电技术是我国目前发展洁净煤发电技术的优先选择[J].中国电力,2004,37(9):13-17.
    [5]肖汉才,周臻.超临界机组和超超临界机组的优势及在我国大力发展的广阔前景[J].电站系统工程,2004,20(5):8-10.
    [6]陈听宽.超临界与超超临界锅炉技术的发展与研究[J].世界科技研究与发展,2005,27(6):43-48.
    [7]赵毓.超超临界机组在我国发展的必要性与可行性[J].锅炉制造,2005(4):75-76.
    [8]刘国跃,朱宝田,雷兆团.超临界及超超临界机组的运行特性研究[J].电力设备,2006,7(4):7-10.
    [9]Emsperger W, Felemuller A, Franke J, et al. Status and development of Power Plants with high supercritical steam conditions. In:Int. Conf. On power Engineering.2002, Xi'an. pp:612-622.
    [10]Viswanathan R. Materials for ultra- supercritical coal-fired Power Plant boilers [J]. Intenational Journal of Pressure Vessels and Piping,2006,83(11-12): 778-783.
    [11]任建新,金迪,吴江,李芳芹.超临界、超超临界燃煤发电机组热力参数确定方法的探讨.In:全国超超临界火电机组现场研讨会.2007,山东泰安:136-139.
    [12]郑民牛.超超临界1000MW锅炉选型的几个关键要点[J].动力工程,2006,26(2):166-170.
    [13]张参军.超超临界锅炉的特点[J].电站系统工程,2005,21(3):35-36.
    [14]曾汉才.关于超临界压力锅炉的若干问题[J].华东电力,2001,1.
    [15]施鸿飞,陈端雨,董厚忱.超超临界压力锅炉的设计探讨[J].动力工程,2002,22(4):1833-1840.
    [16]陈晓东,时伟.发展大容量超临界机组是我国清洁煤发电技术的主要方向[J].电站系统工程,1999,15(4):4-10.
    [17]汤蕴琳.我国火电建设的新里程碑—超超临界(USC)燃煤机组[J].电力建设,2004,25(10):1-4.
    [18]黄毅诚.21世纪我国的能源战略[J].中国电力,2000,33(9):1-4.
    [19]朱宝田.超超临界发电技术的发展和关键技术.In:全国超超临界火电机组现场研讨会.2007,山东泰安.pp:69-72.
    [20]李君,吴少华,李振中.超超临界燃煤发电技术是我国目前发展结净煤发电技术的优先选择[J].中国电力,2004,37(9):13-17.
    [21]黄莺,华洪渊,李涛,等.超超临界锅炉的发展与关键问题[J].发电设备,2003,(1):46-49.
    [22]Jiang Lin. Energy conservation investment:A comparison between China and the USA[J]. Energy Policy,2007,35(2):916-924.
    [23]Janos M. Beer. High efficiency electric Power generation:The environmental role[J]. Progress in Energy and Combustion Science,2007,33(2):107-134.
    [24]顾海澄,赵钦新,陆燕荪.国外电站锅炉耐热钢的一些进展[J].动力工程,1998,18(1):74-83.
    [25]上海发电设备成套设计研究所.电站锅炉[M].2000,北京:机械工业出版社.
    [26]Sato S, Kobayashi Y. The development of advanced energy technologies in JAPAN-new technologies for coal-fired boiler. In:Int. Conf. On power Engineering.2001, Xi'an. pp:643-650.
    [27]匡江红,陈端雨.1000MW级火电机组锅炉发展综述[J].动力工程,2003,23(1):2127-2134.
    [28]田子平.日本的大容量超临界压力锅炉[J].锅炉技术,2000,1:2-11.
    [29]伊东正道.超超临界压力电站锅炉管子的研制[J].火力原子力发电,1986,7.
    [29]范长信,周荣灿.超超临界火力发电厂材料研究综述及选材分析.In:超超临界火电机组技术协作网第一届年会.2005.
    [30]田靖基,开安芳,华炳增.900MW超临界直流锅炉制造工艺特点[J].锅炉技术,2003,1.
    [31]陆延昌.大力发展超临界压力机组优化火电结构[J].中国电力,2000,33(1):1-5.
    [32]申松林.超超临界火电机组四大管道材料分析.In:超超临界火电机组技术协作网第一届年会.2005.
    [33]赵钦新.国产T91/P91钢管的深化研究[J].锅炉技术,1999,30(8):16-32.
    [34]胃继华,董德俊.新型铁素体热强钢的研究[J].钢铁研究学报,1997,9(1):52-55.
    [35]樊泉桂.超临界和超超临界锅炉煤粉燃烧新技术分析[J].电力设备,2006,7(2):23-25.
    [36]姜武.煤粉分配器的使用现状及应用前景[J].热机技术.2004.1.
    [37]戚国水,童红政.HP863磨煤机双可调煤粉分配器的工程应用[J].热力发电,2002,31(6):50-52.
    [38]Olds FC. Trends in Power Boilers[J]. Power Engineering,1978,2:42-52
    [39]朱宝田.洁净发电的环境价值和成本评价[J].21世纪电力,2005,2.
    [40]Steven WD, Dolan J E. A EP's 835MW Boilers Series in Proceedings of the All American Power Conference.1973.
    [41]Bowman C T. Kineties of Pollutant formation and Destruction in Combustion[J]. Prog. Energy Comb. Sci,1975.1:P.33-45.
    [42]Stanmore B R Visona S P.3-D Modeling of NOx Formation in a 275MW Utility Boiler[J]. Journal of the Institute of Energy,1996,6(69):68-79.
    [43]陈吟颖,阎维平,石惠芳.330MW燃煤机组锅炉炉膛结渣性能的研究[J].中国电机工程学报,2005,25(11):79-84.
    [44]ERICKSON T A, ALLAN S E, MCCOLLOR D P, et al. Modeling of fouling and slagging in coal-fired utility boilers[J]. Fuel Processing Technology,1995, 44(1-3):155-171.
    [45]陈兴隆.旋流扩散燃烧中旋流数对热NO生成的影响[J].工程热物理学报,2001,22(4):511-514.
    [46]Azevedo J.L.T, Coimbra C.F.M and Carvalho M.G.3-D Numerical Model for Predicting NOx Emissions From an Industrial Pulverized Coal Combustor[J]. Fuel,1994,73(7):1128-1134.
    [47]范贤振.200MW四角切向燃烧煤粉炉炉内过程的数值模拟[J].西安交通大学学报.2002,36(3):241-245.
    [48]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版.1994.
    [49]曾令可,方海鑫,王慧,程小苏,刘平安FLUENT软件的应用及其污染物生成模型分析[J].工业炉,2004,26(3):31-34.
    [50]孙锐.申春梅,吴少华.超超临界锅炉炉内燃烧过程的数值模拟[J].动力工程,2006,26(1):32-37.
    [51]方庆艳,汪华剑,陈刚等.超超临界锅炉磨煤机组合运行方式优化数值模拟[J]中国电机工程学报,2011,31(5):1-6.
    [52]胡志宏,郝卫东,薛美盛等.1000MW超超临界燃煤锅炉燃烧与NOx排放特性试验研究[J].机械工程学报,2010,46(4):105-108.
    [53]申春梅,孙锐,吴少华等,1GW单炉膛双切圆炉内煤粉燃烧过程的数值模拟,[J],中国电机工程学报,2006,26(15):51-57.
    [54]高正阳,宋玮,方立军等,1000MW超超临界机组双切圆锅炉NO排放特性的数值模拟[J],中国电机工程学报,2009,29(32):12-17.
    [55]Larue A D, Cioffi P L. Low NO burner development in the USA[J]. Modern Power Systems,1988,8(1):42-47.
    [56]殷健.NOx生成湍流反应率的二阶矩-PDF数值模拟[J].燃烧科学与技术,2001,7(1):67-71.
    [57]王方.旋流燃烧NO主成的USM湍流反应模型[J].工程热物理学报,2003,24(4):691-694.
    [58]Huffman G P, Huggins F E, Dunmyre G R. Investigation of the high-temperature behavior of coal ash in reducing and oxidizing atmospheres[J]. Fuel,1981,60(3): 585-597.
    [59]Anacleto P M, Fernandes E C, Heitor M V, et al. Swirl flow structure and flame characteristics in a model lean premixed combustor[J]. Combustion Science and Technology,2003,175(8):1369-1388.
    [60]葛冰,臧述升,顾欣.钝体燃烧器火焰变化的速度分布特性[J].中国电机工程学报,2007,27(5):34-38.
    [61]刘建忠,姚强,曹欣玉,等.可控煤粉浓淡旋流燃烧器着火稳燃的简化模型及其在旋流回流区中的应用[J].中国电机工程学报,1999,19(10):32-36.
    [62]张志正,孙保民,徐鸿,等.沁北发电厂超临界压力电站锅炉水冷壁截面温度场分析[J].中国电机工程学报,2006,26(7):25-28.
    [63]Sommerfeld M, Qiu H H. Characteristics of gas-particle laden, confined swirling flows by phase-Doppler anemometry and numerical calculation[J]. Int J Multiphase Flow,1993,19(6):1093-1220.
    [64]Patankar S V. Numerical Heat Transfer and Fluid Flow[M]. Washington, D C: Hemisphere,1980:140.
    [65]周俊虎,徐江荣,张巍,等.煤粉无油二级直接点火燃烧器试验研究及数值模拟[J].中国电机工程学报,2005,25(11):66-71.
    [66]尚庆,张健,周力行.旋流燃烧室内颗粒运动的数值模拟[J].工程热物理学报,2004,25(3):515-518.
    [67]许昌,吕剑虹,曾庆广,等.800MW锅炉旋流燃烧器空气动力场试验与数值仿真研究[J].中国电机工程学报,2004,24(8):201-205.
    [68]张颉,孙锐,吴少华,等.200 MW旋流燃烧方式煤粉锅炉炉内燃烧试验和数值模拟[J].中国电机工程学报,2003,23(8):215-220.
    [69]赵云华,何玉荣,陆慧林,等.煤粉颗粒群着火和燃烧过程的数值模拟[J].燃烧科学与技术,2007,13(2):107-112.
    [70]#12
    [71]Chigier N A, Chervinsky A, Appl J. Mech[M].1967. V-343.
    [72]Hassan M A, Hirji K A, Lookwood F C, et al. Measurements in a pulverized coal-fired cylindrical furnace[J]. Experiments in Fluids,1985,3(3):153-159.
    [73]Javier P, Inmaculada A, Alan W. Integration of CFD codes and advanced combustion models for quantitative burn out determination [J]. Fuel,2007, 86(15):2283-2290.
    [74]Gu Mingyan, Zhang Mingchuan, Fan Weidong, et al. The effect of the mixing characters of primary and secondary air on NO formation in a swirling pulverized coal flame[J]. Fuel,2005,84(8):2093-2101.
    [75]陈智超,李争起,孙锐,等.适用于1025t/h燃煤锅炉的浓淡旋流煤粉燃烧技术的研究[J].中国电机工程学报,2004,24(4):189-194.
    [76]Vander Lans R P, Glarborg P, Dam-Johansen K. Influence of process parameters on nitrogen oxide formation in pulverized coal burners[J]. Prog. Energy Combust. Sci,1997,23(3):349-377.
    [77]秦裕琨,王磊,李争起,等.淡一次风扩口角度对径向浓淡旋流煤粉燃烧器出口流场影响的实验研究[J].中国电机工程学报,2000,20(3):56-60.
    [78]石伟,周志军,周俊虎,等.内二次风旋流强度对PAX燃烧器出口流场的影响[J].动力工程,2003,23(1):2169-2172.
    [79]You Changfu, Zhou Yong. Effect of operation parameters on the slagging near swirl coal burner throat[J]. Energy Fuels,2006,20(11):1855-1861.
    [80]普勇,张健,周力行.旋流燃烧室内湍流燃烧速度场的试验研究[J].力学学报,2003,35(3):341-347.
    [81]秦占峰,黄贵臣,李道波.2027 t/h“W”火焰型锅炉焦、积渣原因分析[C]//全国火电大机组(600 MW级)竞赛第9届年会,扬州,2005.
    [82]POHL J H, SAROFIM A F. Devolatilization and oxidation of coal nitrogen[C]// Proceedings of 16th Symposium (international) on Combustion. The Combustion Institute, Pittsburgh,1976:491-501.
    [83]李振中,冯兆兴,王阳,等.煤粉双级垂直浓淡燃烧降低NOx排放及稳燃技术的研究[J].中国电机工程学报,2003,23(11):184-188.
    [84]吴少华,李争起,孙绍增,等.低NOx排放的“风包粉”浓淡煤粉燃烧技术[J].机械工程学报,2002,38(1):108-111.
    [85]侯逊,朱云荣.600MW超临锅炉的低NOx燃烧技术分析[J].山东电力技术2006,2,72-74.
    [86]郭永红,孙保民,康志忠.超细煤粉再燃低NOx燃烧技术的数值模拟[J].动力工程,2005,25(3):422-426.
    [87]由长福,祁海鹰,徐旭常.采用不同湍流模型及差分格式对四角切圆燃烧煤粉锅炉内冷态流场的数值模拟[J].动力工程,2001,21(2):1128-1131.
    [88]王志刚,张海,陈昌和,等.煤焦反应动力学参数对电站锅炉燃烧影响的数值研究[J].中国电机工程学报,2007,27(2):20-25.
    [89]张宇,周力行,张健.进口堵塞对旋流煤粉燃烧器NO生成影响的数值模拟[J].中国电机工程学报,2003,23(9):162-166.
    [90]孙锐,孙绍增,李争起,等.煤粉浓缩器内气固两相流动特性的数值模拟[J].机械工程学报,2004,40(3):35-39.
    [91]周力行,李力,李荣先,等.炉内两相流动和煤粉燃烧的双流体-轨道模型[J].工程热物理学报,2001,22(6):771-774.
    [92]徐江荣,周志军,姚强,等.强旋转受限射流的数值模拟[J].中国电机工程学报,1999,19(12):41-45.
    [93]Anagnostopoulos J S, Sargianos N P, Bergeles G. The prediction of pulverized Greek lignite combustion in axisymmetric furnaces[J]. Combustion and Flame, 1993,92(3):209-221.
    [94]Vuthaluru R, Vuthaluru H B. Modelling of a wall fired furnace for different operating conditions using FLUENT[J]. Fuel Processing Technology,2006, 87(7):633-639.
    [95]ZHOU L X LI CHEN et al. Studies on the effect of swirl numbers on strongly swirling turbulent gas-particle flows using a phase-Doppler particle anemometer[J]. Powder Technology,2000,112:79-86.
    [96]李永华,陈鸿伟,刘吉臻.煤粉燃烧排放特性数值模拟[J].中国电机工程学报,2003,23(3):166-169.
    [97]郭永红,孙保民,刘彤,等.褐煤的超细粉再燃中NOx的生成与还原的数值模拟[J].中国电机工程学报,2005,25(9):94-98.
    [98]Pang Liping, Sun Baomin, Martha E Salcudean. Using CFD to simulate heater fouling in a utility boiler[J]. Proceedings of the CSEE,2004,24(10):219-223.
    [99]HI]BNER A W, TUMMERS M J, HANJALIC K, et al. Experiments on a rotating-pipe swirl burner[J]. Thermal Fluid Sci.,2003,27:481-489.
    [100]张孝勇,王雨蓬,郭永红,等.HM型等离子燃烧器多级燃烧特性数值模拟[J].中国电机工程学报,2006,26(4):60-64.
    [101]Yakhot V, Orsazg S A, Thangam S, et al. Development of turbulence model for shear flows by a double expansion technique[J]. Physics of Fluids (A),1992,4(7): 1510-1520.
    [102]MOON S, BAE C, CHOI J, et al. The influence of air flow on fuel spray characteristics from a slit injector[J]. Fuel,2007,86:400-409.
    [103]SYED N D, MA C C, YANG C, et al. Comparison of two methods to increase tip clearance and its effect on performance of turbocharger centrifugal compressor stage[J]. Chinese Journal of Mechanical Engineering,2007,20(4):60-65.
    [104]尚庆,张健.旋流燃烧室内煤粉燃烧的数值模拟[J].中国电机工程学报,2007,27(17):1-5.
    [105]CHEN Z C, LI Z Q, JING J et al. Experiment Investigations on the performance of a centrally fuel rich swirl coal combustion burner:Influence of primary air ratio[J]. International Journal of Chemical Reactor Engineering, 2008,6:A39.
    [106]MASAYUKI T, KENJI Y, HIRONOBU K, et al. A reduced NOx reaction model for pulverized coal combustion under fuel-rich conditions[J]. Fuel,2002,81: 363-371.
    [107]Xu M, Azevedo J L T, Carvalho M G. Modelling of the combustion process and NOx emission in a utility boiler[J]. Fuel,2000,79(13):1611-1619.
    [108]LI Z Q, CHEN Z C, SUN R, et al. New low NO, low grade coal fired swirl stabilized technology[J]. Journal of the Energy Institute,2007,80(3):123-130.
    [109]Zhou L X, Chen X L, Zheng C Get al. Second-order moment turbulence chemistry models for simulating NOx formation in gas combustion[J]. Fuel,2000, 79:1289-1301.
    [110]Yu M J, Baek S W, Kang S J. Modeling of pulverized coal combustion with non-gray gas radiation effects[J]. Combust Sci and Tech,2001,166(1):151-174.
    [111]ZHOU H. CEN K Fj FAN J R. Experimental investigation on flow structures and mixing mechanisms of a gas solid burner jet[J]. Fuel,2005,84:1622-1634.
    [112]MAN C K, GIBBINS J R, WITKAMP J G, et al. Coal characterization for NOx prediction in air-staged combustion of pulverized coals[J]. Fuel,2005,84:2190-2 195.
    [113]CHEN Z C, LIZQ, WANG F Q, et al. Gas-particle flow characteristics of a centrally fuel rich swirl coal characteristics near the swirl burner region[J]. Fuel Processing Technology,2008,89:958-965.
    [114]Syred N, Kurniawan K, Griffiths T, et al. Development of fragmentation models for solid fuel combustion and gasification as subroutines for inclusion in CFD codes[J]. Fuel,2007,86(14):2221-2231.
    [115]Zhou L X, Qiao L, Chen XL et al. AUSM turbulence chemistry model for simulating NOx formation in turbulent combustion[J].Fuel,2002,81:1703-1709.
    [116]杨震,庄恩如,曹子栋.600MW超临界直流锅炉的燃烧调整试验[J].动力工程,2007,27(4):502-506.
    [117]王军,罗庆文,刘忠文,等.国产600MW超临界锅炉LNASB燃烧器试验研究[J].黑龙江电力,2009,31(4):249-252.
    [118]Li Z Q,Li R X,Zhou L Xet al.Experimental studies on clod two-phase flows in a new type of swirl pulverized-coal burner[A].Proc 2nd Asia Pacific Confon Combustion[C].Tainan/Taiwan,1999.303-306.
    [119]Minghou X, Jianwei Y, Caiyuan H, et al. Investigation of particle dynamics and pulverized coal combustion in a cavity bluff-body burner [J]. Fuel,1995,74(12): 1913-1920.
    [120]Li Zhengqi, Wan Zhixin, Sun Rui, et al. Influence of division cone angles between the fuel-rich and the fuel-lean ducts on gas-particle flow and combustion near swirl burners[J]. Energy,2002,27(12):1119-1130.
    [121]Li Zhengqi, Sun Rui, Wan Zhixin, et al. Gas-particle flow and combustion in the near-burner zone of the swirl-stabilized pulverized coal burner[J]. Combust. Sci. and Tech.,2003,175(11):1979-2014.
    [122]陈智超,李争起,孙锐,等.采用旋流煤粉燃烧方式的1025t/h锅炉结渣原因的工业试验[J].燃烧科学与技术,2006,12(4):300-303
    [123]Schnell U, Kaess M, Brodbek H. Experimental and numerical investigation of NOx formation and its basic interdependencies on pulverized coal flame characteristics[J]. Combust Sci and Tech,1993,93(1-6):91-109.
    [124]金燕,郑洽余,徐秀清,等.多功能旋流燃烧器的工业性试验研究[J].工程热物理学报,2002,23(4):526-528.
    [125]Gorres J, Schnell U, Hein K R G. Trajectories of burning coal particles in highly swirling reactive flows[J]. Int J Heat and Fluid flow,1995,16(5): 440-450.
    [126]魏铜生,蒋宏利,惠世恩,等.新型低NOx浓淡型双调风旋流燃烧器的研究[J].动力工程,2000,20(1):539-542.
    [127]Chigier N A, Chervinsky A. Experimental investigation of swirling vortex motion in jets [J].Transactions of ASME, Journal of Applied Mechanics,1967, 34(6):443-451.
    [128]王志强,孙绍增,张晓辉,等.中二次风水平摆角对炉内流场的影响[J].机械工程学报,2007,43(8):165-170.
    [129]Boshu He, Zhu Laiyu, Wang Jianmin. Computational fluid dynamics based retrofits to reheater panel overheating of No.3 boiler of Dagang Power Plant[J]. Computers&Fluids,2007,36(2):435-444.
    [130]王磊,煤粉燃烧器出口旋转气固两相流场的数值模拟[J].机械工程学报,2001,37(9):9-11.
    [131]Abbas T,Costem P,Lockwood F C.The influence of near burner region aerodynamics on the formation and emission of nitrogen oxides in a pulverized coal-fired furnace[J],Combustion and Flame,1991,91:346-363.
    [132]李争起,陈智超,孙锐,等.适用于燃用贫煤1025t/h锅炉的中心给粉旋流燃烧器[J].机械工程学报,2006,42(3):221-226.
    [133]周俊虎,石伟,周志军,等.煤粉浓度对煤粉高温热壁点火影响的试验研究[J].中国电机工程学报,2003,23(7):208-211.
    [134]Asotani T, Yamashita T, Tominaga H, et al. Prediction of ignition behavior in a tangentially fired pulverized coal boiler using CFD [J]. Fuel,2008,87(4-5): 482-490.
    [135]何佩鏊,赵仲琥,秦裕琨.煤粉燃烧器设计及运行[M].北京:机械工业出 版社,1987.
    [136]ZHANG J, LU H P'ZHOU L X, et al. Simulation of annular swirling turbulent flows with a new algebraic Reynolds stress model[J]. Numerical Heat Transfer B, 1997,31:235-249.
    [137]XU M H, YUAN J W HAN C et al. Investigation of particle dynamics and pulverized coal combustion in a cavity bluff-body burner[J]. Fuel,1995, 74(12):1913-1917.
    [138]Faltsi-Saravelou O, Wild P, Sazhin S S, et al. Detailed modelling of a swirling coal flame[J]. Combust Sci. and Tech.,1997,123(1-6):1-22.
    [139]Fiveland W A, Jamaluddin A S. An efficient method for predicting unburned carbon in boilers[J]. Combust SciTechnol,1992,81(4-6):147-167.
    [140]康志忠,张伟,郭永红,等.高温空气煤粉直燃技术的数值模拟[J].工程热物理学报,2006,27(2):163-166.
    [141]郑昌浩,徐旭常.不同STOKES数和初始条件对炉内固体颗粒弥散的影响[J].中国电机工程学报,2003,23(1):171-176.
    [142]魏砾宏,姜秀民,张超群,等.超细化煤粉在热解条件下氮的迁移特性试验研究[J].中国电机工程学报,2006,26(7):62-66.
    [143]尚庆,张健,周力行.气相温度脉动对煤粉颗粒挥发分释放的影响[J].工程热物理学报,2005,26(6):1049-1052.
    [144]尚庆,张健,周力行.气流温度脉动对煤粉颗粒瞬时热解挥发速率的影响[J].燃烧科学与技术,2006,12(1):65-70.
    [145]周俊虎,扬卫娟,靳彦涛,等.三分仓空气预热器热力计算的研究[J].动力工程,2003,23(6):2811-2813
    [146]潘维,池作和,斯东波,等.200MW四角切圆燃烧锅炉改造工况数值模拟[J].中国电机工程学报,2005,25(8):110-115.
    [147]姜秀民,崔志刚,马玉峰,等.670t/h四角切圆锅炉反切消旋的数值模拟和工程实践[J].中国电机工程学报,2005,25(18):109-115.
    [148]王福军.计算流体力学分析[M].北京:清华大学出版社,2004:24-158.
    [149]梁晓宏,樊建人,岑可法.W型火焰煤粉锅炉炉内三维流动和燃烧过程的数值模拟[J].中国电机工程学报,1997,17(7):243-247.
    [150]朱珍锦,张长鲁.切圆锅炉炉内冷态模化理论研究[J].中国电机工程学报,2001,21(5):47-50.
    [151]Taylor C, Morgan K. Recent advances in numerical methods in fluids[M]. Swansea:Pineridge Press,1980.
    [152]王志刚,禚玉群,陈昌和,等.四角切圆锅炉流场伪扩散效应网格的研究[J].中国电机工程学报,2007,27(5):22-28.
    [153]Zhou Lixing. Theory and numerical modeling of turbulent gas-particle flows and combustion[M]. New York:Science Press, Florida, USA:CRC Press, Inc.1993.
    [154]潘维,池作和,李戈,等.四角切圆燃烧锅炉燃烧和污染物排放数值模拟[J].浙江大学学报,2004,38(6):761-764.
    [155]向军,熊友辉,郑楚光,等.PDF-Arrhenius方法模拟煤粉燃烧氮氧化物生成[J].中国电机工程学报,2002,22(3):156-160.
    [156]Kurose R, Makino H, Suzuki A. Numerical analysis of pulverized coal combustion characteristics using advanced low-NOx burner[J].Fuel,2004,83(6): 693-703.
    [157]丁宁,曹欣玉,杨亮,等.高长宽比六角切向锅炉缺角流场试验与数值模拟[J].中国电机工程学报,2005,25(1):152-157.
    [158]李永华,陈鸿伟,刘吉臻,等.800MW锅炉混煤燃烧数值模拟[J].中国电机工程学报.2002,22(6):101-104.
    [159]孙锐,李争起,孙绍增,等.四角切圆锅炉炉内煤粉燃烧过程数值模拟[J].机械工程学报,2006,42(8):107-113.
    [160]Jones J M, Patterson P M, Pourkashanian M, et al. Approaches to modelling heterogeneous char NO formation/destruction during pulverised coal combustion[J]. Carbon,1999,37(10):1545-1552.
    [161]李素芬,刘丽萍,陈贵军等,配风方式对四角切圆煤粉锅炉燃烧特性影响数值分析[J],大连理工大学学报,2010,50(4):491-496.
    [162]Raask E. Mineral impurities in coal combustion behavior, problem, and remedial measures[M]. New York:Hemisphere Publishing Corporation,1985.
    [163]王莹,秦裕琨,吴少华,等.炉内流场对水冷壁高温腐蚀影响的数值模拟分析[J].热能动力工程,2000,15(3):284-286.
    [164]周昊,岑可法,樊建人,等.弯头对煤粉浓淡分离器工作特性影响的数值模拟研究[J].中国电机工程学报,2003,23(1):132-135.
    [165]Ji, C.C.; Cohen, R.D,. An investigation of the combustion of pulverized coal-air mixture in different combustor geometries. Combustion and Flame,1992, 90(3-4),307-343.
    [166]高正阳,崔伟春,杨毅栎,等.燃尽风率变化对电站锅炉NOx排放特性影响的数值模拟[J].华北电力大学学报,2009,36(1):64-68.
    [167]Li Z Q, Wei F, Jin Y. Numerical simulation of pulverized coal combustion and NO formation[J]. Chemical Engineering Science,2003,58(23):5161-5171.
    [168]刘忠,阎维平,高正阳,等.超细煤粉的细度对再燃还原NO的影响[J].中国电机工程学报,2003,23(10):204-208.
    [169]曾汉才.大型锅炉高效低NOx燃烧技术的研究[J].锅炉制造,2001(1):1-11.
    [170]张晓辉,孙锐,孙绍增,等.立体分级燃烧对NOX排放特性的影响[J].机 械工程学报,2009,45(2):199-205.
    [171]Yin Chungen,Caillat S,Harion J L,et al. Investigation of the flow, combustion, heat-transfer and emissions from 609MW utility tangentially fired pulverized-coal boiler[J]. Fuel,2002,81(8):997-1006.
    [172]谭厚章,徐通模,余战英,等.四墙切圆燃烧方式壁面热负荷分布试验研究[J].工程热物理学报,2000,21(4):525-528.
    [173]BACHALO W D. Experimental methods in multiphase flows [J]. Int. J. Multi phase Flow,1994,20(Suppl.):261-295.
    [174]Zhang, J.; Nieh, S,. Comprehensive modeling of pulverized coal combustion in a vortex combustor. Fuel,1997,76(2):123-131
    [175]何佩鏊,赵仲琥,秦裕琨.煤粉燃烧器的设计与运行[M].北京:机械工业出版社,1987.
    [176]周武,庄正宁,刘泰生,等.切向燃烧锅炉炉膛结渣问题的研究[J].中国电机工程学报,2005,25(4):131-135.
    [177]谭厚章,余战英,徐通模,等.四墙切圆布置燃烧器炉内实际切圆大小的试验研究[J].热能动力工程,2004,19(2):157-159,166.
    [178]秦裕琨,朱群益,朱彤,等.水平浓淡风煤粉燃烧器在谏壁电厂的应用[J].中国电力,2000,33(11):14-16.
    [179]岑可法.锅炉燃烧试验研究方法及测量技术[M].北京:水利电力出版社,1987.
    [180]王国忠,吴少华,邱朋华,等.再燃风射流穿透性能的粒子动态分析试验研究[J].中国电机工程学报,2006,26(9):26-30
    [181]黄伟,熊蔚立,龚柏云.煤粉锅炉NOx影响因素的试验研究[J].电站系统工程,2001,17(6):355-358.
    [182]Arenillas A, Backreedy R I, Jones J M, et al. Modelling of NO formation in the combustion of coal blends[J].Fuel,2002,81(5):627-636.
    [183]阎维平,陈宝康,梁秀俊等.电站锅炉回转式空气预热器积灰检测模型研究[J].动力工程,2000,22:1708-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700