用户名: 密码: 验证码:
带钢冷连轧生产系统的动态智能质量控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对带钢冷连轧过程质量控制特点,论文提出了一种基于模糊逻辑推理和神经网络的动态智能质量控制器DIQC。论文的最初动机是希望寻找一种有效的控制方法,来解决复杂的、非线性的、系统间存在强交互作用的、时变的带钢冷连轧系统控制问题。这类过程往往受干扰与噪声的影响,具有很强的不确定性。
     对于带钢冷连轧系统,需要增加控制器的智能性,以提高控制器从过程中抽象出函数关系的能力,并且通过调整这些关系以提高系统的控制精度,也即提高控制器的学习与推理能力。论文的目的就是针对上述问题,综合运用模糊逻辑推理和神经网络方法,构建一种具有自组织自学习功能的控制器。论文利用过程输入----输出的测量数据和可调结构与参数的参考模型来实现上述在线智能控制器——DIQC。
     论文讨论了智能控制器DIQC构建过程中涉及到的多个具体问题,如采用在最大输出误差点添加新隶属函数的构造性动态结构的控制器以减轻偏差/方差两难问题、控制器的全局逼近性质、参数的局部性与线性化要求等。同时,论文也研究了其他一些重要问题,如为达到全局闭环稳定而需要的全局控制方案、激励持续条件、学习率的界定等。同时,对于泛化能力的可靠性、数据分布的优化策略、在线学习条件、控制器反馈结构等方面,论文也进行了讨论。论文也对模糊逻辑推理的一些有关问题,如去模糊化方法的选定、T-norm算子与隶属函数的选择、ε-完备性要求以及模糊相似程度判定方面进行了研究。
     论文将所提的动态智能质量控制方法应用于带钢冷连轧工业控制过程中。通过仿真实验证明该方法的实用性与优越性。主要包括带钢冷连轧过程的扭振控制、偏心与来料硬度干扰控制、厚度控制。通过与传统控制方法PID及另一常用动态构造神经网络控制器CCNC对照,证明了论文所提方法即使在存在干扰与噪声的动态过程中,也能获得较好的逼近效果。
In this thesis, a unified and comprehensive treatment of the neural network and fuzzy logical inference as the dynamic intelligent quality controller (DIQC) is provided to cope with the process of cold rolling mill. This work has been motivated by a need to develop the solid control methodologies capable of coping with the complexity, the nonlinearity, the interactions, and the time variance of the processes under control. In addition, the dynamic behavior of such processes is strongly influenced by the disturbances and the noise, and such processes are characterized by a large degree of uncertainty.
     Therefore, it is important to integrate an intelligent component to increase the control system ability to extract the functional relationships from the process and to change such relationships to improve the control precision, that is, to display the learning and the reasoning abilities. The objective of this thesis was to develop a self-organizing learning controller for above processes by using a combination of the fuzzy logic and the neural networks. An on-line, dynamic intelligent quality controller using the process input-output measurement data and the reference model with both structural and parameter tuning has been developed to fulfill the above objective.
     A number of practical issues were considered. This includes the dynamic construction of the controller in order to alleviate the bias/variance dilemma, the universal approximation property, and the requirements of the locality and the linearity in the parameters. Several important issues in the intelligent control were also considered such as the overall control scheme, the requirement of the persistency of excitation and the bounded learning rates of the controller for the overall closed loop stability. Other important issues considered in this thesis include the dependence of the generalization ability and the optimization methods on the data distribution, and the requirements for the on-line learning and the feedback structure of the controller. Fuzzy inference specific issues such as the influence of the choice of the defuzzification method, T-norm operator and the membership function on the overall performance of the controller were also discussed. In addition, theε-completeness requirement and the use of the fuzzy similarity measure were also investigated.
     Main emphasis of the thesis has been on the applications to the real-world problems such as the cold rolling mill industrial process control. The applicability of the proposed method has been demonstrated through the empirical studies on several real-world control problems of industrial complexity. This includes the torsional vibration, the eccentricity, the hardness and the thickness control in the cold rolling mills. Compared to the traditional linear controllers and the dynamically constructed neural network, the proposed DIQC shows the highest promise as an effective approach to such nonlinear multi-variable control problems with the strong influence of the disturbances and the noise on the dynamic process behavior.
引文
[1]陈启祥,帅奇.浅谈我国中厚板的设备及生产[J].冶金信息,2000,4:21.
    [2]李峰.谈我国中厚板轧机的技术改造[J].轧钢,1995,12(4):47.
    [3]李伏桃,陈岿,康永林译.板带连续轧制[NI].北京:冶金工业出版社,2002.
    [4]孙卫华,孙浩,孙玮.我国中厚板生产现状与发展[J].山东冶金,1999, 21(12):13.
    [5]孙一康.带钢冷连轧计算机控制[M].北京:冶金工业出版社,2002.
    [6]贺毓辛.现代轧制理论[M].冶金工业出版社,1993.
    [7]丁修现.轧制过程自动化[M].冶金工业出版社,1986.
    [8]唐谋凤.现代带钢冷连轧机自动化[M].冶金工业出版社,1995.
    [9]李庆尧等.带钢冷连轧机过程控制计算机及应用软件设计[M].冶金工业出版社,2002.
    [10]吴庆洪.冷轧数学模型研究及分布式冷轧计算机控制系统设计与仿真[D].博士学位论文,东北大学,1999.
    [11]王国栋,刘相华.金属轧制过程人工智能优化[M].北京:冶金工业出版社,2000.
    [12]汪祥能,丁修辊.现代带钢连轧控制[M].东北大学出版社,1996
    [13]刘雅超,张宇,方冰,王少奎,夏润林.攀钢冷轧厂酸轧联机过程控制计算机系统[J].冶金自动化,2003,增刊.
    [14] K. S. Narendra and S. Mukhopadhyay. “Adaptive control of nonlinear multivariable systems using neural networks"[J]. Neural Networks,1994,vol. 7, no. 5, pp. 737-752.
    [15]J. Eaton and J. Rawlings. “Feedback control of chemical processes using on-line optimization techniques"[J]. Computers in Chemical Engineering ,1990,vol.14, pp. 469-479.
    [16]谈芬芳.基于BP神经网络的冷轧轧制压力预报[D].武汉科技大学硕士学位论文,2005.
    [17]王国栋,刘相华.金属轧制过程人工智能优化[M].北京:冶金工业出版社,2000.
    [18]蔡自兴等.人工智能及其应用[M].北京:清华大学出版社,1996.
    [19]郭代仪等.神经网络及其在机械工程中的应用[M].重庆大学出版社,1998.
    [20]张立明.人工神经网络的模型及其应用[M].复旦大学出版社,1993.
    [21] Dieter Lindhoff, et.al.,Application of Neural Networks in Rolling Mill Nicklaus F[J]. Portmann, Automation. Iron & Steel Engineering, 1995, (2); 33-36.
    [22]Experience with the application of neural networks in rolling mill automation protman[C]. NF.Third advanced modeling and control seminar proceedings pennsylvnisa USA, Sept, 1994.
    [23] Predication of the mechanical properties of hot-rolled C–Mn steels using artificial neural networks liu ZY[J]. Journal of Materials Processing Technology FEB, 1996.
    [24] Pichler. R. On-line optimization of the rolling process-a case of neural networks Steel Times[C]. Sept, 1996.
    [25] S.Seinf .Neutral networks based identification methods to solve nonlinear problem in rolling mill subsystems Strub[C]. Intrnation Conference on Modeling of Metal Rolling Process London UK. Dec,1996.
    [26] Larkiola, J .Predication of rolling force in cold rolling by physical models and neural computing[J]. Journal of materials processing technology Espoo Finland, 1997.
    [27] 王邦文等.基于神经网络铝箔轧机轧制力模型[J].北京科技大学学报. 1997.4
    [28]刘相华等.利用人工神经网络对管材张减精度预测[J].钢铁,1995,30(11), 26-29.
    [29]孙一康等.神经网络在热连轧精轧机组轧制力预报的应用[J].钢铁, 1996, 31(1): 54-57.
    [30]蔡正等.神经网络结合数学模型预测带钢卷取温度[J].钢铁研究学报, 1998.6
    [31]刘相华等.基于神经网络在热连轧精轧机组轧制力高精度预报[J].钢铁, 1998, 33(3): 33-35
    [32]李俊.基于神经网络的热粘塑性材料本构关系的建立[J].钢铁研究.1998,9.
    [33]谭文等.基于神经元网络和粒子群优化算法的轧制工艺—性能优化[J].宽厚板,2007,(2):1-5.
    [34]R. M. Sanner and J.J. E. Slotine. “Function approximation, 'neural' networks, and adaptive nonlinear control"[C]. Proceedings Third IEEE Conference on Control Applications, 1994,vol. 2, pp. 1225-1232.
    [35]焦李成.神经网络计算[M].西安电子科技大学出版社,1993.
    [36] S. Chen and S. A. Billings. “Neural networks for nonlinear dynamic systems modelling and identi_cation"[J]. International Journal of Control, 2002,vol.56, no. 2, pp. 319-346.
    [37] J. B. Gomm, G. F. Page, and D. Williams (Eds.). Applications of neural networks to modelling and control[M]. Chapman and Hall,2003.
    [38] K. J. Hunt, R. Haas, and M. Brown. “On the functional equivalence of fuzzy inference systems and spline-based networks, " International Journal of Neural Systems[J]. 2004,vol. 6, no. 2, pp. 171-184.
    [39] G. W. Irwin, K. Warwick, and K. J. Hunt. Neural networks applications in control[C]. IEE, London,2005.
    [40] M. Khalid, S. Omatu, and R. Yusof. “Temperature regulation with neural networks and alternative control schemes"[J]. IEEE Transactions on Neural Networks, 2006,vol. 6, no. 3, pp. 572-582.
    [41] S.J. Kim, M. Lee, S. Park, S. Y. Lee, and C. H. Park. “Neural linearizing control scheme for nonlinear chemical processes," Computers in Chemical Engineering[J]. 2006,vol. 21, no. 2, pp.187-200.
    [42] W. T. Miller, R. S. Sutton, and P. J. Werbos. Neural networks for control[M]. MIT Press, London,2000.
    [43] D. Neumerkel, J. Franz, L. Kruger, and A. Hidiroglu. “Real-time application of neural model predictive control for an induction servo drive"[C]. Proceedings Third IEEE Conference on Control Applications,2004.
    [44] G. V. Puskorius and L. A. Feldkamp. “Neurocontroller of nonlinear dynamical system with Kalman filter"[J]. IEEE Transactions on Neural Networks, 2004,vol. 5, no. 2, pp. 279-297.
    [45] D. Sbarbaro-Hofer, D. Neumerkel, and K. Hunt. “Neural control of a steel rolling mill"[J]. IEEE Control Systems Magazine, 2003,vol. 13, no. 3, pp.69-75.
    [46] V. Vemuri. “Artificial neural networks in control applications"[J]. Advances in Computers, 2000,vol. 36, pp. 203-254.
    [47] K. Warwick, G. Irwin, and K. Hunt (Eds.). Neural networks for control and systems[C]. Peter Peregrinus, London,2002.
    [48] M. J. Willis, G. A. Montague, C. Dimassimo, M. T. Tham, and A. J. Morris. “Artificial neural networks in process estimation and control"[J]. Automatica, 2006,vol. 28, no. 6, pp. 1181-1187.
    [49] R. W. Zbikowski and K. J. Hunt. Neural adaptive control technology[M]. World Scientific,1996.
    [50] Y. Zhang, P. Sen, and G. E. Hern. “An on-line trained adaptive neural controller"[J]. IEEE Control Systems Magazine, 2006,vol. 15, no. 5, pp. 67-75.
    [51]薛定宇.控制系统计算机辅助设计[M].清华大学出版社,1993
    [52] L. A. Zadeh. “Fuzzy sets"[J]. Information and Control, vol. 8, pp. 338-353,1965.
    [53] C. C. Lee. “Fuzzy logic in control systems: fuzzy logiccontroller-parts I and II"[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1990,vol. 20, no. 2, pp. 404-435.
    [54] D. Driankov, H. Hellendoorn, and M. M. Reinfrank. An introduction to fuzzy control[C]. 2nd ed., Springer-Verlag, Berlin-Heidelberg, 1996.
    [55] K. ?str?m and B. Wittenmark. Computer controlled systems[J]. theory and design, 2nd ed., Prentice-Hall,1995.
    [56] T. J. Procyk and E. H. Mamdani. “A linguistic self-organizing process controller"[J]. Automatica, 1979,vol. 15, no. 1, pp. 15-30.
    [57] E. H. Mamdani and S. Assilian. “An experiment in linguistic synthesis with a fuzzy logic controller,"[J]. International Journal of Man-Machine Studies, 1975,vol. 7, no. 1, pp. 1-13.
    [58] J.S. R. Jang. “ANFIS: adaptive-network-based fuzzy inference systems," IEEE Transactions on Systems[J]. Man and Cybernetics, 2003,vol. 23, no.3, pp. 665-685.
    [59] J.S. R. Jang and C.T. Sun. “Neuro-fuzzy modelling and control"[C]. Proceedings of IEEE, 2006,vol. 83, pp. 378-406.
    [60] J.S. R. Jang, C.T. Sun and E. Mizutani. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence[M]. Prentice Hall,2002.
    [61] E. Khan and F. Unal. “Recurrent fuzzy logic using neural networks"[C]. Proceedings 1994 IEEE Nagoya World Wisepersons Workshop, 2004,pp. 48-55.
    [62] J. Nie and D. Linkens. Fuzzy-neural control: principles, algorithms and applications[M]. Prentice Hall,2006.
    [63] L. X. Wang. Adaptive fuzzy systems and control: design and stability analysis[M]. Prentice Hall, Englewood Cliffs, NJ,2004.
    [64] H. Berenji and P. Khedkar. “Learning and tuning fuzzy logic controllers through reinforcements"[C]. IEEE Transactions onNeural Networks, 2003,vol. 3,no. 5, pp. 724-740.
    [65] B. Kosko. Neural networks and fuzzy systems: a dynamical approach to machine intelligence[C]. Prentice Hall, Englewood Cliffs, NJ,2001.
    [66] C. J. Lin and C. T. Lin. “Reinforcement learning for an ART-based adaptive learning control network"[C]. IEEE Transactions on Neural Networks, 2005,vol. 7, no. 3, pp. 709-731.
    [67] D. Nauck and R. Kruse. “A fuzzy neural network learning fuzzy control rules and membership functions by fuzzy error backpropagation"[C]. Proceedings IEEE International Conference on Neural Networks (ICNN'03), 2003,pp.1022-1027.
    [68] A. Kandel and G. Langholz. Fuzzy control systems[M]. CRC Press, Boca Raton, FL,2003.
    [69] R. J. Marks (Ed.). Fuzzy logic technology and applications[J]. IEEE Press, New York,2004.
    [70] H. Nguyen, M. Sugeno, R. Tong, and R. Yager (Eds.). Theoretical aspects of fuzzy control[M]. John Wiley and Sons,2005.
    [71] W. Pedrycz. Fuzzy control and fuzzy systems[M]. 2nd ed. John Wiley and Sons, New York,2003.
    [72] M. Sugeno (Ed.). Industrial applications of fuzzy control[M]. Elsevier Science, Amsterdam,1985.
    [73] M. Sugeno. “Fuzzy control: principles, practice and perspectives"[C]. Proceedings IEEE International Conference on Fuzzy Systems, 2002,vol. 4, pp. 109-112.
    [74] J. Yen, R. Langari, and L. Zadeh (Eds.). Industrial applications of fuzzy logic and intelligent systems[C]. IEEE Press,2006.
    [75] M. Brown and C. Harris. Neurofuzzy adaptive modelling and control[M].Prentice-Hall,1994.
    [76] V. Gorrini and H. Bersini. “Recurrent fuzzy system"[C]. ProceedingsThird IEEE International Conference on Fuzzy Systems, 1994,pp.193-198.
    [77] J. S. R. Jang and C. T. Sun. “Functional equivalence between radial basis function networks and fuzzy inference systems"[J]. IEEE Transactions on Neural Networks, 1993,vol. 4, no. 1, pp. 156-159.
    [78] C. Harris, C. Moore, and M. Brown . Intelligent control: aspects of fuzzy logic and neural nets[M]. World Scientific, London,1993.
    [79] K. J. Hunt, D. Sbarbaro-Hofer, R. Zbikowski, and P. J. Gawthrop. “Neural networks for control systems - a survey”[J]. Automatica, 1992,vol. 28, no.6, pp. 1083-1112.
    [80] K. J. Hunt, G. Irwin, and K. Warwick (Eds.). Neural network engineering in dynamic control systems[C]. Springer-Verlag, London,1995.
    [81] K. Warwick, C. Kambhampati, P. Parks, and J. Mason. “Dynamic systems in neural networks"[C]. Neural network engineering in dynamic control systems, Springer-Verlag,London,1995, pp. 27-41.
    [82] K. S. Fu. “Learning control systems: review and outlook"[C], IEEE Transactions on Automatic Control. 1970,vol. 15, no. 2, pp. 210-221.
    [83] Y. Z. Tsypkin. Foundations of the theory of learning systems[M]. Academic Press, New York,1973.
    [84] G. N. Saridis. Self-organizing control of stochastic systems[M]. Marcel Dekker,2003.
    [85] G. N. Saridis. “Analytic formulation of the principle of increasing precision with decreasing intelligence for intelligent machines"[J]. Automatica, 1989,vol.25, pp. 461-467.
    [86] P. J. Antsaklis, K. M. Passino, and S. J. Wang. “An introduction to autonomous control systems"[J]. IEEE Control Systems Magazine, 1999,vol. 11,no. 4, pp. 5-13.
    [87] J. A. Farrell and W. Baker. “Learning control systems" in P. Antsaklis and K. Passino (Eds.) [C]. An introduction to intelligent and autonomous control, Kluwer Academic,2004, pp. 237-262.
    [88]胡守仁.神经网络应用技术[M].国防科技大学出版社,1993
    [89] P. Dorato and R. K. Yedavalli (Eds.). Recent advances in robust control[M]. IEEE Press, New York,1990.
    [90] C. H. Chen (Ed.). Fuzzy logic and neural networks handbook[M]. McGraw-Hill,2002.
    [91] D. A. Linkens and H. O. Nyongesa. “Learning systems in intelligent control: an appraisal of fuzzy, neural and genetic algorithm control applications"[C]. Proceedings IEE Part D - Control Theory and Applications, 2004,vol.143, no. 4, pp. 367-386.
    [92] P. J. Werbos. “Neurocontrol and elastic fuzzy logic: capabilities, concepts, and applications"[C]. IEEE Transactions on Industrial Electronics, 2001,vol.40, no. 2, pp. 170-180.
    [93] D. A. White and D. A. Sofge (Eds.). “Handbook of intelligent control: neural, fuzzy, and adaptive approaches"[M]. Van Nostrand Reinhold, NY,2000.
    [94] A. Guez, I. Rusnak, and I. Bar-Kana. “Multiple objective optimization approach to adaptive and learning control"[J]. International Journal of Control, 1992,vol. 56, no. 2, pp. 469-482.
    [95] K. S. Narendra and A. M. Annaswamy. Stable adaptive systems[M]. Prentice Hall, Englewood Cliffs, NJ,1989.
    [96] S. S. Sastry and M. Bodson. Adaptive control: stability, convergence and robustness[M]. Prentice Hall, Englewood Cliffs, NJ,1989.
    [97] F. C. Chen and H. K. Khalil. “Adaptive control of nonlinear systems using neural networks "[J]. International Journal of Control, 1992,vol. 55, no. 6,pp. 1299-1317.
    [98] J. A. Farrell. “On performance evaluation in on-line approximationfor control"[J]. IEEE Transactions on Neural Networks, 1998,vol. 9, no. 5, pp. 1001-1007.
    [99] S. Jagannathan and F. L. Lewis. “Multilayer discrete-time NN controller with guaranteed performance"[J]. IEEE Transactions on Neural Networks,2001, vol. 7, no. 1, pp. 1-24.
    [100] T. A. Johansen. “Fuzzy model based control: stability, robustness, and performance issues"[J]. IEEE Transactions on Fuzzy Systems,2004, vol. 2, pp. 221-234.
    [101] E. B. Kosmatopoulos, A. Chassiakos, H. Boussalis, M. Mirmirani, and P. A.Ioannou. “Neural network control of unknown systems"[C]. Proceedings International Joint Conference on Neural Networks (IJCNN'2000), pp. 943-948.
    [102] M. Liu. “Decentralized PD and robust nonlinear control for robot manipulators"[J]. Journal of Intelligent and Robotic Systems, 2002,vol. 20, pp. 319-332.
    [103] M. Liu. “Decentralized control of robot manipulators: nonlinear and adaptive approaches"[J]. IEEE Transactions on Automatic Control, 2006,vol. 44, no. 2, pp. 357-363.
    [104] M. M. Polycarpou. “Stable adaptive neural control scheme for nonlinear systems"[J]. IEEE Transactions on automatic Control,2004, vol. 41.
    [105] M. M. Polycarpou and P. A. Ioannou. “Identi_cation and control of nonlinear systems using neural networks models: design and stability analysis"[C]. Technical Report 91-09-01, Department of Electrical Engineering-Systems, University of South California, Los Angeles,1999.
    [106] G. A. Rovithakis and M. A. Christodoulou. “Adaptive control of unknown plants using dynamical neural networks "[J]. IEEE Transactions on Systems, Man and Cybernetics,2003,vol. 24, pp.400-412.
    [107] J.J. E. Slotine and R. M. Sanner. “Neural networks for adaptive control and recursive identification: a theoretical framework" in L. H. Trentelman and J. C. Willems (Eds.) [C]. Essays on control-perspectives in the theory and its applications, Birkhauser, Boston,2003, pp. 381-436.
    [108] J. T. Spooner and K. M. Passino. “Stable adaptive control using fuzzy systems and neural networks"[J]. IEEE Transactions on Fuzzy Systems, 2005,vol.4, no. 3, pp. 339-359.
    [109] K. S. Tsakalis and S. Limanond. Asymptotic performance guarantees in adaptive control[J]. International Journal of Adaptive Control and Signal Processing, 2004,vol. 8, pp. 173-199.
    [110] K. S. Tsakalis. “Performance limitations of adaptive parameter estimation and system identification algorithms in the absence of excitation"[J]. Automatica, 1996,vol. 32, no. 4, pp. 549-560.
    [111] A. Yesildirek and F. L. Lewis. “Feedback linearization using neural networks"[J]. Automatica, 1994,vol. 31, no. 11, pp. 1659-1664.
    [112] K. S. Tsakalis. “Bursting scenario and performance limitations of adaptive algorithms in the absence of excitation"[M]. Kybernetika, 1997,vol. 33, no. 1,pp. 17-40.
    [113] A. A. Feldbaum. Optimal control systems[M]. Academic Press, New York,1965.
    [114]李勇.冷连轧AGC系统控制算法研究[D].东北大学硕士学位论文,2005
    [115] L. Ljung. System identification: theory for the user[M]. Prentice Hall, Englewood Cliffs, NJ,1987.
    [116] T. S?derstro?m and P. Stoica. System identification[M]. Prentice Hall,1989.
    [117] D. G. Taylor, P. V. Kokotovic, R. Marino, and I. Kanellakopoulos. “Adaptive regulation of nonlinear systems with unmodelleddynamics"[J]. IEEE Transactions on Automatic Control, 1989,vol. 34, pp. 405-412.
    [118] S. Geman, E. Bienestock, and R. Doursat. “Neural networks and the bias/variance dilemma"[J]. Neural Computation, 1992,vol. 4, no. 1, pp. 1-58.
    [119] T. H?gglund and K. ?str?m. “Automatic tuning of PID controllers," In W. S. Levine (Ed.)[M]. The Control Handbook, CRC Press, 1996,pp. 817-826.
    [120] J. A. Farrell. “Stability and approximator convergence in nonparametric nonlinear adaptive control"[J]. IEEE Transactions on Neural Networks, 1998,vol.9, no. 5, pp. 1009-1020.
    [121] A. Zaknich and Y. Attikiouzel. “Application of artificial neural networks to nonlinear signal processing" in M. Palaniswami, Y. Attikiouzel, R. J. Marks, D. Fogel and T. Fukuda (Eds.) Computational intelligence, a dynamic system perspective[M]. IEEE Press, New York,1995.
    [122]周春光,梁艳春.计算智能[M].长春:吉林大学出版社,2001.
    [123]刘金琨.智能控制[M].北京:电子工业出版社,2005.
    [124] E. J. Hartman, J. D. Keeler, and J. M. Kowalski. “Layered neural networks with gaussian hidden units as universal approximators "[J]. Neural Computation, 1990,vol. 2, pp. 210-215.
    [125] K.I. Funahashi and Y. Nakamura. “Approximation of dynamical systems by continuous time recurrent neural networks"[J]. Neural Networks, 1993,vol.6, no. 6, pp. 801-806.
    [126] J. J. Buckley. “Sugeno type controllers are universal controllers"[J]. Fuzzy Sets and Systems, 1993,vol. 53, pp. 299-304.
    [127]刘曾良,刘有才.模糊逻辑与神经网络一理论研究与探索[M].北京航空航天大学出版社,1996.
    [128] M. M. Polycarpou and P. A. Ioannou. “Neural networks as on-lineapproximators of nonlinear systems"[C]. Proceeding of the American Control Conference,1992, vol. 1, pp. 7-12.
    [129] A. R. Barron. “Neural net approximation"[C]. Proceedings of the 7th Yale Workshop on Adaptive and Learning Systems, 1992,pp. 69-72.
    [130] A. R. Barron. “Universal approximation bounds for superspositions of a sigmoidal function"[J]. IEEE Transactions on Information Theory,1993, vol. 39, no. 3, pp. 930{945.
    [131] E. D. Sontag. “Neural network for control" in L. H. Trentelman and J. C. Willems (Eds.)[J]. Essays on control-perspectives in the theory and its applications, Birkhauser, Boston, 1993,pp. 339-380.
    [132] S. Mukhopadhyay and K. S. Narendra. “Disturbance rejection in nonlinear systems using neural networks"[J]. IEEE Transactions on Neural Networks, 1993,vol. 4, no. 1, pp. 63-72.
    [133]张光澄,王文娟,韩会磊,张雷.非线性最优化计算方法[M].北京:高等教育出版社,2005.
    [134] R. Battiti. “First and second order methods for learning: between steepest descent and Newton's method"[J]. Neural Computation, 1992,vol. 4, pp.141-166.
    [135] M. Moller. “Efficient training of feed-forward neural networks," in A.Browne (Ed.) Neural network analysis, architectures and applications[M]. Institute of Physics Publishing, Bristol, pp. 136-173.
    [136] D. Neumerkel, R. Shorten, A. Hambrecht. “Robust learning algorithms for nonlinear filtering"[C]. Proceedings 1996 IEEE International Conference on Acoustics, Speech and Signal Processing, 1996,vol. 6, pp. 3565-3568.
    [137] S. R. Quartz, T. J. Sejnowski, R. A. Barton, D. Bickerton, J. E. Black, W. T.Greenough, E. Blanzieri, J. J. Bolhuis, G. Dehaene-Lambertz, S. Dehaene,T. Elliott, N. R. Shadbolt, D. Estes,K. Bartsch, J. A. Feldman, B. L.Finlay, J. Foss, S. Grossberg, G. Haith, J. Hurford, S. Joseph, S. Kirby, A.Reid, G. M. Innocenti, M. H. Johnson, L. Bates, J. Elman, A. KarmiloffSmith, K. Plunkett, H. Kennedy, C. Dehay, D. Mareschal, T. R. Shultz, G.McCollum, D. Purves, M. E. J. Raijmakers, G. N. Reeke Jr., A. B. Scheibel,B. J. Scholl, O. Sporns, G. Szekely. “The neural basis of cognitive development: a constructivist manifesto"[J]. Behavioral and Brain Sciences,1997,vol. 20, no. 4, pp. 537-596.
    [138] A. Kossel, S. Lowel, and J. Bolz. “Relationships between dendritic fields and functional architecture in striate cortex of normal and visually deprived cats"[J]. Journal of Neuroscience, 1995,vol. 15, pp. 3913-3926.
    [139] R. Reed. “Pruning algorithms--a survey"[J]. IEEE Transactions on Neural Networks, 1993,vol. 4, no. 5, pp. 740-747.
    [140] M. C. Mozer and P. Smolensky. Skeletonization: a technique for trimming the fat from a network via relevance assessment[J]. Advances in Neural Information Processing Systems 1, 1988,pp. 107-115.
    [141] Y. Le Gun, J. S. Denker, and S. A. Solla. “Optimal brain damage" in D. S. Touretzky[J]. Advances in Neural Information Processing Systems, Morgan Kaufmann, San Mateo, CA, 1990,vol. 2, pp. 598-605.
    [142] B. Hassibi and D. G. Stork. “Second order derivatives for network pruning:Optimal Brain Surgeon"[J]. Advances in Neural Information Processing Systems 5, 1992,pp. 164-171.
    [143] S. J. Hanson and L. Y. Pratt. “Comparing biases for minimal network construction with back-propagation"[J]. Advances in Neural Information Processing Systems 1, 1989,pp. 177-185.
    [144] A. Krogh and J. A. Hertz. “A simple weight decay can improve generalization"[J]. Advances in Neural Information ProcessingSystems 4,1992, pp. 951-957.
    [145] Y. Chauvin. “A back-propagation algorithm with optimal use of hidden units" in D. S. Touretzky (Ed.)[J]. Advances in Neural Information Processing Systems, vol. 1, Morgan Kaufmann, San Mateo, CA,1989, pp. 519-526.
    [146] J. Sietsma and R. J. F. Dow. “Creating artificial neural networks that generalize"[J]. Neural Networks, 1991,vol. 4, no. 1, pp. 67-69.
    [147] J. K. Kruschke. “Creating local and distributed bottlenecks in hidden layers of back-propagation networks"[C]. Proceedings 1988 Connectionist Models Summer School, pp. 120-126.
    [148] D. Whitley and C. Bogart.“The evolution of connectivity: pruning neural networks using genetic algorithms"[C]. Proceedings International Joint Conference on Neural Networks, 1990,vol. 1, pp. 134-140.
    [149] T. Ash. “Dynamic node creation in backpropagation networks"[J]. Connection Science, 1989,vol. 1, no. 4, pp. 365-375.
    [150] M. Mezard and J. P. Nadal. “Learning in feedforward layered networks: the tiling algorithms"[J]. Journal of Physics, A, 1989,vol. 22, pp. 2191-2203.
    [151] M. Marchand, M. Golea, and P. Rujan. “A convergence theorem for sequential learning in two-layer perceptrons"[J]. Europhysics Letters, 1990,vol. 11, no. 6, pp. 487-492.
    [152] J. Nadal. “Study of a growth algorithm for feedforward neural network"[J]. International Journal on Neural Systems, 1989,vol. 1, pp. 55-59.
    [153] M. Frean. “The upstart algorithm: a method for constructing and training feedforward neural networks"[J]. Neural Computation,1990, vol. 1, pp. 198-209.
    [154] Y. Hirose, K. Yamashita, and S. Hijiya. Back-propagation algorithm which varies the number of hidden units[J]. Neural Networks, 1991,vol. 4, no. 1,pp. 61-66.
    [155] O. Fujita. “Optimization of the hidden unit function in feedforward neural networks"[J]. Neural Networks,1992, vol. 5, no. 5, pp. 755-764.
    [156] S. E. Fahlman and C. Lebiere. “The cascade-correlation learning architecture," in D. S. Touretzky (Ed.)[J]. Advances in Neural Information Processing Systems 2, Morgan Kaufmann, San Mateo, CA,1990, pp. 524-532.
    [157] J. Platt. “A resource-allocating network for function interpolation"[J]. Neural Computation, 1991,vol. 3, pp. 213-225.
    [158] B. Fritzke.“Growing cell structures - a self-organizing network for unsupervised and supervised learning"[J]. Neural Networks, 1994,vol. 7, no. 9, pp. 1441-1460.
    [159] M. Wynne-Jones. “Node splitting: a constructive algorithm for feedforward neural networks"[J]. Neural computing and Applications, 1993,vol. 1, pp.17-22.
    [160] S. Tan and Y. Yu. “Adaptive fuzzy modeling of nonlinear dynamical systems"[J]. Automatica, vol. 32, no. 4, 1996, pp. 637-643.
    [161] G. W. Ng. Application of neural networks to adaptive control of nonlinear systems[M]. John Wiley and Sons, New York, 1997.
    [162] G. A. Carpenter, S. Grossberg, and D. B. Rosen. “Fuzzy ART: fast stable learning and categorization of analog patterns by an adaptive resonance system"[J]. Neural Networks, 1992,vol. 3, pp. 698-712.
    [163] I. Rojas, J. Ortega, F. J. Pelayo, and A. Prieto. “Statistical analysis of the main parameters in the fuzzy inference process"[J]. Fuzzy Sets and Systems, 1999,vol. 102, pp. 157-173.
    [164] C. Ji and D. Psaltis. “Network synthesis through data-driven growth and decay"[J]. Neural Networks,2002, vol. 10, no. 6, pp. 1133-1141.
    [165] L. A. Feldkamp, G. V. Puskorius, L. I. Davis, and F. Yuan. “Strategies and issues in applications of neural networks"[C]. Proceedings IEEE International Conference on Neural Networks, 1992,vol. 4, pp. 304-309.
    [166] M. I. Jordan. “Attractor dynamics and parallelism in a connectionist sequential machine"[C]. Proceedings Eighth Annual Conference of the Cognitive Science Society, 1986,pp. 531-546.
    [167] T. Yabuta and T. Yamada. “Neural network controller characteristics with regard to adaptive control"[J]. IEEE Transactions on Systems, Man and Cybernetics,1992, vol. 22, no. 1, pp. 171-177.
    [168] D. Driankov, H. Hellendoorn, and R. Palm. “Some research directions in fuzzy control," in H. Nguyen, M. Sugeno, R.Tong, and R. Yager (Eds.)[M].Theoretical aspects of fuzzy control, John Wiley and Sons, 1995,pp. 281-312.
    [169] L.X.Wang. “Stable adaptive fuzzy control of nonlinear systems"[J]. IEEE Transactions on Fuzzy Systems, 1993,vol. 1, pp. 146-155.
    [170] C.Y. Su and Y. Stepanenko. “Adaptive control of a class of nonlinear systems with fuzzy logic"[J]. IEEE Transactions on Fuzzy Systems, 2006,vol. 2, pp.285-294.
    [171] L.X. Wang. “Design and analysis of fuzzy identifiers of nonlinear dynamic systems"[J]. IEEE Transactions on Automatic Control, 2003,vol. 40, no. 1,pp. 11-23.
    [172] V. A. Novikov. “Adaptation in automatic control systems of electrical drives" in A. B. Basharin, V. A. Novikov, and G. G. Sokolovskiy[J]. Control of electrical drives, Leningrad, Energoizdat, 1982,pp. 293-325.
    [173] B. Srinivasan, U. R. Prasad, and N. J. Rao. “Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models"[J]. IEEE Transactions on Neural Networks, 1994,vol. 5, no. 2, pp.178-184.
    [174] P. D. Wasserman. Advanced methods in neural computing[M]. Van Nostrand Reinhold, New York,1993.
    [175] L. Jin, P. Nikiforuk, and M. Gupta. “Fast neural learning and control of discrete-time nonlinear systems"[J]. IEEE Transactions on Systems, Man and Cybernetics, 1995,vol. 25, no. 3, pp. 479-488.
    [176] W. M. Lippe, T. Feuring, and A. Tenhagen. “A fuzzy-controlled delta-bar-delta learning rule"[C]. Proceedings IEEE World Congress on Computational Intelligence,1994, vol. 3, pp. 1686-1690.
    [177] M. M. Livstone, J. A. Farrell, and W. L. Baker. “A computationally efficient algorithm for training recurrent connectionist networks"[C]. Proceedings 1992 American Control Conference, 1992,vol. 1, pp. 555-561.
    [178] J. J. Saade. “A unifying approach to defuzzification and comparison of the outputs of fuzzy controllers"[J]. IEEE Transactions on Fuzzy Systems,1996,vol. 4, no. 3, pp. 227-237.
    [179]万百五.工业大系统优化与产品质量控制[M].北京:科学出版社.2003
    [180] H. Nomura, I. Hayashi, and N. Wakami . “A learning method of fuzzy inference rules by descent method"[C]. Proceedings First IEEE International Conference on Fuzzy Systems, 1992,pp. 203-210.
    [181] F. Guely and P. Siarry. “Gradient descent method for optimizing various fuzzy rule bases"[C]. Proceedings Second IEEE International Conference on Fuzzy Systems, 1993,pp. 1241-1246.
    [182]唐武军.酸轧联机项目的过程数据采集及分析系统[J].计算机应用,2005,43(4).
    [183] T. Harakawa, K. Yui, E. Sumitani. “Development of spindle torsionalvibration control system using observer for tandem cold mill in steel production process"[C]. Proceedings Automatic Control - 10th Triennial World Congress of the IFAC,1987,vol. 3, pp. 109-113.
    [184] T. Kawaguchi and T. Ueyama. Steel industry II: control system, Gordon and Breach Science Publishing[M]., New York,1989.
    [185] T. Harakawa and T. Kawaguchi. “Digital control in iron- and steelmaking processes"[J]. Automatica,1993,vol. 29, no. 5, pp. 1185-1202.
    [186]刘战英.轧钢[M].冶金工业出版社,1995.
    [187]梁国平.关于轧机的最佳负荷分配问题[J].钢铁,1980,15(1):42-48.
    [188] Y. Frayman and L. Wang. “Robust control of continuous polymerization reactor by dynamically constructed recurrent fuzzy neural network"[C]. Proceedings of the 1998 World Multiconference on Systemics, Cybernetics and Informatics (SCI'98), vol. 1 (4th International Conference on Information Systems, Analysis and Synthesis ISAS'98), 1998,pp. 646-651.
    [189]魏立群,陆济民.轧辊弹性压扁的计算[J].钢铁,1991,26(12):25.
    [190] J. F. Chicharo and T. S. Ng. “A roll eccentricity sensor for steel-strip rolling mills"[J]. IEEE Transactions on Industry Applications, 2000,vol. 26, no. 6,pp. 1063-1069.
    [191] W. J. Edwards, P. J. Thomas, and G. C. Goodwin. “Roll eccentricity control for strip rolling mills"[C]. Proceedings 10th IFAC World Congress,1999, vol. 2, pp. 661-669.
    [192] S. S. Garimella and K. Srinivasan. “Application of repetitive control to eccentricity compensation in rolling"[J]. Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control,2003, vol. 118, pp. 657-664.
    [193] M. J. Grimble. “Polynomial solution of the standard H1 control problem for strip mill gauge control"[C]. IEE Proceedings, partD-Control Theory and Applications, 2004,vol. 142, no. 5, pp. 515-525.
    [194] I. J. Ferguson and R. F. de Tina. “Modern hot-strip mill thickness control"[C]. IEEE Transactions on Industry Applications, 2000,vol. 22, no. 5, pp.934-940.
    [195] H. Katori, N. Yositani, T. Ueyama, and S. Nyu.“Application of two degree of freedom control system to automatic gauge control"[C]. Proceedings 2002 American Control Conference, 2002,vol. 1, pp. 806-810.
    [196] R. N. Middleton and G. C. Goodwin. Digital control and estimation[M]. Prentice-Hall, Englewood Cliffs, NJ. 2006
    [197] I. Postlethwaite and J. Geddes. “Gauge control in tandem cold rolling mills: a multivariable case study using H1 optimization"[C]. Proceedings 3rd IEEE Conference on Control Applications, 2004,vol. 3, pp. 1551-1556.
    [198] T. Fechner, D. Neumerkel, and I. Keller. “Adaptive neural network filter for steel rolling"[C]. Proceedings 1994 IEEE International Conference on Neural Networks,1994,vol. 6, pp. 3915-3920.
    [199]白埃民,周和敏.轧机与轧制条件对AGC稳定性和厚控的影响[J].轧钢, 2001, 18(6):11.
    [200]郝付国,白埃民,张进之等.动态设定型AGC在中厚板轧机上的应用[J].钢铁,1995,30(7):32.
    [201]孙复森,刘先礼,耿庆波等.绝对AGC技术在中厚板生产中的成功应用[C].2000年中厚板会议论文集,济南,2000:58.
    [202] K. Dutton and C. N. Groves. “Self-tuning control of a cold mill automatic gauge control system"[J]. International Journal of Control,1996,vol. 65, no.4, pp. 573-588.
    [203]扬节.轧制过程数学模型[M].冶金工业出版社,1993
    [204]陈建华,李冰,张殿华等.轧机弹跳量宽度修正[J].钢铁,2003, 38(1): 31.
    [205]王君,张殿华,王国栋.厚度计型和动态设定型AGC的统一性证明[J].控制与决策 2000,15(3):333.
    [206] Y. Frayman and L. Wang. “Dynamically constructed recurrent fuzzy neural network for cold rolling mill thickness control"[C]. Proceedings of 11th Australian Joint Conference on Artificial Intelligence (AI'98), 1998,pp. 15-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700