用户名: 密码: 验证码:
全自动尿液粒子分析系统核心技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尿沉渣检查是临床检查中心检验操作规程中的一项基本要求,根据尿液有形成分的形状、纹理等特征来识别尿液中的红细胞、白细胞、管型、上皮细胞、结晶等各种生理或病理成分,从而为医务人员对泌尿系统疾病做出正确的诊断提供帮助。常规体格检查或化学实验中不能发现的异常变化,常可通过尿沉渣有形成分的定性以及定量分析而确定。由此可见,尿沉渣的镜检具有非常重要的临床意义。为了提高结果的客观性,减少人为因素对结果的影响,提高尿沉渣检查的标准化,降低工作人员的劳动强度,研制全自动的尿沉渣分析仪具有重要的意义。
     论文研究了尿液有形成分的检测方法,利用数字图像处理技术和模式识别对尿沉渣图像的分割和有形成分的分类进行了深入研究。从图像特征出发,将多种处理算法有机的结合,通过计算和反复实验,提出了一套完整有效的对尿液有形成分进行分析和分类的处理方案。
     论文的主要任务是在全自动尿沉渣分析仪硬件系统的基础上,设计并实现其控制操作和管理软件,设计并实现对尿沉渣图像的自动识别算法。为了实现对尿液有形成分的准确分析,关键是对图像进行有效的分割。图像的质量是图像分割的基础,论文提出了基于主分量分析的自动聚焦算法,有效提高了获取的图像的质量。另外,分割前对图像的预处理可以有效降低分割的难度,提高分割的准确性。论文提出了基于局部均值拉伸的图像增强和光照不均匀消除及阴影抑制算法;然后采用细胞神经网络对图像进行分割,并结合形态学操作和基于对测点的区域二次分割方法,得到最终的有形成分分割结果;再提取有形成分区域的多项形状、统计和纹理参数,对各个区域进行描述;最后利用多BP神经网络组合得到的分级分类器对区域进行分类,从而得到识别的最终结果。
     论文工作主要有六个部分:
     第一部分对系统的硬件、软件系统和控制流程进行介绍。
     第二部分为对尿沉渣图像的预处理算法。论文提出了基于局部均值拉伸的图像增强算法,通过拉伸图像中各个点与其某邻域内灰度均值的差异达到增强图像对比度的目的;同时可以通过对邻域内均值的变换,消除图像中光照的不均匀和阴影。
     第三部分为系统中的自动聚焦算法。论文提出了基于主分量分析(Principal component analysis,PCA)的自动聚焦算法,算法通过对同一视野的对幅图像分别计算多个清晰度评价指标,然后通过PCA算法对这些指标进行融合,得到最终的清晰度评价。
     第四部分为尿沉渣图像的分割算法,论文利用细胞神经网络,设计合适的模板对图像进行分割;然后结合形态学操作,实现对图像的初步分割;最后论文提出了基于对侧点的区域二次分割算法,通过对区域边缘形状的分析,确定二次分割的位置,从而实现分离粘连细胞、消除区域毛刺的目的。
     第五部分为图像区域特征的提取算法,通过对图像特征及其分布曲线的分析,确定若干形状参数、统计参数和纹理参数作为对区域的描述,为分类作好准备。
     第六部分为有形成分的分类,介绍了BP神经网络和支持向量机的基础知识,通过对测试结果的初步分析,提出了分级的分类器组合方法,然后在每级中采用多个BP网络进行投票以提高分类的准确度,从而最终实现全自动的尿沉渣检查。
The examination of urinary sediment,which is a basic requirement of the operation regulations in the Center for Clinical Laboratories,can be used to distinguish the red blood cell[RBC],white blood cell[WBC],cast,epithelia, crystal,and various physiological or pathological particles in the urine according to morphological,textural,and other features of urinary sediment, and to help the doctors to diagnose diseases of urinary systems accurately. The abnormal changes of urinary systems may not be detected by conventional medical examination or chemical experiments,however,these changes can be distinguished by analyzing the urinary sedimentary components qualitatively and quantitatively.This shows that the examination of urinary sediment has an important clinical application.For the sake of improving the objectivity of the results,enhancing the standardization of the examination,and reducing the labor intensity of staff, it is of great significance to develop a fully automated urine analyzer.
     The detection methods of urinary sediment visible components are discussed and analyzed in the dissertation.The segmentation and classification of the urinary sediment imaging are discussed deeply by using digital image processing and pattern recognition methods.In terms of the characteristics of the urinary sediment images,a set of complete effective processing scheme for urinary sediment visible components is proposed by combing multi-processing arithmetic with amount of computing and trials.
     The major tasks of this dissertation are to design and implement the controlling operation and managing software of the urine analyzer,and to perform the algorithms for processing the urinary image and classifying the urinary visible components.In order to accurately analyze urinary visible component,the effective imaging segmentation play a key role.The quality of the images is the foundation of the imaging segmentation.In this dissertation, auto-focus method based on Principle Component Analysis[PCA]is firstly proposed,which can improve the images quality effectively.
     On the other hand,image preprocessing can decrease the difficulty and increase the accuracy of image segmentation.This dissertation proposes a preprocess algorithm which enhances the edges of objects by stretching the difference between every pixel and the local gray mean value and eliminates the disequilibrium of illumination by nonlinear transform of the local gray mean value.And then,combined with morphological operations and post-process of regions,the cellular neural network[CNN]is employed to get the final segmentation results.By analyzing the initial test results,a layered classifier with multi-BP networks combined is proposed to classify the objects which are described by certain morphological,statistical and textural features.
     This dissertation is composed by the following six parts:
     PartⅠ:An introduction to hardware system,software system and control flow of the analyzer.
     PartⅡ:The pre-processing algorithm to urinary sediment images.An image-enhancement algorithm is proposed,which can be used to enhance the contrast of images by stretching the difference between each point's gray value and the local gray mean value.Furthermore,the uneven illumination and shadow in the image can be eliminated by taking certain nonlinear transform to the gray mean values of the neighborhoods.
     PartⅢ:The auto-focus algorithm based on Principle Component Analysis is firstly proposed.Several indices of definition of every image in the same visual field are calculated in advance,and then are integrated by PCA algorithm to evaluate the definition of each image.
     PartⅣ:Methods of urinary images segmentation.By designing suitable CNN templates and combining with morphological operations,CNN is employed to complete the initial segmentation.And then,post-process linking the opposite points which are conformed by analyzing the shape of the edges is carried out to separate conglutinate cells and eliminate burrs of them.
     PartⅤ:The algorithm to extract the features of the regions.By analyzing the image features and their corresponding distribution curves,certain morphological,statistical and textural features are calculated to describe the regions,and therefore prepare for further classification.
     PartⅥ:The classification of the urinary sediment components.The basic knowledge of BP Neural Network and Support Vector Machines(SVM)are introduced at first.By analyzing the initial test results,a layered classifiers combination method is proposed.Finally,several BP networks are combined by voting in each layer to improve the accuracy.By combining these methods presented previously,the fully automatic urinary sediment examination is completely implemented.
引文
1.顾可粱,“尿有形成分的识别与检查方法的选择”,中华检验医学杂志,vol.28,no.6,2005,pp.572-575.
    2.张云虎,尿液沉渣彩色图谱,山东科学技术出版社,2003,p.222.
    3.李勇明,曾孝平,“一种基于组合分割思想的尿成渣图像分割新方法”,中国生物医学工程学报,vol.26,no.3,2007,pp.394-403.
    4.Y.M.Li and X.P.Zeng,"A new strategy for urinary sediment segmentation based on wavelet,morphology and combination method,"Computer Methods Programs Biomedicine,vol.84,no.2-3,2006,pp.162-173.
    5.李勇明,“尿沉渣图像自动识别算法的研究”,重庆大学博士学位论文.2007.
    6.沈美丽,“尿沉渣有形成分自动分类系统研究”,长春理工大学博士学位论文,2006.
    7.蔡永军,等,“遗传神经网络在尿沉渣识别中的应用”,医疗卫生装备,vol.11,2004,pp.1-2.
    8.S.MITSUYAMA,et al.,"Automatic classification of urinary sediment images by using a hierarchical modular neural network",1999,pp.680-688.
    9.J.Lakatos,et al.,"Data processing of digital recordings of microscopic examination of urinary sediment," Clinica Chimica Acta,vol.297,no.1-2,2000,pp.225-237.
    10.沈美丽,陈殿仁,“支持向量机在尿液有形成分分类中的应用.”电子器件,2006.
    11.P.Lancaster and K.Salkauskas,Curve and Surface Fitting,an Introduction,Academic Press,1986.
    12.K.Wu,et al.,"Live Cell ImageSegmentation",1995,pp.1-12.
    13.Z.Hui,et al.,"Image contrast enhancement by constrained local histogram equalization",Computer vision and image understanding,vol.73,no.2,1999,pp.281-290.
    14.R.C.GONZALEZ and R.E.WOODS,Digital image processing,Publishing house of electronics industry,2005.
    15.C.Wahlby,"Algorithms for applied digital image cytometry",The Faculty of Science and Technology,Upsala University,2003.
    16.J.Lindblad,"Development of Algorithms for Digital Image Cytometry",the faculty of science and technology,Upsala University,2002.
    17.S.Abutaleb,"Automatic thresholding of gray-level pictures using two-dimentional entropy of the histogram",Computer vision,Graphics and Image Processing,vol.47,1989,pp.22-32.
    18.M.PETROU and P.BOSDOGIANNI,"Image processing:the fundamentals",1999,pp.278-282.
    19.苏传朋,“尿沉渣显微图像有形成分自动分割算法研究”,浙江大学硕士学位论文,杭州,2006.
    20.Y.Nakagawa and A.Rosenfeld,"Some experiments on variable threshoiding",Pattern Recognition,vol.11,1979,pp.191-204.
    21.S.M.Dunn,et al.,"Local estimation of the uniform error threshold",1984,pp.742-745.
    22.R.M.Haralick and L.G.Shapiro,"Image segmentation techniques",Computer vision,Graphics and Image Processing,vol.29,1985,pp.100-132.
    23.J.N.Kapur,et al.,"A new method for gray-level picture thresholding using the entropy of the histogram",Computer vision,Graphics and Image Processing,vol.29,1985,pp.273-285.
    24.W.Tsai,"Moment-preserving thresholding:A new approach",Computer vision,Graphics and Image Processing,vol.29,1985,pp.377-393.
    25.J.Kittler and J.Illingworth,"Minimum error thresholding",Pattern Recognition,vol.19,no.1,1986,pp.41-47.
    26.P.K.Sahoo,"A survey of thresholding techniques",Computer vision,Graphics and image Processing,vol.41,1988,pp.233-260.
    27.L.H.Staib and J.S.Duncan,"Boundary finding with parametrically deformable models",Pattern Analysis and Machine Intelligence,IEEE Transactions vol.14,no.11,1992,pp.1061-1075.
    28.N.R.Pal and S.K.Pal,"A review on image segmentation techniques",Pattern Recognition,vol.26,no.9,1993,pp.1277-1294.
    29.M.Sezgin and B.Sankur,"Survey over image thresholding techniques and quantitative performance evaluation",Journal of Electronic Imaging,vol.13,no.1,2004,pp.146-165.
    30.M.Kass,et al.,"Snakes:Active Contour Models",International Journal of Computer Vision,1987,pp.321-331.
    31.M.Yide,et al.,"A new kind of impulse noise filer based on PCNN",2003,pp.152-155.
    32.M.Yide and L.Qing,"Automated image segmentation using improved PCNN model based on cross-entropy," ISIMP,2004,pp.743-746.
    33.MaYide,et al.,"Gaussian noise filter based on PCNN",2003,pp.149-151.
    34.L.O.CHUA and L.YANG,"Cellular neural networks:theory",IEEE Transactions on Circuits and Systems,vol.35,no.10,1988,pp.1257-1272.
    35.L.O.CHUA and L.Yang,"Cellular neural networks:applications",IEEE Transactions on Circuits and Systems,vol.35,no.10,1988,pp.1273-1290.
    36.P.KERESZTES,"An emulated digital CNN implementation",Journal of VLSI Signal Processing,vol.23,1999,pp.291-303.
    37.A.SLAVOVA,"Applications of some mathematical methods in the analysis of cellular neural networks",Journal of Computational and applied Mathematics,vol.114,2000,pp.387-404.
    38.T.YANG,"Multi-layer cellular neural networks:theory and application to modeling nitric oxide diffusion in nervous systems",International Journal of Computational Cognition,vol.1,no.1,2003,pp.1-23.
    39.M.Sonka,et al.,Image Processing,Analysis,and Machine Vision,人民邮电出版社,2002.
    40.S.X.B,et al.,"Robust image recognition by fusion of contextual information",Information Fusion,vol.3,2002,pp.277-287.
    41.徐伟栋,“乳腺X线图像的计算机辅助诊断技术研究”,浙江大学博士学位论文,杭州,2005.
    42.章毓晋,图像处理和分析,清华大学出版社,1998.
    43.H.Muller,et al.,"A Review of content-based image retrieval systems in medical applications.clinical benefitsand future directions",International Journal of Medical Informatics,vol.73,2004,pp.1-23.
    44.B.E.Boser,et al.,"A Training Algorithm for Optimal Margin Classifiers",1992,pp.144-152.
    45.C.I.C.BURGES,"A Tutorial on Support Vector Machines for Pattern Recognition",Data Mining and Knowledge Discovery,vol.2,1998,pp.121-167.
    46.V.N.Vapnik,"An Overview of Statistical Learning Theory",1999,pp.988-999.
    47.Y.Zhan and D.Shen,"An adaptive error penalization method for training an efficient and generalized SVM",The Journal of The Pattern Recognition Society,vol.39,2006,pp.342-350.
    48.杨斌,路游,“基于统计学习理论的支持向量机的分类方法”,计算机技术与发展,vol.16,no.11,2006,pp.56-58.
    49.陆荣秀,“支持向量机技术及其应用”,科技情报开发与经济,vol.16,no.14,2006,pp.159-161.
    50.M.T.Hagan,et al.,神经网络设计,机械工业出版社,2002.
    51.S.Haykin,Neural Networks:A Comprehensive Foundation,机械工业出版社.2004.
    52.H.Asoh and N.Otsu,"Nonlinear data analysis and multilayer perceptions",1989,pp.411-415.
    53.杨利英,等,“多分类器融合系统设计与应用”,计算机工程,vol.31,no.5,2005.pp.175-177.
    54.谢华,等,“医学图像识别中多分类器融合方法的研究进展”,国际生物医学工程杂志,vol.29,no.3,2006,pp.152-157.
    55.霍宏涛,数字图像处理,机械工业出版社,2003.
    56.贾永红,计算机图像处理与分析,武汉大学出版社,2001.
    57.刘榴娣,等,实用数字图像处理,北京理工大学出版社,2001.
    58.容观澳,计算机图像处理,清华大学出版社,2000.
    59.唐良瑞,等,图像处理实用技术,化学工业出版社.2002.
    60.王彦臣,“基于多尺度数字X光图像增强方法的研究”,中国科学院长春光学精密机械与物理研究所博士学位论文,长春,2005.
    61.张明慧,“数字CR医学图像自适应增强方法研究”,中国科学院长春光学精密机械与物理研究所博士学位论文,长春,2005.
    62.K.R.Castleman,Digitai Image Processing,清华大学出版社,2003.
    63.H.Zhu,et al.,"Image contrast enhancement by constrained local histogram equalization",Computer Vision and Image Understanding,vol.73,no.2,1999,pp.281-290.
    64.R.A.Hunune,"Image enhancement by histogram trans formation",Computer vision,Graphics and Image Processing,1977,pp.184-19S.
    65.F.C.A.Groen,et al.,"A Comparison of Different Focus Functions for Use in Autofocus Algorithms",Cytometry,no.6,198S,pp.81-91.
    66.J.H.Price and D.A.Gough,"Comparison of Phase-Contrast and Fluorescence Digital Autofocus for Scanning Microscopy",Cytometry,vol.16,1994,pp.283-297.
    67.L.F.McKeogh,et al.,"A Low-Cost Automatic translation and Autofocusing System for a Microscope",Meas.Sci.Technol.,vol.6,1995,pp.583-587.
    68.M.J.Russell and T.S.Douglas,"Evaluation of Autofocus Algorithms for Tuberculosis Microscopy",2007,pp.23-26.
    69.N.Kehtarnavaz and H.J.Oh,"Development and Real-Time Implementation of a Rule-based Auto-Focus Algorithm",Real-Time Imaging,vol.9,2003,pp.197-203.
    70.S.Allegro,et al.,"Autofocus for Automated Microassembly Under a Microscope",1996,pp.677-680.
    71.杨再化,等,“基于边缘特征提取的图像清晰度评价函数”,计算机工程与应用,2005,pp.35-37.
    72.W.Xiaoqiang,et al.,"Autofocus Methods for Automated Microscopy",Biomedical Photonics and Optoelectronic Imaging,Proceedings of SPIE,vol.4224,2000,pp.114-117.
    73.Z.Guanghua,et al.,"Research on Wavelet Based Autofocus Evaluation in Micro-vision",Chinese Journal of Aeronautics,vol.19,no.3,2006,pp.239-246.
    74.L.I.Smith,"A Tutorial on Principal Components Analysis",2002,pp.1-26.
    75.M.E.Tipping and C.M.Bishop,"Probabilistic Principal Component Analysis",Royal Statistical Society,vol.61,1999,pp.611-622.
    76.李奇,等,“数字图像清晰度评价函数研究”,光子学报,vol.31,no.6,2002,pp.736-738.
    77.朱孔凤,等,“一种新的图像清晰度评价函数”,红外与激光工程,vol.34,no.4,2005,pp.464-468.
    78.姜威,等,“一种改进的自动聚焦算法”,山东大学学报(理学版),vol.41,no.5,2006,pp.119-123.
    79.方以,等,“显微镜自动聚焦算法的研究”,仪器发表学报,vol.26,no.12,2005,pp.1274-1277.
    80.J.F.Canny,"A computational approach to edge detection",IEEE Transactions on Pattern Analysis and Machine Intelligence,vol.8,no.6,1986,pp.679-698.
    81.H.C.REDDY and G.S.MOSCHYTZ,"Unified cellular neural network cell dynamical equation using delta operator",1997.
    82.金城,“二维图像特征研究”,浙江大学博士学位论文,杭州,2006.
    83.宋余庆,“医学图像数据挖掘若干技术研究”,东南大学博士学位论文,南京,2004.
    84.张翔,“支持向量机及其在医学图像分割中的应用”,华中科技大学博士学位论文.武汉.2004.
    85.张志龙,“基于遥感图像的重要目标特征提取与识别方法研究”.国防科技大学博士学位论文,长沙,2005.
    86.许存禄,“图像纹理分析的新方法及其应用”,复旦大学博士学位论文,上海,2005.
    87.向世明,“纹理图像统计及其应用研究”,中国科学院计算机技术研究所博士学位论文,2004.
    88.杨小冈,等,“基于图像NMI特征的目标识别新方法”,计算工程vol.28,no.6,2002.
    89.陆方杰,夏顺仁,“基于归一化转动惯量的显微图像拼接算法”,中国医疗器械杂志,vol.31,no.6,2007,pp.404-406.
    90.C.Palm,"Color texture classification by integrative Co-occurrence matrices",Pattern Recognition,vol.37,2004,pp.965-976.
    91.U.Kandaswamy,et al.,"Efficient Texture Analysis of SAR Imagery",Transctions on Geoscience and Remote Sensing,vol.43,no.9,2005.
    92.L.-K.Sob and C.Tsatsoulis,"Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurrence Matrices",Transctions on Geoscience and Remote Sensing,vol.37,no.2,1993.
    93.E.S.Gadelmawla,"A vision system for surface roughness characterization using the gray level co-ocurrence matrix",NDT&F,International,vol.37,2004,pp.577-588.
    94.郑磊斌,等,“活体磁共振图像分析对骨质疏松的初步评估”,中国医疗器械杂志,vol.29,no.4,2005,pp.244-246.
    95.杨淑莹,图像模式识别,清华大学出版社,2005.
    96.杨建刚,人工神经网络实用教程,浙江大学出版社,2001.
    97.韩立群,人工神经网络理论、设计及应用—人工神经细胞、人工神经网络和人工神经系统,化学工业出版社,2002.
    98.A.Mennon,et al.,"Characterization of a Class of Sigmoid Functions with Applications to Neural Networks",Neural Networks,vol.9,1996,pp.819-835.
    99.J.L.J.Vriesema,et al.,"Neural Network-Based Digitized Cell Image Diagnosis of Bladder Wash Cytology",Diagnostic Cytopathoiogy,vol.23,no.3,2000,pp.171-179.
    100.M.Egmont-Petersen,et al.,"Image processing with neural networks—a review",Pattern Recognition,vol.35,2002,pp.2279-2301.
    101.S.Tamura and M.Tateishi,"Capabilities of a four-layered feedforward neural networks:four layers versus three",IEEE Transactions on Neural Networks,vol.8,no.2,1997,pp.251-255.
    102.T.H.Lee and Y.Yang,"Bagging binary and quantile predictors for time series",]Econometrics,vol.135,no.1-2,2006,pp.465-497.
    103.M.J.Ha,et al.,"MDR-bagging:The improvement of multifactor dimensionality reduction using bagging predictors with out-of-bag estimation",Genet Epidemiol,vol.31,no.6,2007,pp.629-630.
    104.L.Breiman,"Bagging Predictors",Machine Learning,vol.24,no.2,1996,pp.123-140.
    105.M.v.Erp and L.Vuurpijl,"An overview and comparison of voting methods for pattern recognition",2002,pp.
    106.杨强,“支持向量机的模型及其在图像分割中的应用”,重庆大学博士学位论文,重庆,2004.6.
    107.王亮申,“图像特征提取及基于内容图像数据库检索理论和方法研究”,大连理工大学博士学位论文,大连,2002.
    108.V.N.Vapnik,"The Natural of Statistical Learning Theory",1995.
    109.杨强,“支持向量机的模型及其在图像分割中的应用”,重庆大学博士学位论文,重庆,2004.
    110.张昕,“基于SVM方法的医学图像分类研究”,浙江大学硕士学位论文,杭州,2006.
    111.K.R.Muller,et al.,"An Introduction to Kernel-Based Learning Algorithms",IEEE Transactions on Neural Networks,vol.12,no.2,2001,pp.181-201.
    112.C.-W.Hsu and C.-J.Lin,"A Comparision of Methods for Multiclass Support Vector Machines",IEEE Transactions on Neural Networks,vol.13,no.2,2002,pp.415-425.
    113.Y.Freund,"Boosting a weak algorithm by majority",Inforrnation and Computation,vol.121,no.2,1995,pp.256-285.
    114.F.Roli,et al.,"Methods for designing multiple classifter system",2001,pp.78-87.
    115.L.Kuncheva,et al.,"Limits on the majority vote accuracy in classifier fusion",Pattern AnalApplic,vol.6,2003,pp.22-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700