用户名: 密码: 验证码:
耦合微腔共振器的光学特性及其快慢光的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年提出的耦合微腔共振器结构由于可实现光波的微控制及一些原子系统中的量子效应并易于芯片集成,因此具有重要的科学意义和实际应用价值。耦合微腔共振器通过改变共振器的参数可以使输入光波长得到改变,还可以在室温下实现可控慢光或快光传输,因此用耦合微腔共振器来产生慢光或快光具有实际可行的潜在优势。本论文在对耦合微腔共振器和快慢光知识做详细介绍的基础上,研究了耦合微腔共振器的光学特性和快慢光的产生,论文的主要内容和创新点:
     1.耦合微腔共振器和快慢光的基础知识,快慢光在国内外研究的进展以及耦合微腔共振器的目前进展和应用。
     2.耦合微腔共振器的研究方法及快慢光的基本理论和产生技术。
     3.用迭代方法分析了半无限环组成的耦合共振器光波导产生快光和慢光的情况,CROW的波导模式、色散脉冲传输以及倍频效应。
     4.用耦合矩阵方法分析了光在耦合微腔共振器中的传输情况,得出两个环组成的系统中慢光和快光产生的理论条件。
     5.研究波导耦合双微腔共振器系统在一个微共振器具有增益另一个具有损耗情况下的光学特性。发现当只有一个微共振器具有增益时,输出光谱从双波长对称共振到不对称共振的变化,以及增益在另一微共振器时Fano共振的反转。也研究了在这个系统中增强的耦合共振器诱导透明现象。
Coupled microcavity resonators referred recently has important scientific significance and practical application because of realizable micro control of light, quantum effect of several atomic systems, easily integrated in chip. Coupled microcavity resonators can change the input wavelength by changing the parameter of resonators; can control the propagation of slow light or fast light in room temperature, so there is potential advantage in practical application to create slow light and fast light by using coupled microcavity resonator. In this dissertation, optical characteristic and fast light and slow light of coupled microcavity resonators are studied, which is based on the particular introduction of basic information of coupled microcavity resonators and fast light and slow light. The main content and innovation are:
     1. The basic information of coupled microcavity resonators and slow light and fast light are introduced. The development of fast light and slow light in China and abroad is presented. The application and the development of coupled microcavity resonators are also introduced.
     2. The research methods of coupled microcavity resonators, techniques for creating fast and slow light and the basic theory of fast and slow light.
     3. Creating fast and slow light of semi-infinite microring CROW is also analyzed using iterative approach. Waveguide modes; dispersive pulse propagation and second-harmonic generation (SHG) of CROW are introduced.
     4. The pulse of propagation of coupled microcavity resonators is analyzed by matrix method. The condition for creating fast and slow light of two rings is concluded.
     5. We present a theoretical study on resonance control in a double-microcavity resonator system coupled to a waveguide with gain in one microresonator and loss in the other. We demonstrate the variation of the output spectra in the waveguide from initial double-wavelength-wide symmetric resonance to double-wavelength sharper asymmetric Fano profiles when gain is introduced in one of the two microresonators, as well as the inversion of the Fano resonance pattern when gain is introduced in the other microresonator. We also investigate the enhanced coupled resonator induced transparency effect in such a system.
引文
[1]沈京玲,孙立立,戴建华,光能够走多慢?——极慢光速研究若干进展,物理,2002,31(2):88~92
    [2]Joyce K.S.Poon, Jacob Scheure, Shayan Mookherjea, et.al., Matrix analysis of microring coupled-resonator optical waveguides, Optics Express, 2004, 12(1): 90~103
    [3]Jacob Scheuer,Joyce K.S.Poon,George T.Paloczi,et.al.,Coupled Resonator Optical Waveguide(CROWs),Advanced Optical and Quantum Memories and Computing Ⅱ,2005,5735:52~59
    [4]Jacob Scheuer, George T.Paloczi, Joyce K.S.Poon, et.al. Coupled resonator optical waveguides: Toward the slowing &Storage of Light, Optics &Photonics News, 2005, 02, 36~40
    [5] A. Melloni, F. Morichetti, Linear and nonlinear pulse propagation in coupled resonators slow-wave optical structures, Opt. &Quantum Electron., 2001, 37:525~532.
    [6]J. E. Hebner, P. Chak, S. Pereira, et.al.,Distributed and localized feedback in microresonator sequences for linear and nonlinear optics, J. Opt. Soc. Am. B,2004, 21, 1665~1673.
    [7] A. Yariv, Y. Xu. R. K. Lee and A. Scherer, Coupled resonator optical waveguides: a proposal and analysis, Opt.Lett. 1999, 24,711~713.
    [8]A. Mekis, J. C. Chen, I. Kurland, et.al. High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett., 1996, 77: 3787~3790.
    [9]M. F. Yanik, S. Fan, Stopping light all optically, Phys. Rev. Lett. 2004, 92:083 901(1) ~083 901(4).
    [10] Thomas Kamalakis,Thomas Sphicopoulos, Analytical Expressions for the Resonant Frequencies and Modal Fields of Finite Coupled Optical Cavity Chains,Journal of quantum electronics,2005,41(11):1419~1425
    [11] Y. Xu, R. K. Lee, A. Yariv, Propagation and second-harmonic generation of electromagnetic waves in a coupled resonator optical waveguides, J. Opt. Soc. Amer. B, 2000 , 17:387~399.
    [12]Shayan Mookherjea, Amnon Yariv, Coupled Resonator Optical Waveguides, IEEE Journal of selected topics in quantum electronics, 2002, 8(3): 448~456
    [13]C. M. de Sterke, Superstructure gratings in the tight-binding approximation, Phys. Rev. E, 1998, 57, (3): 3502~3509.
    [14]B. J. Eggleton, C. M. de Sterke, R. E. Slusher, Nonlinear propagation in superstructure Bragg gratings, Opt. Lett., 1996, 21(16):1223~1225.
    [15]Lene V H, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atom IC gas. C H, Nature, 1999, 397: 594~598.
    [16]赵丽娟,杨建,张开银等等,光速减慢,液晶与显示,2001,16(3):220~226
    [17]Robert Q.Boud,Daniel J.Gauthier, “Slow” and “Fast” Light,Elsevier Science, 2002,43,497~530
    [18] Dutton Zachary, Budde Michael, Christopher Slowe et .al., Observation of Quantum Shock Waves Created with Ultra-Compressed Slow Light Pulses in a Bose-Einstein Condensate. Science, 2001, 293(5530):663~668.
    [19] University of Rochester News.Light's Most Exotic Trick Yet: So Fast it goes ... Backwards? [EB/OL]. http://www.rochester.edu/news/show.php?id=2544,2006-05-11.
    [20]Chang-Hasnain Connie J.Slow Light:Physics and Applications[EB/OL]. http://photonics.eecs.berkeley.edu/web/slowlight.php.
    [21] Wang L J, Kuzmich A, Dogariu A. Gain-assisted superluminal light propagation.Nature, 2000, 406(6793):277~279.
    [1]Poon Joyce K S, Scheuer Jacob, Mookherjea Shayan et al. Matrix analysis of microring coupled-resonator optical waveguides. Optical Express, 2004, 12(1): 90~103.
    [2]Heebner J E, Boyd R W. “Slow” and “fast” light in resonator-coupled wave- guides. Journal of Modern Optics, 2002, 49(14-15): 2629~2636.
    [3]Fraile-Peláez F J, Prol M, Santos D J et al. Transient Analysis of a Nonlinear Fiber Ring Resonator.Applied Physics Letters, 1993, 63(11): 1477~1479.
    [4]Mookherjea Shayan, Cohen Donald S, Yariv Amnon. Nonlinear dispersion in a coupled-resonator optical waveguide.Optical Letters, 2002, 27(11): 933~935.
    [5] Orta R, Savi P, Tascone R et al. Synthesis of multiple-ring resonator filters for optical system,Photonics Technology Letters, 1995, 7(12): 1447~1449.
    [6]Bayindir M, Temelkuran B, Ozbay E,Tight-binding description of the coupled defect modes in three dimensional photonic crystals, Physical Reviewe Letters, 2000,84(10):2140~2143.
    [7]Jacob Scheuer,George T.Paloczi,Joyce K.S.Poon,et.al.,Coupled resonator optical waveguides:Toward the slowing &Storage of Light,Optics &Photonics News,2005,02,36~40
    [8]Michael David Stenner, Measurement of the information velocity in fast and slow light optical pulse propagation, Doctor, 2004, Department of Physics in the Graduate School of Duke University.
    [1] Ying Lu,Lijuan Xu, Yizhong Yu, et.al., Double-wavelength Fano resonance and enhanced coupled-resonator-induced-transparency in a double microcavity resonator system, Journal of the Optical Society of America A, 2006, 23:1718~1721
    [2] J.E.Heebner, R.Boyd, Enhanced all-optical switching by use of a nonlinear fiber ring resonator, Opt. Lett., 1999 24:847~849.
    [3] Y. Lu, J. Q. Yao, X. F. Li,et.al.,Tunable asymmetrical Fano resonance and bistability in microcavity resonator coupled Mach-Zehnder interferometer,Opt. Lett., 2005,22,3069~3071.
    [4] B. E. Little, S. T. Chu, H. A. Haus, et.al.,Microring resonator channel dropping filter, IEEE J. Lightwave Technol,1997 ,15, 998~1005.
    [5] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 1999, 24, 711~713.
    [6] K. Oda, S. Suzuki, H. Takahashi, et.al. An optical FDM. Distribution experiment using a high finesse waveguide-type double ring resonator, IEEE Photon. Technol.Lett. 1994, 6:1031~1034
    [7]. M. A. Borchers, C. Esen, G. Schweiger, Cascade lasing with spherical microparticles, Opt.Lett. 2001, 26: 346~348.
    [8] D. D. Smith, H. Chang, K. A. Fuller, et.al.,Coupled-resonator-induced transparency, Phys. Rev. A 2004,69: 063804.
    [9]L. Maleki, A.B. Matsko, A. A. Savchenkov, et.al. Tunable delay line with interacting whispering-gallery-mode resonators, Opt. Lett., 2004, 29:626~628
    [10]David D.Smith,Hongrok Chang,Kirk A.Fuller, Whispering-gallery mode splitting in coupled microresonators,J.Opt.Soc.Am.B,2003,20(9):1967~1974
    [11] Shayan Mookherjea, Amnon Yariv, Coupled Resonator Optical Waveguides, IEEE Journal of selected topics in quantum electronics, 2002, 8(3): 448~456
    [12] Y. Xu, R. K. Lee, A. Yariv, Propagation and second-harmonic generation of electromagnetic waves in a coupled resonator optical waveguides, J. Opt. Soc. Amer. B, 2000,17:387~399.
    [13] S. Mookherjea,A. Yariv, Optical pulse propagation in the tight binding approximation,Opt. Exp., 2001, 9(2):91~96.
    [14] Shayan Mookherjea, Donald S. Cohen, Amnon Yariv, Nonlinear dispersion in a coupled-resonator optical waveguide, Opt. Lett., 2002, 27(11):933~935.
    [15]Youg Xu,Reginald K.Lee,Amnon Yariv,Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide, J.Opt.Soc.Am.B,2000,17(3):387~400
    [16] O. Painter, J. Vuckovic,,A. Scherer, Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab, J. Opt. Soc. Am. B ,1999,16, 275~285.
    [1] Poon Joyce K S,Scheuer Jacob,Mookherjea Shayan et al. Matrix analysis of microring coupled-resonator optical waveguides.Optical Express,2004,12(1): 90~103.
    [2] Mookherjea Shayan, Yariv Amnon, Coupled Resonator Optical Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(3):448~456.
    [3]Yariv A, Xu Y, Lee R K et.al. Coupled-resonator optical waveguide: a proposal and analysis, Optical Letters, 1999, 24(11):711~713.
    [4]Mookherjea Shayan,Yariv Amnon,Optical pulse propagation and holographic storage in a coupled-resonator optical waveguide,Physical Review E,2001,64(6): 066602-1~ 066602-6.
    [5]Chen Y, Blair Steve.Nonlinearity enhancement in finite coupled-resonator slow-light waveguides, Optical Express, 2004, 12(15): 3353~3366.
    [6]Mookherjea Shayan,Yariv Amnon,Second-harmonic generation with pulses in a coupled-resonator optical waveguide,Physical Review E,2002,65(2): 026607-1~ 026607-8.
    [7]Mookherjea Shayan, Cohen Donald S, Yariv Amnon, Nonlinear dispersion in a coupled-resonator optical waveguide, Optical Letters, 2002, 27(11): 933~935.
    [8]Little B E,Chu S T,Pan W et al,Vertically coupled glass microring resonator channel dropping filters,Photonics Technology Letters,1999,11(2): 215~217.
    [9] Heebner J E, Boyd R W. “Slow” and “fast” light in resonator-coupled waveguides,Journal of Modern Optics,2002,49(14-15): 2629~2636.
    [10] Smith D D, Chang H. Coherence Phenomena in Coupled Optical Resonators, Journal of Modern Optics, 2004, 51(16-18):2503~2513.
    [11]Mookherjea Shayan, Yariv Amnon,Optical pulse propagation and holographic storage in a coupled-resonator optical waveguide,Physical Review E,2001,64(6): 066602-1~066602-6.
    [12]Mookherjea Shayan,Yariv Amnon,Second-harmonic generation with pulses in a coupled-resonator optical waveguide,Physical Review E,2002,65(2): 026607-1~ 026607-8.
    [13]DAVID D.SMITH, HONGROK CHANG, Coherence Phenomena in Coupled Optical Resonators, Journal of Modern Optics, 51(16)2503-2513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700