用户名: 密码: 验证码:
建筑火灾模拟试验智能测控系统开发和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾,特别是建筑火灾对人类生命财产的损害是有目共睹的。为了研究建筑火灾发生、发展以及产生破坏的机理,有必要建立一套建筑火灾模拟试验系统对各种建筑构件在明火的作用下力学性能变化进行模拟测试。而测试的模拟升温过程必须严格符合ISO834国际标准。本论文围绕“建筑火灾模拟试验智能测控系统开发和研究”开展了深入的理论和试验研究工作。主要研究内容包括:
     (1)开发设计了一套包括立式炉、卧式炉、液化气供气系统、点火装置和建筑构件加压装置的火灾模拟试验系统。其创新性特点一是采用液化气加热方式,最大限度地模拟了实际建筑火灾明火升温的特性;二是研制的智能测控系统,满足了建筑火灾模拟试验对多种类建筑构件测试的机动性、综合性和可靠性要求。
     (2)提出了一个适合火灾模拟试验系统炉温估计的基于主元分析和径向基函数神经网络的软测量模型,解决了火灾模拟试验中炉温在线估计的难题。对于总共采集的119组18路数据,将80组用于主元分析和RBF神经网络初试化训练,确定较为理想的中心距离、权值和隐层数,经MATLAB程序对余下的39组数据用训练好的软测量模型进行测试,构建了在线的炉温估计模型。给出该软测量模型与加权平均方法的估计结果对比,表明了论文设计的软测量模型在炉温估计精度和稳定性方面比常规的加权平均方法有着明显优越性。
     (3)提出了一种新颖的基于模糊专家PID控制的复合智能控制器结构。深入研究了PID控制器3个参数K_P、K_I、K_D与控制器特性动态和稳态特性的关系,提出了智能在线整定K_P、K_I、K_D参数的方法。进行了专家模糊PID控制器同常规PID控制器控制效果对比试验,从给出的5个时段的对比曲线可以看出,设计出的智能专家PID控制比常规PID控制在静态误差和稳定性等方面有着明显的优势。给出了炉温升温实测结果同标准值的对比曲线。证明炉温控制效果完全符合国际标准ISO834要求,控制精度和稳态误差等性能指标优于设计要求。
     (4)提出了一种融合热电偶、热电阻和DS18B20数字温度传感器等不同等级温度参数的虚拟仪器数据采集系统结构。研制开发了兼具串行通信和增强型EPP并行通信模式带多台单片机和工控机硬件结构的54路温度采集处理系统。
     (5)开发了应用Visual Basic 6.0、单片机汇编语言、FRANKLIN C语言和MATLAB语言等多开发平台工具的独特的软件系统。整个软件系统包括炉温数据采集软件、通信接口软件、软测量软件、神经网络的MATLAB训练软件、智能模糊专家PID控制器软件以及试验流程管理软件等子系统。
     (6)提出了一种预埋温度传感器进行温度实测并同温度场计算方法进行对比的新颖的试验研究方法。从理论和试验角度分析了建筑构件在火灾模拟试验炉中的温度场分布,并同测试温度数据进行比较,给出了各测点的对比曲线结果。证实了所开发的建筑火灾模拟试验系统进行建筑构件火灾性能测试的有效性、实用性和先进性。
The damage to the human lives and properties of fire especially building fire is obvious to all. In order to study the happening, developing as well as the destruction mechanism of building fire, it is necessary to establish a set of building fire simulated experiment system, which can simulated test the mechanics performance change of each kind of building component under the action of flame. It must be according to the international standard ISO834 for the system to add fire load to building component in the heating process. Particular theoretic and experiment research tasks are carried on the study and development of a building fire simulated experimental intelligent measurement and control system in this dissertation. The primary research work include:
     (1) A buildings fire simulated experimental system including a vertical furnace, a horizontal furnace, a set of liquefied petroleum gas system and a device to add pressure to experiment building component is designed. There are two innovation characteristics: on the one hand, using liquefied petroleum gas to furthest simulate the flame heating process of building fire; and on the other hand, the measurement and control system can satisfy the flexible, comprehensive and reliable test speciality of building fire simulation test, which requires to the multi-types building component.
     (2) A soft measurement modeling based on principal component analysis and RBF neural network is introduced, which adapts the furnace temperature estimate of fire simulated experiment system and can solve this puzzle in fire simulated experimental. For the collected 119 groups 18 loops data, 80 groups are used in PCA and RBF neural network preliminary discipline to determinate appropriate center distance, weight and hidden layer. The other 39 groups data are used to test the disciplined soft measurement model to complete an on-line furnace temperature estimate model. The comparison result of this model with the weight average method illuminates that the model has obvious advantages in the precision and stability of furnace temperature estimate.
     (3) A new multi intelligent controller based on Fuzzy expert PID control is presented. The relation between 3 PID controller parameters (K_p, K_I, K_D) and the dynamic or stability characteristic of PID controller is thoroughly studied, and a method to intelligent on-line adjust K_p, K_I, K_D is developed in the dissertation. After the comparsion experiment between Fuzzy expert PID and general PID, 5 curves are shown in different time of the heating process, which indicate that the Fuzzy expert PID has obvious advantages in control precision,stability and so on comparing with general PID At last, 5 comparison curves of furnace temperature measured in real time to the standard value are given, and these curves indicate that the control result for fumace temperature is completely according with the demand of the international standard ISO834, and what is more, the performance index such as control precision, stability error and so on are much more excellent than the design request.
     (4) A data collection stytem with virtual instrument constructure is introduced, which include different type temperature sensors such as thermocouple, thermal resistance and DS18B20 digital thermometer. 54 channel temperature collecting and processing system is developed, and a particular measurement and control hardware constructure is designed, which contain a RS-485 serial interface for MCUs communicating and a EPP parallel interface between MCU and IPC.
     (5) The software system is developed by a multi-platform tool including Visual Basic 6.0, MCU assemble language, FRANKLIN C and MATLAB. The system is consist of a furnace temperature data collecting software, a communication software, a soft measurement software, a neural network training software based on MATLAB, a Fuzzy expert PID controller software and an experiment process management software.
     (6) A novel experiment method is put forward by comparing embedding temperature sensors into test object to measure temperature with temperature field calculationan. The temperature field distribution of building component in the fire simulated experiment furnace is analyzed both from theoretic and experiment aspects. As a result, curves of all measuring data comparing with analysis and calculation data are given. The result proves that the building fire simulated experiment system developed by the author have availability, practicability and advancement in building component anti-fire performance test.
引文
[1] 范维澄.火灾科学导论.武汉:湖北科学技术出版社,1993
    [2] Yii E H, Fleischmann Charley M, Buchanan, A.H. Experimental study offire compartment with door opening and roof opening: Fire and Materials, 2005,29(5): 315-334
    [3] Svensson S. Experimental study of fire ventilation during fire fighting operations. Fire Technology, 2001, 37(1): 69-85
    [4] Cheng Donghua, Fan Xiaofang, Cheng Wei.Study on the smoke model of fire based on the image detection. Optical Technique, 1999(1):58-60
    [5] 王秋衡.湖南衡阳特大建筑火灾事故的剖析.建筑安全,2004(4):38~39
    [6] 高洪菊.建筑火灾中影响烟气流动过程的基本要素.建筑防火,2003(5):14~16
    [7] 杨彦克,郑盛娥.混凝土结构火灾损伤评估.四川建筑科学研究,1991(4):22~27
    [8] 闵明保,等.建筑物火灾后结构受损分析及诊断方法的探讨.消防科技,1991(2):5~8
    [9] Lada P V, Sidate D E. Neural networks based modeling in geomechanics. Proc 8 Int Conf Comput Methods and Geomech, 1994(1): 153-160
    [10] Georgali B, Tsakiridis P E. Microstructure of fire damaged concrete: A case study. Cement and Concrete Composites,2005,27(2): 255-259
    [11] 段其昌,何强,陈卓.基于Internet.的火灾报警系统的实时性策略.重庆大学学报,2004,27(9):52~55
    [12] 胡隆华,霍然,王浩波.在我国开展性能化防火分析与设计的若干思考.消防技术与产品信息,2003(3):3~5
    [13] Yu Feng. Experimental study on behaviors of reinforced concrete slabs after fire. Progress in Safety Science and Technology, Volume 4:Proceedings of International Symposium on Safety Science and Technology, PART A, 2004:1252-1256
    [14] Qiang Xu. Experiment study of radiant heat blocking function of free water mist suppressing small scale pool fire. Proceedings of SPIE-The International Society for Optical Engineering, Thermosense ⅩⅩⅥ, 2004:524-531
    [15] Harmathy T Z. Thermal properities of concrete at elevated temperature. Journal of materials, 1970,5(1):47-74
    [16] Yang Kuochen, Chen Shengjin, Lin Cunci. Experimental study on local buckling of fire-resisting steel columns, under fire load. Journal of Constructional Steel Research,2005, 61(4): 553-565
    [17] Song Weiguo, Wu Longbiao, Lu Jiecheng. Study of the Image Fire Detection Method. Proc of Int Symp Saf Sci Technol ISSST, 1998:538-543
    [18] 范维澄,闵桂荣.中国基础科学·科研基地,2004(4):37~40
    [19] 李卫,过镇海.高温下混凝土的强度和变形性能的试验研究.建筑结构学报,1993,14(1):8~16
    [20] 过镇海,李卫.混凝土在不同应力—温度途径下的试验和本构关系.土木工程学报,1993,26(5):58~69
    [21] 南建林,过镇海,时旭东.混凝土的温度—应力耦合本构关系,清华大学学报,1997,37(6):87~90
    [22] 时旭东,过镇海.钢筋混凝土梁在不同荷载—温度途径下的性能.工程力学(增刊),1995(2):705~711
    [23] 时旭东,过镇海.不同保护层厚度的钢筋混凝土梁的耐火试验研究.工业建筑,1996,26(9):12~14
    [24] 时旭东,过镇海.高温下钢筋混凝土连续梁的受力性能试验研究.土木工程学报,1997,30(4):26~34
    [25] 杨建平,时旭东,过镇海.两面高温下钢筋混凝土压弯构件的试验研究,建筑结构,2000,30(2):23~27
    [26] 钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究.同济大学学报,1990,18(3):35~39
    [27] 朱伯龙,刘祖华.建筑改造工程学.上海:同济大学出版社,1998
    [28] 陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究.土木工程学报,1993,26(3):47~54
    [29] 朱伯龙.土木工程防灾国家重点实验室论文集.上海:同济大学出版社,1995
    [30] 朱伯龙.结构灾害学与结构改造学.四川建筑科学研究,1996(1):28~29
    [31] 徐或.火灾高温后钢筋力学性能的试验研究:[硕士学位论文].长沙:长沙铁道学院,2000
    [32] 刘静.火灾对钢筋混凝土简支梁性能影响的试验研究:[硕士学位论文].长沙:中南大学,2003
    [33] 朱玛.火灾高温后混凝土力学性能的试验研究:[硕士学位论文].长沙:长沙铁道学院,2000
    [34] Zhao W D, Wu M. Application of Evolutionary Neural Network to Damage Diagnosis of Engineering Structures. In: Progress in Safety Science and Technology Vol.Ⅳ, Part B. Wang Y J, Huang P, Li S C, eds. Beijing/New York: Science Press 2004.10:2465-2470
    [35] 赵望达,李昀.火灾损伤后混凝土强度智能超声诊断仪的设计,计算机测量与 控制,2004,12(7):698~700
    [36] 黎燕,赵望达,等.火灾试验构件的图像处理.基础自动化,2002,9(2):56~58
    [37] 过镇海,时旭东.钢筋混凝土的高温性能及其计算.北京:清华大学出版社,2003
    [38] 刘勇求,赵望达,贺毅.虚拟仪器技术应用现状及发展趋势,自动化博览,2004,21(5):12~14
    [39] 江见鲸,徐志胜.防灾减灾工程学.北京:机械工业出版社,2005:360~374
    [40] 高立堂,董毓利,袁爱民.无粘结预应力混凝土连续板中跨受力试验研究.建筑结构,2004,34(8):49~52
    [41] Li Y, Zhao W D,Gang F C. Image processing system of building construction safety property test in fire experiment. In: Progress in Safety Science and Technology Vol.Ⅲ, Part B. Huang P, Wang Y J,Li S C,Qian X M, eds. Beijing/New York:Science Press 2002.10:1223-1227
    [42] A Sinha, A P Chandrakasan. Dynamic power management in wireless sensor networks. IEEE Design and Test of Computers Magazine,2001,18(2)62-74
    [43] 滕召胜,罗隆福,童调生.智能检测系统与数据融合.北京:机械工业出版社,2000:1-9
    [44] 沙占友,马洪涛,葛家怡.基于网络的智能精密压力传感器原理与应用[J].半导体技术,2003(7):23-26
    [45] 胡维刚.罗斯蒙特公司3051系列压力及差压变送器的使用体会[J].石油化工自动化,1999(2):61-62
    [46] 赵望达.DS18××数字温度监测传感器.世界电子元器件,2001(2):67~69
    [47] Kim Yoonjun, Ghaboussi Jamshid. New method of reduced order feedback control using genetic algorithms. Earthquake Engineering & Structural Dynamics, 1999,28(2): 193-212
    [48] Sahojing S, Yueke W. RS-485 based time division field bus for measure and control. Shanghai: Proceedings of the International Symposium on Test and Measurement, 2001, 2:1223-1226
    [49] 颜世钢.隧道窑温度模糊计算机控制系统.计算机自动测量与控制,2000,8(3):22~24
    [50] 姚维,颜文俊,诸静.水泥回转窑分解炉温度的模糊控制.自动化仪表,2001,22(2):35~37
    [51] 滕召胜,郑舜生.热处理炉温度智能测控专家系统的设计与实现.金属热处理学报,1999,20(3):25~30
    [52] 张持健.高精度模糊PID控制器以及在温度控制中的应用.自动化仪 表,2002,23(7):21~23
    [53] 尹朝庆,尹皓.人工智能与专家系统.北京:中国水利水电出版社,2002
    [54] 张恩勤,施颂椒.模糊控制与PID控制方法比较.上海交通大学学报,1999,33(4):501~503
    [55] 胡晚霞.专家式PID自整定控制器的设计和实现.自动化仪表,1996,17(3):21~25
    [56] 李士勇.Fuzzy—PID复合控制的数字仿真.计算机仿真,1998(1):16~22Rolf
    [57] 顾勤龙,姚明海,张芮.基于变尺度馄饨优化方法的PID控制器设计.控制工程,2003,10(2):149~152
    [58] 赵望达,徐志胜,吴敏,等.火灾模拟实验智能测控系统.中南大学学报(自然科学版).2005,36(6):1054-1058
    [59] Xiong Zhihua, Zhu Feng, Shao Huihe. Application of thermal parameter soft sensor in power plant. Journal of Southeast University (English Edition), 2005,21(1): 44-47
    [60] Bo C M, Li J, Zhang S, et al. The Application of Neural Network Soft Sensor Technology to an Advanced Control System of Distillation Operation. Portland: Proceedings of the International Joint Conference on Neural Networks, 2003, 2: 1054-1058
    [61] Xiong Zhihua, Zhang Jicheng, Shao Huihe. GP-based soft sensor modeling. Journal of System Simulation, 2005, 17(4):793-794
    [62] Casali A, Vallebuona G., Bustos M, et al. Soft-sensor for solid concentration in hydrocyclone overflow. Minerals Engineering, 1998, 11(4):375-383
    [63] 王华忠,俞金寿.核函数方法及其在软测量建模中的应用研究.自动化仪表,2004,25(10):22~25
    [64] Karhuren J. Generalization of PCA, optimization problems and NN. Neural Networks, 1995(8): 549-562
    [65] Kaama Arto, Toivanen Pekka, Mikkonen Kimmo. PCA transform in watermarking spectral images. Journal of Imaging Science and Technology, 2004, 48(3):183-193
    [66] Ghaboussi J,Sidata D E. New nest adaptive neural networks(NANN) for constitution modeling.Computer and Geotechnics, 1998,22(1): 29-52
    [67] 李士勇.模糊控制、神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1996
    [68] 诸静.模糊控制原理与应用.北京:.机械工业出版社,1995
    [69] 李俊,刘小宁.智能控制中模糊控制的应用与发展.自动化与仪表,2000,15(1): 1~3
    [70] 胡包钢,应浩.模糊PID控制技术研究发展回顾及其面临的若干重要问题.自动化学报,2001,27(4):567~584
    [71] Tso S K, Fung Y H. Methodological Development of Fuzzy-logic Controllers from Multivariable Linear Control.IEEE Trans Systems,Man and Cybemetics.1997,27(3): 566~572
    [72] 赵望达,徐志胜,裘志浩.建筑构件火灾试验过程检测和控制系统设计与开发,实验室研究与探索,2004(7):11~13
    [73] 赵望达,鲁五一,徐志胜.模糊控制在尾砂胶结充填过程控制中的应用.电子技术应用,2000,26(2):26~28
    [74] 丛爽.神经网络、模糊系统及其在运动控制中的应用.合肥:中国科学技术大学出版社,2001
    [75] 张曾科.模糊数学在自动化技术中的应用.北京:清华大学出版社,1998
    [76] Wang WenJie, Tang. A fuzzy adaptive method for intelligent control.Expert Systems with Applications,1999,16(1):43-48
    [77] 刘有才.模糊专家系统原理与设计.北京:北京航空航天大学出版社,1995
    [78] 赵望达,鲁五一.PID控制器及其智能化方法探讨.化工自动化及仪表,1999,26(6):45~48
    [79] 张文安,徐建明,俞立.PLD-DMC算法及其在液位控制系统中的应用.控制工程,2005,12(1):22~24
    [80] J.R. Llata, E.G. Sarabia. Fuzzy expert system with double knowledge base for ultrasonic classification. Expert Systems with Applications, 2001(20): 347-355
    [81] Zbigniew Kowalslda. An expert system for aided design of ship systems automation.Expert Systems with Applications, 2001 (20):261-266
    [82] 赵瑞清.专家系统原理.北京:北京航空航天大学出版社,1989
    [83] 吴泉源,刘江宁.人工智能与专家系统.长沙:国防科技大学出版社,1995
    [84] 尹朝庆,尹皓.人工智能与专家系统.北京:中国水利水电出版社,2002
    [85] Xu Lei. Theories of unsupervised learning, PCA and its nonlinear extensions.Proc IEEE ICNN,1994:1254-1257
    [86] 马志雄,李孟良,张富兴等.主成分分析法在车辆实际行驶工况开发中的应用.武汉理工大学学报(信息与管理工程版),2004,26(4):32~35
    [87] 李勇刚,桂卫华,胡燕瑜.基于PCA的多神经网络软测量模型及其在工业中的应用.小型微型计算机系统,2004,25(10):1781~1784
    [88] Nhat Vo Dinh Minh, Lee Sungyoung. An improvement on PCA algorithm for face recognition. Chongqin: Lecture Notes in Computer Science, Advances in Neural Networks: Second International Symposium on Neural Networks. Proceedings, 2005, 3496, (1): 1016-1021
    [89] Moller Ralf, Hoffmann Heiko. An extension of neural gas to local PCA. Neurocomputing, 2004, 62(1-4):305-326
    [90] Wang Xun, Kruger Uwe, Irwin George W. Process monitoring approach using fast moving window PCA. Industrial and Engineering Chemistry Research, 2005, 44(15):5691-5702
    [91] Wang Liwei, Wang Xiao, Zhang, Xuerong, et al. he equivalence of two-dimensional PCA to line-based PCA. Pattern. Recognition Letters, 2005,26(1):57-60
    [92] Tan Keren, Chen Songcan. Adaptively weighted sub-pattern PCA for face recognition. Neurocomputing, 2005, 64(1-4):505-511
    [93] light W A. Some Aspects of RBF Approximations, Approximation Theory, Spline Functions and Applications.NATO ASI Series., 1992,256:163-190
    [94] Bani Hani Khaldoon, Ghaboussi Jamshid, Schneider Stephen P.Experimental study of identification and control of structures using neural network. Part 2: Control.Earthquake Engineering and Structural Dynamics,. 1999, 28(9): 1019-1039
    [95] Badcock Julie, Jonathan Philip, Bailey Trevor C, Krzanowski Wojtek J. Two projection methods for use in the analysis of multivariate process data with an illustration in petrochemical production. Technometrics, 2004, 46(4):392-403
    [96] Elkordy M F, Chang K C, Lee G. C. Application of Neural Networks in Vibrational Signature Analysis. Journal of Engineering Mechanics,1994,120(2): 250-265
    [97] Elkordy M F, Chang K C, Lee G. C. A structural damage neural network monitoring system. Microcomputers in Civil Engineering,1994, 9(2):83-96
    [98] 袁曾任.人工神经元网络及其应用.北京:清华大学出版社,1999
    [99] Jung Sungmoon, Ghaboussi Jamshid, Kwon Soonduck. Estimation of aero elastic parameters of bridge decks using neural networks. Journal of Engineering Mechanics, 2004,130 (11): 1356-1364
    [100] 王永骥,涂健.神经元网络控制.北京:机械工业出版社,1999
    [101] Yao Xin. Evolving artificial neural networks.Proceedings of the IEEE, 1999, 87(9): 1432~1447
    [102] Okayama Yoshiaki. Primitive study of a fire detection method controlled by artificial neural net. Fire Safety Journal, 1991,17(6):535-553
    [103] 曹建云,陆国平,姜平.焊接过程的RBF神经网络建模.南通工学院学报(自然科学版),2004,3(2):54~56
    [104] Bani Hani Khaldoon, Ghaboussi Jamshid, Schneider Stephen P. Experimental study of identification and control of structures using neural network. Part 1: Identification. Earthquake Engineering and Structural Dynamics,1999,28(9): 995-1018
    [105] Bani Hani Khaldoon, Ghaboussi Jamshid. Neural networks for structural control of a benchmark problem, active tendon system Earthquake Engineering & Structural Dynamics, 1998,27(11):1225-1245
    [106] 胡守仁.神经网络应用技术.长沙:国防科技大学出版社,1993
    [107] 赵望达,刘勇求,贺毅.基于RBF神经网络提高压力传感器精度的新方法,传感技术学报,2004,17(4):640~642
    [108] Harkat M Faouzi, Mourot Gilles, Ragot Jose. Nonlinear PCA Combining Principal Curves and RBF-Networks for Process Monitoring. Proceedings of the IEEE Conference on Decision and Control, 2003, 2:1956-1961
    [109] Gui Weihua, Li Yonggang, Wang Yalin. Soft sensor for ratio, of soda to aluminate based on PCA-RBF multiple network. Journal of Central South University of Technology (English Edition), 2005,12(1): 88-92
    [110] 屈旭卫.红外线测温仪自动检定装置的研制.计量装置及应用,2004,14(4):36~37
    [111] 刘华,杜天苍,赵爱军.温度实时监测系统.工业仪表与自动化装置,1996(5):17~20
    [112] Lowe David. Feature space embeddings for extracting structure from single channel wake EEG using RBF networks. Neural Networks for Signal Processing-Proceedings of the IEEE Workshop, 1998:428-437
    [113] 丛爽.面向MATLAB工具箱的神经网络理论与应用.合肥:中国科学技术大学出版社,2003
    [114] 许东,吴铮.基于MATLAB6.X的系统分析与设计—神经网络.西安:西安电子科技大学出版社,2002
    [115] 高宪文,蔡晓燕.基于PID控制的遗传神经网络在焦炉温度控制中的应用研.信息与控制,2005,34(6):709~713
    [116] 王化祥,孙金刚.一种新型模糊PID调节器的设计.自动化仪表,2000,21(5):8~10
    [117] A.C.Zolotas, G.D.Halikias. Optimal Design of PID Controllers Using the QFE Method.IEEE Proceedings Control Theory and Applications,1999, 146(6): 585-591
    [118] 王伟,张晶涛.PID参数先进整定方法综述.自动化学报,2000,26(3):347~355
    [119] 陶永华,尹怡欣.新型PID控制及其应用.北京:机械工业出版社,1998
    [120] 吴宏鑫,沈少萍.PID控制的应用与理论依据.控制工程,2003,10(1):37~41
    [121] 陶永华.PID控制原理和自整定策略.工业仪表与自动化装置,1997,4:60~64
    [122] 刘国荣,阳宪惠.模糊自适应PID控制器.控制与决策,1995,10(6):558~562
    [123] Su Whans Sung, In Beum Lee. An improved algorithm for automatic tuning of PID controllers. Chemical Engineering Science,2000 (55): 1883-1891
    [124] 王立新.自适应模糊系统与控制—设计与稳定性分析.北京:国防工业出版社,1995
    [125] 李延新,李文,李光宇.一种基于RBF网络提取模糊规则的算法实现.控制工程,2005,12(1):47~49
    [126] 中华人民共和国国家标准GB9978—88.北京:中国建筑出版社,1998
    [127] Gan fangcheng, Zhao wangda, Xu zhisheng, Li yah.Temperature Fuzzy Control System for Fire Experiment Furnace Based on the Safety of Building Structure. In: Progress in Safety Science and Technology Vol.Ⅲ, Part B. Huang P, Wang Y J, Li S C,Qian X M, eds. Beijing/New York:Science Press 2002,10:1251-1255
    [128] 韩敏,郭伟,王金城.基于RBF网络的大滞后系统自适应预测控制器.仪器仪表学报,2006,26(10):1039~1043
    [129] 刘曙光,魏俊民.模糊控制技术.北京:中国纺织出版社,2001
    [130] Li H X.A comparative design and tuning for conventional fuzzy control.IEEE Trans Industrial Electronics,1990,37(5): 365~371
    [131] 李晓斌,刘丁.基于智能方法的真空退火炉建模与控制.信息与控制,2005,34(4):461~465
    [132] Spyros Tzafestas.Incremental fuzzy expert PID control. IEEE Transcactions on Industrial Electronics. 1996,37(5):365~371
    [133] 王耀南.智能控制系统.长沙:湖南大学出版社,1996
    [134] Bloch G, Sirou F, Fatrez P. Neural intelligent control for a steel plant. IEEE Transactions on Neural Networks, 1997,8(4):910-918
    [135] 张金明,李人厚.模糊控制的系统化设计和稳定性分析.自动化学报,1999,25(4):493~497
    [136] 甘方成,赵望达,徐志胜,等.火灾模拟试验炉的温度模糊控制系统.电子技 术,2002,29(2):32~33
    [137] Maeda H, Murakami S. Fuzzy decision-making method and its application to a company choice problem. Information Sciences, 1988,45(2):331-346
    [138] 唐宏,赵望达,甘方成.带参数在线Fuzzy自整定的PID算法在模拟火灾炉控制中的应用.电子质量,2002(11):24~26
    [139] Maeda M, Murakami S. Design for a fuzzy logic controller. Information Sciences,1988,45(2): 315~330
    [140] 王运辉.自动控制系统的参数整定及自整定.石油化工自动化,2002(3):31~32
    [141] 张东波,朱建林.用于加热炉的专家模糊温度控制器.机电工程,2002,19(1):51~56
    [142] 方千山,王永初.陶瓷窑温度控制系统的模糊控制策略.福州大学学报,2000,28(5):52~55
    [143] Tong R M. The evaluation of fuzzy models derived from experimental data. Fuzzy Sets and Systems, 1980(4):1~12
    [144] Isermann. Fuzzy Logic Applications for Automatic Control, Supervision, Diagnosis. IEEE Transactions on Systems, Man, and Cybernetics,. 1998(28):221-235
    [145] Hall Lawrence O. Rule chaining in fuzzy-expert systems. IEEE Transactions on Fuzzy Systems, 2001,:9(6):822-828
    [146] 黎燕.建筑构件火灾模拟试验温度智能检测系统的研究与开发.[硕士学位论文],长沙:中南大学,2003
    [147] 张希明,蒋桂霞,李聪.关于实验室高温炉的改造和调试.莱阳农学院学报,1999,16(4):263~265
    [148] 赵望达,黎燕.基于多传感器数据融合方法的火灾模拟实验炉温度采集系统.电子质量,2002(2):32~33
    [149] Liu Jing, Xu Zhisheng. Experimental study on safety of the light wall in fire. In: Progress in Safety Science and Technology Vol.Ⅲ, Part B. Huang P, Wang Y J, Li S C,Qian XM, eds. Beijing/New York:Science Press 2002:1228-1232
    [150] GAN Fangcheng, HUANG Jiangping, ZHAO Wangda. Design and Application of Building Fire Safety Monitor System. In: Progress in Safety Science and Technology Vol.Ⅲ, Part B. Huang P, Wang Y J,Li S C,Qian X M, eds. Beijing/New York:Science Press 2004.10: 1499~1502
    [151] Hwang D E, Han C H. Real-time monitoring for a process with multiple operation modes. Control Engineering Practice,1999,37(2):25-37
    [152] Ghaboussi Jamshid, Pecknold David A, Zhang Michael M. Autoprogressive training of neural networks in complex systems. Intelligent Engineering Systems Through Artificial Neural Networks, 1998(8):133-140
    [153] Joghataie Abdolreza, Ghaboussi Jamshid, Wu Xiping. Learning and architecture determination through automatic node generation. Intelligent Engineering Systems Through Artificial Neural Networks,1995(5):45-50
    [154] Mills F A. Case study of a fire engineering approach to a large, unsprinklered, naturally ventilated atrium building. ASHRAE Transactions,2001.1(107): 744-752
    [155] Wen Yi Kwei, Ghaboussi Jamshid, Venini Paolo, Nikzad,Khashayar. Control of structures using neural networks. Smart Materials and Structures, 1995,1A(4): 149-157
    [156] Dahong Chen, Siu Ming Lo, Weizhen Lu, Kwok Kit Yuen, Zheng Fang. A numerical study of the effect of window configuration on the external heat and smoke spread in building fire. Numerical Heat Transfer, Part A (Applications),2001.8(40): 821-839
    [157] 黎燕,赵望达,徐志胜,甘方成.基于数据融合技术的模糊控制应用一例.自动化博览,2002,6(3):8~10
    [158] Xiao Jianzhuang, Li Jie, Wu Shuxun.Experimental study on fire-response of high-performance-concrete with blast-furnace-slag shear walls. Tongji Daxue Xuebao/Journal of Tongji University,2003,31(7): 783-787
    [159] Ghaboussi Jamshid, Wu Xiping. Soft computing with neural networks for engineering applications: Fundamental issues and adaptive approaches. Structural Engineering and Mechanics, 1998,8(6): 955-969
    [160] 符冬阳,贺贵明.增强并行口EPP协议及其应用.计算机应用,2001(10):62~63
    [161] 贺毅,赵望达,刘勇求.基于IDT7134的EPP并行通信接口设计,国外电子元器件,2004(10):64~66
    [162] 李昀,赵望达.一种针对土木工程温度参数的智能监测仪.电子质量,2002(10):26~28
    [163] 赵望达,段方英,徐志胜.铁路特大桥梁施工中混凝土温度应力监控系统的研制,中国铁路,2004(11):25~27
    [164] 赵望达.DS1820数字温度传感器在机械设备温度监测控制中的应用.制造业自动化,2001,23(5):52~54
    [165] 李昀,赵望达.DS18B20在混凝土测温系统中的应用.电子元器件应用.2003,5(2):48~51
    [166] 蒋晴霞,赵望达,裘志浩.DS18B20在桥梁混凝土测温中的应用.单片机与嵌入式系统应用,2001,1(9):52~54
    [167] 余志武,王中强,蒋丽忠.火灾下钢筋混凝土板的温度场分析.铁道科学与工程学报,2004(1):58~61
    [168] 余志武,丁发兴.混凝土受压力学性能统一计算方法.建筑结构学报,2003,24(4):41~46
    [169] 蒋首超,李国强.局部火灾下钢框架温度内力的实用计算方法.工业建筑,2000,30(9):56~62
    [170] 郭鹏,董毓利,许卓军,仲光天.火灾下钢筋混凝土板温度场确定的有限元方法.青岛建筑工程学院学报,2001,22(1):73~77
    [171] 张雷顺,赵建立,张剑.火灾条件下混凝土柱温度场的数值模拟分析.河南科学,2004,22(4):515~518
    [172] 张大长,吕志涛.火灾过程中混凝土构件内的温度分布.南京建筑工程学院学报,1997,40(1):31~37
    [173] 丁军,李国强,蒋首超.火灾下钢结构构件的温度分析.钢结构,2002,17(2):53~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700