用户名: 密码: 验证码:
自旋捕捉剂修饰及生物学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对自旋捕捉剂结构优化,研究其在细胞体系的应用。
     本文主要的研究进展
     1、借助gaussian,优化分子结构,比较新型自旋捕捉剂反应前后键级、键长、二面角、前线轨道等参数,解释了为何间位取代的PBN加快能较快和甲基自由基反应。并通过比较各种自旋捕捉剂不同自由基自旋加合物的热力学能量,反应焓变,生成热,确定了较稳定的自旋捕捉剂结构,并通过实验验证了这种结构的稳定性。
     2、电子顺磁共振(ESR)技术能够检测自旋捕捉剂自由基加合物的信号。但检测细胞内的自由基信号鲜有报道。本文利用ESR技术检测,用自旋捕捉剂BMPO捕捉了肿瘤细胞HepG2内的自由基,并通过模拟及实验的方法验证了该信号为超氧阴离子信号。
     3、本文利用还原性荧光探针和氧化性荧光探针分别比较了肿瘤细胞HepG2和正常细胞L02两种细胞株的氧化还原水平,发现在HepG2细胞内的氧化性水平比L02细胞株高,而且还原水平HepG2细胞也同样要高。
This article bases on the spin trapping agents optimization and its application in cell lines.
     In this paper, the research is as follows
     1. With gaussian, optimizing spin trappers'molecular structure is to compare the spin trappers and their adducts agent bond, bond length, enthalpy, diangle, frontier orbital parameters, to explain why derivative which is meta-position substituted is more reactive with methyl radical. and. Then comparing the variety of different free radical spin trapping agents'thermodynamic energy of the spin adduct, the reaction enthalpy is to determine a more stable structure among spin trapping agents, which is validated through experiments.
     2. ESR technique can effectively detect the adducts'signal of spin trapper and free radical. But the natural detection of intracellular free radical is rarely reported. In this paper, a spin trapping agent BMPO captures tumor cells HepG2'free radical which is detected by ESR, and simulation and experimental comfirm that the signal is belong to the oxide-center and carbon-center free radical adducts.
     3. In this paper, redux fluorescent probes and oxidize fluorescent probe were used to compare the tumor cells line HepG2 and normal cell line L02's redox level,finding that in HepG2 cells the level of oxidation is over that of L02 cells, and reducing state level of HepG2 cells is also higher.
引文
[1]Hsieh C, Papaconstantinou J. Akt/PKB and p38 MAPK signaling, translational initiation and longevity in Snell dwarf mouse livers. Mechanisms Of Ageing And Development, 2004,125(10-11):785~798.
    [2]Hensley K, Robinson K A, Gabbita S P, et al. Reactive oxygen species, cell signaling, and cell injury. Free Radical Biology And Medicine,2000,28(10):1456~1462.
    [3]Karbowski M, Kurono C, Wozniak M, et al. Free radical-induced megamitochondria formation and apoptosis. Free Radical Biology And Medicine,1999,26(3-4):396~409.
    [4]Harrington L A, Harley C B. Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans. Mechanisms Of Ageing And Development,1988,43(1):71~78.
    [5]方允中,杨胜,伍国耀.自由基稳衡性动态.生理科学进展,2004,35(3):199~204.
    [6]Matsubara N, Hiramatsu M, Edamatsu R, et al. Possible Involvement of Free Radical Scavenging Properties in the Action of Tumor Necrosis Factor-[alpha]. Free Radical Biology And Medicine,1996,22(4):679~687.
    [7]Mats J M, Snchez-Jimnez F M. Role of reactive oxygen species in apoptosis:implications for cancer therapy. The International Journal of Biochemistry & Cell Biology, 2000,32(2):157~170.
    [8]Fuliang H U, Hepburn H R, Xuan H, et al. Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus. Pharmacological Research, 2005,51(2):147~152.
    [9]Tabner B J, Turnbull S, El-Agnaf O M A, et al. Formation of hydrogen peroxide and hydroxyl radicals from A[beta] and [alpha]-synuclein as a possible mechanism of cell death in Alzheimer's disease and Parkinson's disease. Free Radical Biology And Medicine, 2002,32(11):1076~1083.
    [10]Davies C M, Guilak F, Weinberg J B, et al. Reactive nitrogen and oxygen species in interleukin-1-mediated DNA damage associated with osteoarthritis. Osteoarthritis And Cartilage,2008,16(5):624~630.
    [11]Terabe S, Konaka R. Electron spin resonance studies on oxidation with nickel peroxide. Spin trapping of free-radical intermediates. Journal Of The American Chemical Society, 1969,91(20):5655~5657.
    [12]Hirst D G, Brown J M, Hazlehurst J L. Effect of partition coefficient on the ability of nitroimidazoles to enhance the cytotoxicity of 1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea. Cancer Research,1983,43(5):1961~1965.
    [13]Frejaville C, Karoui H, Tuccio B, et al.5-(Diethoxyphosphoryl)-5-methyl-l-pyrroline N-oxide:a new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen-centered radicals. Journal Of Medicinal Chemistry,1995,38(2):258~265.
    [14]Fujisawa S, Atsumi T, Kadoma Y, et al. Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. Toxicology,2002,177(1):39~54.
    [15]Reszka K J, McCormick M L, Buettner G R, et al. Nitric oxide decreases the stability of DMPO spin adducts. Nitric Oxide,2006,15(2):133~141.
    [16]Anzai K, Aikawa T, Furukawa Y, et al. ESR measurement of rapid penetration of DMPO and DEPMPO spin traps through lipid bilayer membranes. Archives Of Biochemistry And Biophysics,2003,415(2):251~256.
    [17]Shi H, Timmins G, Monske M, et al. Evaluation of spin trapping agents and trapping conditions for detection of cell-generated reactive oxygen species. Archives Of Biochemistry And Biophysics,2005,437(1):59~68.
    [18]Zhao H, Joseph J, Zhang H, et al. Synthesis and biochemical applications of a solid cyclic nitrone spin trap:a relatively superior trap for detecting superoxide anions and glutathiyl radicals. Free Radical Biology And Medicine,2001,31(5):599~606.
    [19]Davies M I J, Hawkins C L. EPR Spin trapping of protein radicals. Free Radical Biology And Medicine,2004,36(9):1072~1086.
    [20]Culcasi M, Rockenbauer A, Mercier A, et al. The line asymmetry of electron spin resonance spectra as a tool to determine the cis:trans ratio for spin-trapping adducts of chiral pyrrolines N-oxides:The mechanism of formation of hydroxyl radical adducts of EMPO, DEPMPO, and DIPPMPO in the ischemic-reperfused rat liver. Free Radical Biology And Medicine, 2006,40(9):1524~1538.
    [21]Culcasi M, Muller A, Mercier A, et al. Early specific free radical-related cytotoxicity of gas phase cigarette smoke and its paradoxical temporary inhibition by tar:An electron paramagnetic resonance study with the spin trap DEPMPO. Chemico-Biological Interactions, 2006,164(3):215~231.
    [22]Karakawa T, Sato K, Muramoto Y, et al. Applicability of new spin trap agent, 2-diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide, in biological system. Biochemical And Biophysical Research Communications,2008,370(1):93~97.
    [23]Janzen E G, Evans C A, Liu J I. Factors influencing hyperfine splitting in the ESR spectra of five-membered ring nitroxides. Journal of Magnetic Resonance (1969),1973,9(3):513~516.
    [24]Jiang J, Liu K J, Jordan S J, et al. Detection of Free Radical Metabolite Formation Usingin VivoEPR Spectroscopy:Evidence of Rat Hemoglobin Thiyl Radical Formation Following Administration of Phenylhydrazine. Archives Of Biochemistry And Biophysics, 1996,330(2):266~270.
    [25]Kotake Y, Janzen E G. Decay and fate of the hydroxyl radical adduct of.alpha.-phenyl-N-tert-butylnitrone (PBN) in aqueous media. Journal Of The American Chemical Society, 1991,113(25):9503~9506.
    [26]Zhang Y, Xu G. Stereospecific spin trapping 5,5-dimethyl-l-pyrroline N-oxide (DMPO) derivatives,5-alkyl-5-methyl-1-pyrroline N-oxides. J. Chem. Soc., Chem. Commun.,1988 (24):1629~1630.
    [27]Eacute B, Tuccio A, Lauricella R, et al. Decay of the hydroperoxyl spin adduct of 5-diethoxyphosphoryl-5-methyl-l-pyrroline N-oxide:an EPR kinetic study. J. Chem. Soc., Perkin Trans.2,1995(2):295~298.
    [28]Stolze K, Udilova N, Nohl H. Spin trapping of lipid radicals with DEPMPO-derived spin traps:detection of superoxide, alkyl and alkoxyl radicals in aqueous and lipid phase. Free Radical Biology And Medicine,2000,29(10):1005~1014.
    [29]Liu K J, Kotake Y, Lee M, et al. High-performance liquid chromatography study of the pharmacokinetics of various spin traps for application to in vivo spin trapping. Free Radical Biology And Medicine,1999,27(1-2):82~89.
    [30]Ju H S, Li X J, Zhao B L, et al. [Effects of glycyrrhiza flavonoid on lipid peroxidation and active oxygen radicals]. Yao Xue Xue Bao,1989,24(11):807~812.
    [31]Klaus Stolze N U T, Rosenau A H A H. Synthesis and Characterization of EMPO-DerivedSynthesis and Characterization of EMPO-Derived
    5,5-Disubstituted 1-Pyrroline N-Oxides as Spin Traps Forming Exceptionally Stable Superoxide Spin Adducts. Biological Chemistry,2003,384.
    [32]Janzen E G, Kotake Y, Randall D. H. Stabilities of hydroxyl radical spin adducts of PBN-type spin traps. Free Radical Biology And Medicine,1992,12(2):169~173.
    [33]Stan Kubowt E G J A. Spin-Trapping of Free Radicals Formed during in Vitro and in Vivo metabolism of 3-methylindole. The journal of biological chemistry, 1984,250(7):4447~4451.
    [34]Mason M J B A. Direct evidence for in vivo hydroxyl-radical generation in experimental iron overload an ESR spin-trapping investigation, proceeding of the National Academy of Sciences of the united states of america,1991,88(19):8440~8444.
    [35]Olive G, Mercier A, Le Moigne F, et al.2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide:evaluation of the spin trapping properties. Free Radical Biology And Medicine, 2000,28(3):403~408.
    [36]Zhang H, Joseph J, Vasquez-Vivar J, et al. Detection of superoxide anion using an isotopically labeled nitrone spin trap:potential biological applications. Febs Letters, 2000,473(1):58~62.
    [37]Tsai P, Ichikawa K, Mailer C, et al. Esters of 5-Carboxyl-5-methyl-1-pyrroline N-Oxide:A Family of Spin Traps for Superoxide. The Journal of Organic Chemistry,2003,68(20):7811~ 7817.
    [38]Edamatsu R, Mori A, Packer L. The Spin-Trap N-tert-[alpha]-Phenylbutylnitrone Prolongs the Life Span of the Senescence-Accelerated Mouse. Biochemical And Biophysical Research Communications,1995,211(3):847~849.
    [39]Boveris A N A. The mitochondrial energy transduction system and the aging process, am J Physiol cell physiol,2007,292:670~686.
    [40]孙树森,孙祥玉.新型自旋捕捉剂取代环已叉基-N-烃基氮氧化物的合成.中国科学院研究生院学报,1993,10(4):365~367.
    [41]Hensley K, Robinson K A, Gabbita S P, et al. Reactive oxygen species, cell signaling, and cell injury. Free Radical Biology And Medicine,2000,28(10):1456~1462.
    [42]Ansari N H, Wang L, Erwin A A, et al. Glucose-Dependent Formation of Free Radical Species in Lens Homogenate. Biochemical and Molecular Medicine,1996,59(1):68~71.
    [43]Delmas-Beauvieux M, Peuchant E, Thomas M, et al. The Place of Electron Spin Resonance Methods in the Detection of Oxidative Stress in Type 2 Diabetes with Poor Glycemic Control. Clinical Biochemistry,1998,31(4):221~228.
    [44]Ho E, Chen G, Bray T M. Alpha-Phenyl-tert-butylnitrone (PBN) inhibits NF[kappa]B activation offering protection against chemically induced diabetes. Free Radical Biology And Medicine,2000,28(4):604~614.
    [45]Kotake Y, Sang H, Miyajima T, et al. Inhibition of NF-[kappa]B, iNOS mRNA, COX2 mRNA, and COX catalytic activity by phenyl-N-tert-butylnitrone (PBN). Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,1998,1448(1):77~84.
    [46]Amedeo Modesti P, Zecchi-Orlandini S, Vanni S, et al. Release of Preformed Ang II from Myocytes Mediates Angiotensinogen and ET-1 Gene Overexpression In Vivo via AT1 Receptor. Journal Of Molecular And Cellular Cardiology,2002,34(11):1491~1500.
    [47]Tabatabaie T, Kotake Y, Wallis G, et al. Spin trapping agent phenyl N-tert-butylnitrone protects against the onset of drug-induced insulin-dependent diabetes mellitus. Febs Letters, 1997,407(2):148~152.
    [48]佟丽,沈剑刚,等.补阳还五汤抗缺氧再给氧乳鼠心肌细胞凋亡的实验研究.中国中西医结合杂志,2002,22(7):522~524.
    [49]杨养贤,延卫东,乔晋等.黄芩苷对大鼠缺血再灌注脑组织TNF-α、IL-1β表达的影响.西安交通大学学报:医学版,2005,26(3):220~223.
    [50]王东吉,尚改萍,王黎敏等.NF-κB在脑缺血再灌注损伤中的作用.中国老年学杂志,2005,25(12):1515~1517.
    [51]沈诚,范士志,陈建明等.抑制JAK/STAT通路对缺血再灌注损伤心肌TNF-α和IL-6表达的影响.重庆医学,2006,35(1):38~39.
    [52]Lilly Neuroscience E L. Transcription Factor Nuclear Factor-Kappa B Is Activated in Neurons After Focal Cerebral Ischemia. Journal of Cerebral Blood Flow & Metabolism, 2000,20:592~603.
    [53]Bradamante S, Monti E, Paracchini L, et al. Protective activity of the spin trap tert-bytyl-[alpha]-phenyl nitrone (PBN) in reperfused rat heart. Journal Of Molecular And Cellular Cardiology,1992,24(4):375~386.
    [54]J E Baker C C F G. Myocardial ischemia and reperfusion direct evidence for free radical generation by electron spin resonance spectroscopy. PNAS,1988,85(8):2786~2789.
    [55]Meredith F. ROSS T A P I, MURPHY R A J S. Rapid uptake of lipophilic triphenyl-phosphonium cations by mitochondria in vivo following intravenous injection Implications for mitochondria-specific therapies and probes. the Journal of Biochemical Society,2008, 411:633~645.
    [56]Hardy M, Chalier F, Ouari O, et al. Mito-DEPMPO synthesized from a novel NH2-reactive DEPMPO spin trap:a new and improved trap for the detection of superoxide. Chem. Commun.,2007(10):1083~1085.
    [57]Mulliken R S. Molecular Compounds and their Spectra. Ⅱ. Journal Of The American Chemical Society,1952,74(3):811~824.
    [58]Ternberg B C A J. free radical in surviving tissues. Proceedings Of The National Academy Of Sciences Of The United States Of America,1954,47(9):1374~1384.
    [59]Gao Z, Pilar J, Schlick S. ESR Imaging of Tracer Translational Diffusion in Polystyrene Solutions and Swollen Networks. The Journal of Physical Chemistry,1996,100(20):8430-8435.
    [60]Misra S K, Diehl S, Tipikin D, et al. A multifrequency EPR study of Fe2+ and Mn2+ ions in a ZnSiF66H2O single crystal at liquid-helium temperatures. Journal Of Magnetic Resonance, 2010,205(1):14~22.
    [61]徐杰,王江.用快速低温冷冻和ESR方法分析兔脂肪栓塞脑组织中自由基.波谱学杂志,1995,12(6):635~639.
    [62]Kazuyoshi Kirima K T H S. Evaluation of systemic blood NO dynamics by EPR spectroscopy:HbNO as an endogenous index of NO. Am. J. Physiol. Heart Circ. Physiol, 2003,285(2):G285~G293.
    [63]Helen Lundqvista S D B U. Evaluation of electron spin resonance for studies of superoxide anion production by human neutrophils interacting with Staphylococcus aureus and Staphylococcus epidermidis. Journal Of Biochemical And Biophysical Methods,70(6):1059-1065.
    [64]Claudine Frejaville H K B T, Robert Lauricella A P T.5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide A New Efficient Phosphorylated Nitrone for the in Vitro and in Vivo Spin Trapping of Oxygen-Centered Radicals. Journal of Medicine Chemistry,1995,38:258~265.
    [65]Khan N, Wilmot C M, Rosen G M, et al. Spin traps:in vitro toxicity and stability of radical adducts. Free Radical Biology And Medicine,2003,34(11):1473~1481.
    [66]Samuni A, Samuni A, Swartz H M. The cellular-induced decay of DMPO spin adducts of OH and 02-. Free Radical Biology And Medicine,1989,6(2):179~183.
    [67]Pustelny K, Bielanska J, Plonka P M, et al. In vivo spin trapping of nitric oxide from animal tumors. Nitric Oxide,2007,16(2):202~208.
    [68]E. Mily G C R T. Alpha phenyl-tert-butylnitrone (PBN) inhibits NFkB activation offering protection against chemically induced biabetes. Free Radical Biology & Medicine,2000, 28(4):604~614.
    [69]Barriga G, Olea-Azar C, Norambuena E, et al. New heteroaryl nitrones with spin trap properties:Identification of a 4-furoxanyl derivative with excellent properties to be used in biological systems. Bioorganic & Medicinal Chemistry,2010,18(2):795~802.
    [70]FA Villamena J Z. Superoxide radical trapping and spin adduct decay of 5-tert-butoxy-carbonyl-5-methyl-l-pyrroline N-oxide (BocMPO) kinetics and theoretical analysis. J. Chem. Soc., Perkin Trans,2002,2:1340~1344.
    [71]Meyer W. Calculation of Fermi Contact Hyperfine Splitting for Small Atoms and Molecules. the journal of chemical physics,1969,51(11):5149~5162.
    [1]Xu Y Q, Hui Y P, Ma S R, et al. Change of oxygen free radical in reversing multidrug-resistance of human leukemic cell line HL-60/ADM by cyclosporin A. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2008,16(5):1050~1054.
    [2]Caldefie-Chezet F, Walrand S, Moinard C, et al. Is the neutrophil reactive oxygen species production measured by luminol and lucigenin chemiluminescence intra or extracellular? Comparison with DCFH-DA flow cytometry and cytochrome c reduction. Clinica Chimica Acta,2002,319(1):9-17.
    [3]Afri M, Frimer A A, Cohen Y. Active oxygen chemistry within the liposomal bilayer. Part IV: Locating 2',7'-dichlorofluorescein (DCF),2',7'-dichlorodihydrofluorescein (DCFH) and 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer. Chemistry And Physics Of Lipids,2004,131(1):123~133.
    [4]LeBel C P, Ischiropoulos H, Bondy S C. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical Research In Toxicology,1992,5(2):227~231.
    [5]Hempel S L, Buettner G R, O'Malley Y Q, et al. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants:comparison with 2',7'-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med,1999,27(1-2):146-159.
    [6]Myhre O, Andersen J M, Aarnes H, et al. Evaluation of the probes 2',7'-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochemical Pharmacology,2003,65(10):1575~1582.
    [7]Carl P. LeBel H I S C. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical Research In Toxicology, 1992,5(2):227~231.
    [8]Brubacher J L, Bols N C. Chemically de-acetylated 2',7'-dichlorodihydrofluorescein diacetate as a probe of respiratory burst activity in mononuclear phagocytes. Journal Of Immunological Methods,2001,251(1-2):81~91.
    [9]Kooy N W, Royall J A, Ischiropoulos H. Oxidation of 2',7'-dichlorofluorescin by peroxynitrite. Free Radic Res,1997,27(3):245~254.
    [10]Khan N, Wilmot C M, Rosen G M, et al. Spin traps:in vitro toxicity and stability of radical adducts. Free Radic Biol Med,2003,34(11):1473~1481.
    [11]Zhao H, Joseph J, Zhang H, et al. Synthesis and biochemical applications of a solid cyclic nitrone spin trap:a relatively superior trap for detecting superoxide anions and glutathiyl radicals. Free Radic Biol Med,2001,31(5):599~606.
    [12]Fernando S. Garcia Einschlag L C A A. Competition kinetics using the UV H2O2 process a structure reactivity correlation for the rate constants of hydroxyl radicals toward nitroaromatic compounds. Chemosphere,2003,53(1):1-7.
    [13]Takahisa Doba T I A H. Kinetic Studies of Spin-trapping Reactions. I. The Trapping of the t-Butyl Radical Generated by the Photodissociation of 2-Methyl-2-nitrosopropane by Several Spin-trapping Agents. Bulletin of the Chemical Society of Japan,1977,50(12):3158~3163.
    [14]Iqbal Ahmad Q F A N. Photolysis of riboflavin in aqueous solution a kinetic study. International Journal of Pharmaceutics,2004,280:199~208.
    [15]Ahmad I, Cusanovich M A, Tollin G. Laser flash photolysis studies of electron transfer between semiquinone and fully reduced free flavins and horse heart cytochrome c. Proc Natl Acad Sci U S A,1981,78(11):6724~6728.
    [16]Paul R. Marriott M. Spin trapping for hydroxyl in water a kinetic evaluation of two popular traps. canadian journal of chemistry,1980,58(8):803~807.
    [1]Droge W. Free radicals in the physiological control of cell function. Physiological Reviews, 2002,82(1):47~95.
    [2]Fang Y Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition,2002,18(10): 872~879.
    [3]Raha S, Robinson B H. Mitochondria, oxygen free radicals, disease and ageing. Trends In Biochemical Sciences,2000,25(10):502~508.
    [4]Kehrer J P. Free radicals as mediators of tissue injury and disease. Critical Reviews In Toxicology,1993,23(1):21~48.
    [5]Wu C W, Yin P H, Hung W Y, et al. Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer,2005,44(1):19~28.
    [6]Pou S, Hassett D J, Britigan B E, et al. Problems associated with spin trapping oxygen-centered free radicals in biological systems. Analytical Biochemistry, 1989,177(1):1-6.
    [7]Buettner G R. the pecking order of free radicals and antioxidants lipid peroxidation tocopherol and ascorbate. Archives Of Biochemistry And Biophysics,1993,300(2):535~543.
    [8]Koppenol W H, Butler J. Energetics of interconversion reactions of oxyradicals. Advances in Free Radical Biology & Medicine,1985,1(1):91~131.
    [9]Zhao H, Joseph J, Zhang H, et al. Synthesis and biochemical applications of a solid cyclic nitrone spin trap:a relatively superior trap for detecting superoxide anions and glutathiyl radicals. Free Radic Biol Med,2001,31(5):599~606.
    [10]Boyd S L, Boyd R J. Addition vs Abstraction Reactions of the Methyl Radical with Nitrones, Alkenes, Aldehydes, and Imines. The Journal of Physical Chemistry A, 2001,105(29):7096~7105.
    [11]Villamena F A, Hadad C M, Zweier J L. Theoretical study of the spin trapping of hydroxyl radical by cyclic nitrones:a density functional theory approach. Journal Of The American Chemical Society,2004,126(6):1816~1829.
    [12]Khan N, Wilmot C M, Rosen G M, et al. Spin traps:in vitro toxicity and stability of radical adducts. Free Radic Biol Med,2003,34(11):1473~1481.
    [13]Karoui H, Rockenbauer A, Pietri S, et al. Spin trapping of superoxide in the presence of beta-cyclodextrins. Chem Commun (Camb),2002(24):3030~3031.
    [14]Polovyanenko D N, Marque S R, Lambert S, et al. Electron paramagnetic resonance spin trapping of glutathiyl radicals by PBN in the presence of cyclodextrins and by PBN attached to beta-cyclodextrin. Journal Of Physical Chemistry B,2008,112(41):13157~13162.
    [15]Du LB, Wang L F, Liu Y P, et al. Effect of 2,5-substituents on the stability of cyclic nitrone superoxide spin adducts:A density functional theory approach. Free Radic Res, 2010,44(7):751~778.
    [16]Villamena F A, Hadad C M, Zweier J L. Theoretical study of the spin trapping of hydroxyl radical by cyclic nitrones:a density functional theory approach. Journal Of The American Chemical Society,2004,126(6):1816~1829.
    [17]Rychnovsky S D, Vaidyanathan R, Beauchamp T, et al. AM1-SM2 Calculations Model the Redox Potential of Nitroxyl Radicals Such as TEMPO. Journal Of Organic Chemistry, 1999,64(18):6745~6749.
    [18]Bottoni A. Theoretical study of the addition of alkyl and halogenoalkyl radicals to the ethylene double bond:a comparison between Hartree–Fock, perturbation theory and density functional theory. J. Chem. Soc., Perkin Trans.2,1996(9):2041~2047.
    [19]Cheng H Y, Liu T, Feuerstein G, et al. Distribution of spin-trapping compounds in rat blood and brain:in vivo microdialysis determination. Free Radic Biol Med,1993,14(3):243~250.
    [20]Eli Finkelstein G M R E. Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. Journal Of The American Chemical Society,1980,102(15):4994~499.
    [21]R. Sridhar P C B A. Fast kinetics of the reactions of hydroxyl radicals with nitrone spin traps. Journal of Radioanalytical and Nuclear Chemistry,1986,101 (2):227~237.
    [22]Villamena F A, Hadad C M, Zweier J L. Kinetic Study and Theoretical Analysis of Hydroxyl Radical Trapping and Spin Adduct Decay of Alkoxycarbonyl and Dialkoxyphosphoryl Nitrones in Aqueous Media. The Journal of Physical Chemistry A,2003,107(22):4407~4414.
    [23]Taniguchi H, Madden K P. An in Situ Radiolysis Time-Resolved ESR Study of the Kinetics of Spin Trapping by 5,5-Dimethyl-1-pyrroline-N-oxide. Journal Of The American Chemical Society,1999,121(50):11875~11879.
    [24]Larry A. Curtiss K R P C. Assessment of Gaussian-2 and density functional theories Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. journal of chemistry physics,1996,106(3):1063~1079.
    [25]梁卫东,张鑫,陈泳等.2,2′-二(N,N-二甲基硫代氨甲酰氧基)-4,4′-二硝基联苯的合成及晶体结构.科技创新导报,2008(24):29~30.
    [26]Eaton V J, Steele D. Dihedral angle of biphenyl in solution and the molecular force field. J. Chem. Soc., Faraday Trans.2,1973(DOI:10.1039/F29736901601).
    [27]Chana A, Concejero M A, de Frutos M, et al. Computational Studies on Biphenyl Derivatives. Analysis of the Conformational Mobility, Molecular Electrostatic Potential, and Dipole Moment of Chlorinated Biphenyl:Searching for the Rationalization of the Selective Toxicity of Polychlorinated Biphenyls (PCBs) (?). Chemical Research In Toxicology, 2002,15(12):1514~1526.
    [28]Croisy-Delcey M, Croisy A, Carrez D, et al. Diphenyl quinolines and isoquinolines:synthesis and primary biological evaluation. Bioorg Med Chem,2000,8(11):2629~2641.
    [29]邓旭芳,刘珊林,施冬云等.自旋探针α-苯基-N-4-丁基硝酮纳米粒的制备及其对肝肿瘤细胞的亲和性研究.药学学报,2008,43(3):308~313.
    [30]Murakami A, Takahashi D, Kinoshita T, et al. Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis:the alpha,beta-unsaturated carbonyl group is a prerequisite. Carcinogenesis,2002,23(5):795-802.
    [31]Ou D, Bonomi P, Jao W, et al. The mode of cell death in H-358 lung cancer cells cultured with inhibitors of 5-lipoxygenase or the free radical spin trap, NTBN. Cancer Letters, 2001,166(2):223~231.
    [32]Anderson K M, Seed T, Alrefai W, et al. NTBN, a free radical spin trap induces programmed cell death in human pancreatic cancer (PANC-1) cells. Anticancer Research, 1998,18(5A):3213~3222.
    [1]. Wulf Droge The plasma redox state and ageing Ageing Research Reviews, Vol 1,(2) 2002, 257-278
    [2]. Elena Ortona, Paola Margutti, Paola Matarrese Redox state, cell death and autoimmune diseases:A gender perspective Review Article Autoimmunity Reviews, Vol 7(7),2008,579-584
    [3]. D. Ou, P. Bonomi, W. Jao, S. Jadko, J. E. Harris, K. M. Anderson The mode of cell death in H-358 lung cancer cells cultured with inhibitors of 5-lipoxygenase or the free radical spin trap, NTBN Cancer Letters, Vol 166,(2) 2001223-231
    [4]. Yunxia Q. O'Malley, Krzysztof J. Reszka, Bradley E. Britigan Direct oxidation of 2',7'-dichlorodihydrofluorescein by pyocyanin and other redox-active compounds independent of reactive oxygen species production Free Radical Biology and Medicine, Vol 36(1),2004,90-100
    [5]. Stephen L. Hempel, Garry R. Buettner, Yunxia Q Dihydrofluorescein diacetate is superior for detecting intracellular oxidants:comparison with 2',7'-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123 Free Radical Biology and Medicine, Vol 27,(1-2),1999,146-159.
    [6]. Marta Wrona, Kantilal Patel, Peter Wardman Reactivity of 2',7'-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals Original Research Article Free Radical Biology and Medicine, Vol38(2), 2005 262-270
    [7]. Marta Wrona, Peter Wardman Properties of the radical intermediate obtained on oxidation of 2',7'-dichlorodihydrofluorescein, a probe for oxidative stress Free Radical Biology and Medicine, Vol 41(4) 2006 657-667
    [8]. Ana Gomes, Eduarda Fernandes, Jose L.F.C. Lima Fluorescence probes used for detection of reactive oxygen species Journal of Biochemical and Biophysical Methods, Vol 65(2-3) 2005 45-80
    [9]. Heiko Possel Heiko Noack Wolfgang Augustin2,7-Dihydrodichlorofuorescein diacetate as a fuorescent marker for peroxynitrite formation FEBS Letters 416 1997 175-178
    [10].Cristina Rota, Colin F Chignell, Ronald P Mason Evidence for free radical formation during the oxidation of 2'-7'-dichlorofluorescin to the fluorescent dye 2'-7'-dichlorofluorescein by horseradish peroxidase::Possible implications for oxidative stress measurements Free Radical Biology and Medicine, Vol 27(7-8) 1999 873-881
    [11].Yang Liu, Shanlin Liu, and Yanguang Wang TEMPO-based Redox-sensitive Fluorescent Probes and Their Applications to Evaluating Intracellular Redox Status in Living Cells Chemistry Letters Vol.38 (6) 2009 588-589
    [12].Jose Navarro,Elena Obrador, Julian Carretero Changes in glutathione status and the anti-oxidant system in blood and in cancer cells associate with tumour growth in vivo Free Radical Biology and Medicine Vol 26(3-4) 1999 410-418
    [13].King-Teh Leea, Shih-Meng Tsaic, Shen-Nien Wang et al Glutathione status in the blood and tissues of patients with virus-originated hepatocellular carcinoma Clinical Biochemistry Vol 40(15)2007 1157-1162
    [14]. Iris, F.Benzie, J. Strain The Ferric Reducing Ability of Plasma (FRAP) as a Measure of "Antioxidant Power":The FRAP Assay analytical biochemistry 239,70-76 (1996)
    [1]Yanagida H, Masubuchi Y, Minagawa K, et al. A reaction kinetics model of water sonolysis in the presence of a spin-trap. Ultrasonics Sonochemistry,1999,5(4):133~139.
    [2]Walling C. Fenton's reagent revisited. Accounts Of Chemical Research,1975,8(4):125~131.
    [3]Kadiiska M B, Mason R P. Acute methanol intoxication generates free radicals in rats:an ESR spin trapping investigation. Free Radic Biol Med,2000,28(7):1106~1114.
    [4]Zhao H, Joseph J, Zhang H, et al. Synthesis and biochemical applications of a solid cyclic nitrone spin trap:a relatively superior trap for detecting superoxide anions and glutathiyl radicals. Free Radic Biol Med,2001,31(5):599~606.
    [5]Stolze K, Udilova N, Nohl H. Spin trapping of lipid radicals with DEPMPO-derived spin traps:detection of superoxide, alkyl and alkoxyl radicals in aqueous and lipid phase. Free Radic Biol Med,2000,29(10):1005~1014.
    [6]Barclay L R, Vinqvist M R. Do spin traps also act as classical chain-breaking antioxidants? A quantitative kinetic study of phenyl tert-butylnitrone (PBN) in solution and in liposomes. Free Radic Biol Med,2000,28(7):1079~1090.
    [7]Gamliel A, Afri M, Frimer A A. Determining radical penetration of lipid bilayers with new lipophilic spin traps. Free Radic Biol Med,2008,44(7):1394~1405.
    [8]Stolze K, Udilova N, Rosenau T, et al. Spin adduct formation from lipophilic EMPO-derived spin traps with various oxygen- and carbon-centered radicals. Biochemical Pharmacology, 2005,69(2):297~305.
    [9]Hyslop P A, York D A, Sauerheber R D. Effects of insulin on the lipid structure of liver plasma membrane measured with fluorescence and ESR spectroscopic methods. Biochim Biophys Acta,1984,776(2):267~278.
    [10]Marsh D, Toniolo C. Polarity dependence of EPR parameters for TOAC and MTSSL spin labels:correlation with DOXYL spin labels for membrane studies. Journal Of Magnetic Resonance,2008,190(2):211~221.
    [11]Nakagawa K, Mizushima J, Takino Y, et al. Chain ordering of Stratum corneum lipids investigated by EPR slow-tumbling simulation. Spectrochim Acta A Mol Biomol Spectrosc, 2006,63(4):816~820.
    [12]Kaneko M, Kodama M, Inoue F. The localization of DMPO spin adducts of OH in endothelial cells exposed to hydrogen peroxide. Toxicology Letters,1995,81(1):73~78.
    [13]Chou D S, Hsiao G, Shen M Y, et al. ESR spin trapping of a carbon-centered free radical from agonist-stimulated human platelets. Free Radic Biol Med,2005,39(2):237~248.
    [14]Alvarez M N, Peluffo G, Folkes L, et al. Reaction of the carbonate radical with the spin-trap 5,5-dimethyl-l-pyrroline-N-oxide in chemical and cellular systems:pulse radiolysis, electron paramagnetic resonance, and kinetic-competition studies. Free Radic Biol Med, 2007,43(11):1523~1533.
    [15]Bodis B, Karadi O, Szabo I, et al. Evidence for the involvement of oxygen free radicals in the ethanol-induced late cellular injury in mouse myeloma cells. J Physiol Paris, 2000,94(1):67~70.
    [16]Garlick P B, Davies M J, Hearse D J, et al. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circulation Research, 1987,61(5):757~760.
    [17]Buettner G R, Mason R P. Spin-trapping methods for detecting superoxide and hydroxyl free radicals in vitro and in vivo. Methods Enzymol,1990,186:127~133.
    [18]Weil J A J A. Electron paramagnetic resonance:elementary theory and practical applications[M]. Hoboken, N.J.:Wiley-Interscience, c2007.,2007.
    [19]Pou S, Hassett D J, Britigan B E, et al. Problems associated with spin trapping oxygen-centered free radicals in biological systems. Analytical Biochemistry, 1989,177(1):1-6.
    [20]Anzai K, Aikawa T, Furukawa Y, et al. ESR measurement of rapid penetration of DMPO and DEPMPO spin traps through lipid bilayer membranes. Archives Of Biochemistry And Biophysics,2003,415(2):251~256.
    [21]Li Y, Trush M A. Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun, 1998,253(2):295~299.
    [22]Holland P C, Clark M G, Bloxham D P, et al. Mechanism of action of the hypoglycemic agent diphenyleneiodonium. Journal Of Biological Chemistry,1973,248(17):6050~6056.
    [23]Eli Finkelstein G M R A. Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. journal of the American chemistry society,1980,102:4994~4999.
    [24]Vile G F, Tyrrell R M. Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin. Journal Of Biological Chemistry,1993,268(20):14678~14681.
    [25]Arroyo C M, Kramer J H, Leiboff R H, et al. Spin trapping of oxygen and carbon-centered free radicals in ischemic canine myocardium. Free Radic Biol Med,1987,3(5):313~316.
    [26]Mercer A E, Maggs J L, Sun X M, et al. Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds. Journal Of Biological Chemistry,2007,282(13):9372~9382.
    [27]Khan N, Wilmot C M, Rosen G M, et al. Spin traps:in vitro toxicity and stability of radical adducts. Free Radic Biol Med,2003,34(11):1473~1481.
    [28]Griendling K K, Minieri C A, Ollerenshaw J D, et al. Angiotensin Ⅱ stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circulation Research, 1994,74(6):1141~1148.
    [29]O'Donnell B V, Tew D G, Jones O T, et al. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochemical Journal, 1993,290 (Pt 1):41-49.
    [30]Li Y, Trush M A. Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun, 1998,253(2):295~299.
    [31]Vasquez-Vivar J, Hogg N, Pritchard K J, et al. Superoxide anion formation from lucigenin:an electron spin resonance spin-trapping study. Febs Letters,1997,403(2):127~130.
    [32]Mojovic M, Vuletic M, Bacic G G, et al. Oxygen radicals produced by plant plasma membranes:an EPR spin-trap study. Journal Of Experimental Botany, 2004,55(408):2523~2531.
    [33]Frejaville C, Karoui H, Tuccio B, et al.5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide:a new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen-centered radicals. Journal Of Medicinal Chemistry,1995,38(2):258~265.
    [34]Andrew D. Burdick J W D I. Benzo(a)pyrene Quinones Increase Cell Proliferation, Generate Reactive Oxygen Species, and Transactivate the Epidermal Growth Factor Receptor in Breast Epithelial Cells. Cancer Research,2003,63(7825).
    [1]Royall J A, Ischiropoulos H. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Archives Of Biochemistry And Biophysics,1993,302(2):348~355.
    [2]Williamson D H, Lund P, Krebs H A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochemical Journal, 1967,103(2):514~527.
    [3]Schafer F Q, Buettner G R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med,2001,30(11):1191~ 1212.
    [4]Degl'Innocenti D, Rosati F, Iantomasi T, et al. GSH system in relation to redox state in dystrophic skin fibroblasts. Biochimie,1999,81(11):1025~1029.
    [5]Carl P. LeBel H I S C. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical Research In Toxicology, 1992,5(2):227~231.
    [6]Oseph Howa A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biology And Medicine,1999,27(5):612~616.
    [7]Nataliya Rohr-Udilovaa K S B M. Cytotoxicity of novel derivatives of the spin trap EMPO. Bioorganic & Medicinal Chemistry Letters,2006,16(3):541~546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700