峨眉山二叠纪地幔柱岩浆铜镍铂族硫化物矿床成矿体系—西伯利亚地幔柱和金川矿床对比
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍、铜和铂族元素(PGE)是十分重要的战略资源,地幔柱岩浆成矿作用是Cu-Ni-PGE硫化物矿床的重要成矿机制。峨眉山二叠纪地幔柱与西伯利亚地幔柱形成时间相近,形成了Fe-Ti-V氧化物矿床和Ni-Cu-PGE硫化物矿床两种类型完全不同的矿床,但发现的Ni-Cu-PGE硫化物矿床资源量远比不上西伯利亚大火成岩省。本论文选择峨眉山大理地区的苦橄岩、玄武岩和凝灰岩及镍铜铂族硫化物矿床(朱布、力马河和青矿山矿床等),通过系统的矿物学、岩石学、锆石U-Pb年代学、主-微量元素、铂族元素、Sr-Nd-Hf同位素和流体化学组成及C-He-Ar同位素组成系统研究,对比西伯利亚地幔柱成因Noril'sk-Talnakh铜镍铂族硫化物矿床和我国金川超大型Cu-Ni-PGE硫化物矿床的成矿因素和构造环境,揭示了峨眉山地幔柱铜镍铂族硫化物矿床成矿的控制因素和深部动力学,探讨了流体化学组成、稀有气体同位素及碳同位素示踪体系与岩石地球化学相结合来研究大陆苦橄质及高镁玄武岩浆的来源及演化的方法的适用性。取得了如下主要研究成果:
     1.通过锆石U-Pb年龄及Hf同位素确定宾川北部新鲜的苦橄岩为峨眉山地幔柱的产物,确证这些归属存在争议的苦橄岩是研究峨眉山地幔柱起源及演化理想的样品。峨眉山大火成岩省宾川北部新鲜的苦橄岩形成时代被质疑为三叠纪或新生代,选择与苦橄岩-玄武岩密切共生的安山质凝灰岩进行锆石U-PbSHRIMP定年和Hf同位素研究,确认最年轻的锆石206Pb/238U平均谐和年龄为256.2±.4Ma, εHf (-0.5~6.6)与峨眉山大火成岩省锆石的εHf值一致,与峨眉山苦橄岩具有相似的橄榄石Fo-Ni-Mn组成和全岩Th/Nb和Ti/Dy比值,与新生代富橄榄石钾质岩墙相比具有明显不同的Fo-Ni-Mn相关性及较低的Th/Nb和较高的Ti/Dy比值,表明这些归属存存争议的苦橄岩是峨眉山大火成岩省组成的一部分。
     2.确认峨眉山大火成岩省铜镍硫化物矿床成矿母岩浆是苦橄质岩浆分异演化的产物,并在深部发生过硫化物熔离。岩浆矿床橄榄石Ni亏损,成矿母岩浆与峨眉山苦橄岩搬运岩浆(基质)具有相似的MgO/FeO比值。橄榄石Fo值与Ni含量正相关表明其成分变化受分离结晶作用控制,负相关表明橄榄石与硫化物熔浆发生了Fe-Ni交换。朱布和力马河岩体的橄榄石Fo值与Ni含量均存在正、负两种相关性,青矿山岩体橄榄石现有数据Fo值与Ni含量具正相关性。在Fo值相同时,成矿岩体橄榄石Ni含量都低于苦橄岩中橄榄石的Ni含量,表明成矿岩体在橄榄石结晶之前岩浆发生过硫化物熔离。
     3.峨眉山铜镍硫化物矿床镁铁-超镁铁质岩的主量元素组成受控于岩浆矿物组成,微量元素和Sr-Nd同位素组成揭示成矿岩浆起源于地幔柱系统,上升和就位过程中受到不同程度的地壳物质混染。超镁铁质岩主量元素成分主要受控于橄榄石和辉石,辉长岩受控于辉石和斜长石,辉长闪长岩受控于斜长石、单斜辉石、角闪石、黑云母及铁钛氧化物。成矿岩体富集大离子亲石元素和轻稀土元素,明显亏损Nb;随岩石基性程度降低,微量元素富集程度增大。单斜辉石(87Sr/86Sr)i和CNd(t)具有亏损地幔的特征。Sr-Nd端元混合模拟计算表明朱布和力马河铜镍硫化物矿床地幔柱起源的岩浆中有15-20%的上地壳物质的加入,Nb/Th-Th/Yb比值计算表明青矿山矿床母岩浆经历了10%的地壳混染。
     4.峨眉山铜镍硫化物矿床镁铁-超镁铁质岩母岩浆PGE含量不同程度地低于苦橄岩,表明不同矿床的母岩浆在深部经历过不同程度硫化物熔离作用。成矿岩体全岩Pd/Ir比值较苦橄岩略高,揭示存在橄榄石和铬尖晶石的分离结晶。朱布铜镍铂族硫化物矿床的母岩浆PGE含量相对其它矿床更高。模拟计算表明朱布母岩浆含有7ppb Pd.9.3ppb Pt和0.8ppb Ir,略低于峨眉山苦橄岩。硫化物熔离时R因子(岩浆与硫化物质量比)变化于100-6000之间。
     5.地幔柱岩浆铜镍硫化物矿床流体挥发份组成指示成矿岩浆具有相对还原的流体介质环境,S饱和的途径可能不同。峨眉山大火成岩省朱布和西伯利亚Noril'sk铜镍铂族硫化物矿床成矿岩体中橄榄石和单斜辉石的流体挥发份对比研究表明,流体组分均以H20为主;母岩浆中H20含量估算表明,朱布矿床约0.39wt.%(96%), Noril'sk矿床约0.6wt.%。朱布母岩浆中流体组分H2和CO2含量较高;Noril'sk矿床CO2含量较高(65%),H2含量高,可检测到He。成矿岩浆早期流体挥发份平均含量为2589mm3.STP/g,朱布以N2(27%)和CO2(26%)为主,Noril'sk矿床以H20为主,硫的含量明显增加。成矿岩浆晚期流体总量明显增加,平均含量为10171.34mm3.STP/g,朱布以H2(53%)和CO2(23%)为主,Noril'sk矿床H2和H2S含量明显增加。CO/CO2比值表明岩浆起源于相对还原的环境,成矿阶段的流体更加还原,晚期流体相对较为氧化。岩浆上升过程中捕获了大量的含硫还原性流体组分。朱布矿床C02和CH4的碳同位素组成(分别为-44.85--22.83‰和-22.9‰~-7.01‰)具地壳和地幔混合特征,而Noril'sk矿床C02和CH4碳同位素较低,为地壳特征。表明Noril'sk与朱布矿床相比地壳混染程度更高。
     6.确定地幔柱岩浆铜镍硫化物矿床成矿岩浆演化过程中硫饱和的主要控制因素明显不同。含矿岩体的微量元素和同位素特征表明,与Noril'sk矿床以围岩硫加入不同,峨眉山大火成岩省铜镍硫化物矿床地壳物质混染是硫化物熔离成矿的关键因素。朱布含矿侵入体的形成经历了早期的岩浆通道阶段(边部带)和晚期的就位分离结晶阶段(中心层状杂岩体)。硫化物的熔离与成矿主要发生在通道阶段,在分离结晶阶段形成次要的硫化物矿化,不混熔的硫化物珠滴与流过通道的新岩浆不同程度发生反应。金川超大型铜镍硫化物矿床He和Ar同位素组成及模式计算表明成矿岩浆是地幔柱与大陆岩石圈地幔共同作用的结果,其中加入了20%的地壳流体和63%的大气饱和水,深循环地壳流体是硫饱和的重要因素。
     7.地幔柱大规模岩浆作用为超大型铜镍硫化物矿床成矿准备了充分的成矿金属,峨眉山地幔柱铜镍硫化物矿床成矿深部动力学特征与NOril'sk和金川超大型矿床相似,具有较好的找矿潜力。朱布铜镍硫化物矿床辉长岩中锆石U-Pb年龄263.2±5.6Ma,εHf《t)值(-3.05-+3.61)表明其岩浆源区与Noril'sk相似,主要以地幔柱为主,存在少量地壳物质的混染。锆石U-Pb定年和Hf同位素研究表明金川铜镍硫化物矿床是华北克拉通边缘的裂谷环境高镁岩浆作用的产物,二辉橄榄岩中锆石U-Pb年龄为821±11Ma,εHf(t)值(-11~-5)表明岩浆起源于地幔柱,存在大陆岩石圈地幔的混染。在峨眉山大火成岩省寻找铜镍硫化物矿床首先应该寻找类似朱布的基性超基性岩体,然后查明这些岩体的岩浆通道。
Nickel, copper and platinum group elements (PGE) are important metals. These metals mainly come from magmatic sulfide deposits. Some of these deposits are related to mantle plume activity in a continental setting. The Emeishan and Siberian large igneous provinces (LIP) are both formed by mantle plume in the Permian. However, these two LIPs host different types of magmatic deposits. The former mainly hosts many world-class Fe-Ti-V oxide deposits whereas the latter hosts several world-class Ni-Cu-PGE sulfide deposits. Several magmatic Ni-Cu-PGE sulfide deposits have been also found in the Emeishan LIP but they are much smaller than those in the Siberian LIP. Nonetheless, the Ni-Cu-PGE sulfide deposits in the Emeishan LIP are useful for a study of genetic relationships between mantle plume activity and Ni-Cu-PGE sulfide mineralization. Furthermore, a better understanding on the origin of these deposits is helpful to the on-going mineral exploration in the region. Hence, a comparative study of the Ni-Cu-PGE deposits in the Emeishan LIP, the Noril'sk deposits in Siberian LIP and the Jinchuan Ni-Cu deposit in North China Craton have been carried out using integrated approaches including geochronology, mineralogy, petrology and geochemistry of major, trace elements, PGE and C-He-Ar and Sr-Nd-Hf isotopes. The data of volatiles, noble-gas isotopes and carbon isotopes from this study provide new insight into magma-crust interaction during continental basaltic magmatism, which forms another part of this thesis. The most important conclusions from this study are summarized below.
     1. The Binchuan picrites associated with Emeishan flood basalts in NW Yunnan have been confirmed as a part of Emeishan LIP by zircon U-Pb SHRIMP age of256.2±1.4Ma for the andesitic tuff interlayer. Hence, these picrites can be used to investigate the nature of the Emeishan mantle plume. Some researchers believe that the Binchuan picrites associated with flood basalts in NW Yunnan are the integral parts of the Permian Emeishan LIP whereas others believe that they are Triassic picritic porphyrites or Cenozoic olivine-rich dikes. The zircon U-Pb SHRIMP age of256.2±1.4Ma for the andesitic tuff within the Binchuan volcanic succession which contains the age-disputed picrites is within the range of ages for the Emeishan LIP. The εHf values (-0.5to6.6) of comagmatic zircons (-256Ma) from the andesitic tuff of the Binchuan volcanic succession are within the range (-5to10) of zircons from the Emeishan LIP. The age-disputed picrites and the undisputed Emeishan picrites have similar olivine Fo-Ni-Mn compositions and whole-rock trace element ratios such as Th/Nb and Ti/Dy. The Cenozoic olivine-rich dikes in SW Sichuan and NW Yunnan can be distinguished from the picrites associated with the Emeishan flood basalts by different olivine Fo-Ni-Mn correlations and whole-rock trace element ratios. The results from this study confirm that the age-disputed picrites in NW Yunnan and SW Sichuan belong to the Permian Emeishan LIP.
     2. Depletion of Ni is olivine from the Ni-Cu-PGE sulfide deposits such as Zhubu, Limahe and Qingkuangshan in the Emeishan LIP indicates a previous sulfide segregation event which took place at depth. Olivine compositions show that the most primitive parental magmas of these deposits have MgO/FeO ratios similar to the transporting magma (i.e., groundmass) of the Emeishan picrites. Both positive and negative Fo-Ni correlations of olivines are observed in the Zhubu and Limahe deposits. Only positive Fo-Ni correlation has been found in the Qingkuangshan deposit. At a given Fo content, the Ni contents of olivines from these deposits are significantly lower than that of olivines from the Emeishan picrites with the same Fo contents, indicating the olivines in these deposits crystallized from a Ni-depleted magma due to previous sulfide segregation at depth.
     3. The whole-rock major element compositions of the Emeishan Cu-Ni-PGE sulfide deposits are controlled by the types and abundances of major minerals. Whole-rock trace elements and Sr-Nd isotopes indicate that their parental magmas originated from mantle plume and were subsequently contaminated by variable proportions of crustal materials during magma ascent and emplacement. The compositions of ultramafic rocks in the host intrusions are mainly controlled by the abundances of olivine and pyroxenes; the compositions of coexisting gabbros are mainly controlled by the abundances of pyroxenes and labradorite; the compositions of coexisting gabbrodiorites are mainly controlled by the abundances of andesine, clinopyroxene, hornblende, biotite and Fe-Ti oxides. The intrusive rocks are all characterized by enrichments of large ion lithophile elements (LILE) plus light rare earth elements (LREE) and by significant Nb depletion. The Sr-Nd isotopes of clinopyroxene separates show the parental magmas have mantle-plume signatures. The Pd/Ir ratios in the sulfide-bearing intrusive rocks are variably lower than that in the Emeishan picrites, consistent with fractional crystallization of olivine and Cr-spinel from the parental magmas prior to the sulfide segregation which formed the deposits. Mixing calculation using Sr-Nd isotope data indicate15to20wt.%crustal contamination for the parental magmas of the Zhubu and Limahe intrusions. The ratios of Nb/Th and Th/Yb in whole rocks show that the Qingkuangshan parental magma was contaminated by~10wt.%crustal materials.
     4. The PGE contents in parental magmas of the Ni-Cu-PGE sulfide deposits in the Emeishan LIP are variably lower than that in the coeval Emeishan picrites. which indicate the parental magmas of the different deposits experienced various degrees of previous sulfide segregation at depth. The ratios of whole-rock Pd/Ir in these deposits are slightly higher tlian that of the Emeishan picrites, indicating that fractional crystallization of olivine and Cr-spinel played a role in PGE fractionation in the parental magmas. The estimated PGE contents in the parental magma of the Zhubu Ni-Cu-PGE deposit are slightly higher than that in the other deposits. The contents of PGE in the parental magma of the Zhubu deposit are estimated to be7ppb Pd,9.3ppb Pt and0.8ppb Ir. The compositional variations of bulk sulfides in the Zhubu deposit can be modeled by sulfide segregation from such magma with R factor (magma/sulfide mass ratio) varying from100to6000. The PGE tenors (i.e.,recalculated to100%sulfide) of the sulfide ores in the Qingkuangshan and Limahe deposits are much lower than those of the sulfide ores in the Zhubu deposit. This indicates that the parental magmas of the Qingkuangshan and Limahe deposits are more depleted in PGE than that of the Zhubu deposit.
     5. The volatiles released from olivine and clinopyroxene separates from the Zhubu and Nori'sk Ni-Cu-PGE sulfide deposits indicate that the parental magmas of these two deposits are similarly originated from reduced sources, and the mechanism for sulfur saturation may have been different for the different deposits. H2O is a dominant component in the volatiles released from the mineral separates from both deposits. The estimated H2O contents in the parental magmas of the Zhubu and Noril'sk deposits are0.39wt.%and0.6wt.%, respectively. H2and CO2contents are relatively high in the Zhubu and Noril'sk volatiles. Sulfur is low in the volatiles from both deposits. He is detectable in Noril'sk volatiles. The total contents of volatiles released at temperature>400℃are2589mm3.STP/g on average. N2(27%) and CO2(26%) are main components of volatiles released from the Zhubu samples. H2O is the main component of volatiles released from the Noril'sk samples. Sulfur contents in the volatiles increase with releasing temperatures. The total volatile contents at each releasing stage are up to10171.34mm3.STP/g. H2(53%) and CO2(23%) are main components of the volatiles from the Zhubu samples. The H2and H2S contents are higher in the volatiles released from the Noril'sk sample. The variation of CO/CO2with releasing temperature indicates that the parental magmas of both deposits changed from relatively reduced to more oxidized on cooling. The results also show that sulfur-bearing volatiles were transported by ascending magma. The carbon isotopes of CO2and CH4of volatiles from the Zhubu samples are from-44.85%o to-22.83‰and from-22.9‰to-7.01‰, respectively. These data indicate mixing between mantle and crust. The isotopic values of the Noril'sk samples are much lower, indicating a dominant crustal origin.
     6. The different Cu-Ni-PGE sulfide deposits associated with mantle plume magmatism could have formed by sulfide saturation in magma induced by fractional crystallization, sulfur addition, or/and crustal contamination. Based on trace elements and isotopes, it is proposed that sulfide saturation in the parental magma of the Emeishan Cu-Ni-PGE sulfide deposits was mainly triggered by crustal contamination, although the sulfur saturation in Noril'sk parental magma may have been caused by assimilating anhydrite. The formation of the Zhubu intrusion can be explained by two stages:a conduit stage for the sulfide ore-bearing marginal zone and an in situ differentiation stage for the layered sequence. Important sulfide segregation mainly occurred at the conduit stage. Highly variable metal tenors of bulk sulfides in the marginal zone indicate a dynamic magma-passing system for this zone. Comparatively,sulfur saturation was triggered by significant amounts of crustal fluids in Jinchuan Cu-Ni-PGE sulfide deposit. This is indicated by the results of He and Ar isotopic mixing calculations, which show that about20%crustal fluid and63%air saturated fluid were added into mantle-derived magma for the Jinchuan intrusion.
     7. Mantle plume magmatism in continental settings is ideal for the formation of giant magmatic Cu-Ni-PGE sulfide deposits. The Cu-Ni-PGE sulfide deposits in the Emeishan and Siberian LIPs and the Jinchuan Ni-Cu sulfide deposit share some similarities in sulfide concentration mechanisms. In these deposits, flow differentiation played a critical role in sulfide-liquid accumulation. The zircon U-Pb SHRIMP age for the Zhubu deposit is263.2±5.6Ma. The εHf values (-3.05to3.61) of comagmatic zircons (~263Ma) from this deposit indicate a mantle plume-derived magma with minor crustal contamination. The lower part of the marginal zone of the Zhubu intrusion could have been brought up by faulting and hence future exploration in Zhubu area should look for such a target. At the regional scale, it is important to look for mafic-ultramafic intrusions with ages and petrological characteristics that are similar to that of the Zhubu deposit. The εHf values (-11to-5) of comagmatic zircons with U-Pb age of821±11Ma from the Jinchuan ore-bearing mafic-ultramafic intrusion indicate interaction of mantle plume with sub-continental lithospheric mantle during magmatism.
引文
Ali JR, Lo C-H, Thompson GM, et al. Emeishan basalt Ar-Ar overprint ages define several tectonic events that affected the western Yangtze platform in the Mesozoic and Cenozoic[J]. J. Asian Earth Sci.,2004,23:163-178.
    Allegre CJ, Staudacher T, Sarda P. Rare gas systematics:formation of the atmosphere, olution and structure of Earth's mantle [J]. Earth Planet. Sci. Lett.,1987,81:127-150.
    Amelin Y, Lee DC, Halliday AN. Early-middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains [J]. Geochim. Cosmochim. Acta,2000, 64:4205-4225.
    Amelin Y, Li C, Naldrett AJ. Geochronology of the Voisey's Bay intrusion, Labrador, Canada, by precise U-Pb dating of coexisting baddeleyite, zircon and apatite [J]. Lithos,1999,47: 33-51.
    Anders E, Grevesse N, Abundances of the elements:meteoritic and solar [J]. Geochim. Cosmochim. Acta,1989,53:197-214.
    Arndt NT, Christensen U.The role of lithospheric mantle in continental floodvolcanism-thermal and geochemical constraints[J]. Journal of Geophysical Research, Solid Earth, 1992,97:10967-10981.
    Arndt NT, Czamanske GK, Walker RJ, et al.2003. Geochemistry and origin of the intrusive hosts of the Noril'sk-Talnakh Cu-Ni-PGE sulfide deposits. Econ. Geol.,2003,98: 495-515.
    Arndt NT, Insights into the geologic settings and origin of Ni-Cu-PGE sulfide deposits of the Noril'sk-Talnakh region, Siberia. In:Li C, and Ripley EM, ed., Magmatic Ni-Cu and PGE Deposits [M]. Rev. Econ. Geol.,2011,17:199-215.
    Arndt NT, Lesher CM, Czamanske GK. Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits [J]. Econ. Geol.,2005,34(1):5-24.
    Bai M, Zhong H, Zhu W, et al. Platinum-Group element geochemical characteristics of the picrites and high-Ti basalts in the Binchuan area, Yunnan province[J]. Acta Geol. Sin., 2013,87:158-175.
    Ballentine CJ, and Burnard PG. Production, release and transport of noble gases in the continental crust, in:Porcelli DP, Ballentine CJ, Wieler R (Eds.), Noble Gases Geochemistry and Cosmochemistry. Rev. Mineral. Geochem.,2002,47:481-538
    Barnes SJ, and Lightfood PC. Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group element contents [J]. Econ. Geol.,2005,100: 179-213.
    Barnes S-J, and Maier WD. The fractionation of Ni, Cu, and the noble metals in silicate and sulfide liquids[J]. Geological Association of Canada Short Course Notes,1999,13: 69-106.
    Barnes SJ, Couture JF, Sawyer EW, et al. Nickel-copper occurrences in the Belleterre-Angllers belt of the Pontiac subprovince and the use of Cu/Pd ratios in interpreting platinum-group element distributions[J]. Econ. Geol.,1993,88(6):1402-1418.
    Barnes SJ. The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions [J]. Contrib. Mineral. Petrol.,1986,93 (4):524-531.
    Beccaluva L, Bianchini G, Natali C, et al. Continental flood basalts and mantle plumes:A case study of the northern Ethiopian Plateau [J]. J. Petrol.,2009,50:1377-1403.
    Benkert JP, Baur H, Signer P et al. Helium, neon, and argon from the solar wind and solar energetic particles in lunar ilmentes and pyroxenes[J]. J. Geophs. Res.,1993,98: 13147-13162.
    Berner RA.Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling[J]. Proc. Natl. Acad. Sci.2002,99:4172-4177.
    Black BA, Elkins-Tanton LT, Rowe MC, et al. Magnitude and consequences of volatile release from the Siberian Traps[J]. Earth Planet. Sci. Lett.2012,317-318:363-373.
    Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth Planet. Sci. Lett.,1997,148:243-258.
    Boven A, Pasteels P, Punzalan LE, et al.40Ar/39Ar Geochronological constrains on the age and evolution of the Permo-Triassic Emeishan volcanic province, Southwest China[J]. J. Asian Earth Sci.,2002,20:157-175.
    Burgisser A, Scaillet B, Harshvarhan H. Chemical patterns of erupting silicic magmas and their influence on the amount of degassing during ascent[J]. J. Geophy.l Res. B,2008,113, B12204-B12217.
    Campbell I H, Czamanske G K, Fedorenko V A, et al. Synchronism of the Siberian traps and the Permian-Triassic boundary[J]. Science,1992,258:1760-1763.
    Campbell IH, and Naldrett AJ. The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides[J]. Econ. Geol.,1979,74 (6):1503-1506.
    Cawood PA, Wang Y. Xu Y, et al. Locating South China in Rodinia and Gondwana:A fragment of greater India lithosphere [J]? Geology,2013,41:903-906.
    Chen J, and Jahn B-M. Crustal evolution of southeastern China:Nd and Sr isotopic evidence [J]. Tectonophysics,1998,284:101-133.
    Chenet AL, Quidelleur X, Fluteau F, et al.40K-40Ar dating of the Main Deccan large igneous province:Further evidence of KTB age and short duration[J]. Earth Planet. Sci. Lett., 2007,263:1-15.
    Chung SL, and Jahn BM. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary [J]. Geology,1995,23:889-892.
    Chung S-L, Jahn B-M, Genyao W, et al. The Emeishan flood basalt in SW China. In:Flower MFJ, Chung S-L, Lo C-H, Lee T-Y (Eds.), Mantle dynamics and plate interactions in East Asia[M]. Am. Geophys. Union Geodynamic Series,1998,27:47-58.
    Compston W, Williams IS, and Black LP. Use of the ion microprobe in geological dating[M]. In:BMR 82. Year book of Bureau of Mineral Resources, Geology and Geophysics, Australian Government Publishing Service, Canberra,1982,39-42.
    Czamanske GK, Zen'ko TE, Fedorenko VA, et al. Petrographic and geochemical characterization of ore-bearing intrusions of the Noril'sk-type, Siberia:with discussion of their origin[J]. Resour. Geol. Special,1995,18:1-48.
    DarbyBJ, Gehrels GE. Detrital zircon reference for the North China block[J].J.Asian Earth Sci., 2006,26:637-648.
    Day JMD, Pearson DG, Taylor LA. Highly Ssiderophile Eelement Cconstraints on Aaccretion and Ddifferentiation of the Earth-Moon Ssystem [J]. Science,2007,315(5809):217-219.
    Demeny A, Vennemann TW, Hegner E, et al. H, O, Sr, Nd, and Pb isotopic evidence for recycled oceanic crust in the Transitional Volcanic Group of Fuerteventura, Canary Islands, Spain [J]. Chem. Geol.,2004,205:37-54.
    Deng Q, Wang J, Wang Z-J, et al. Continental flood basalts of the Huashan Group, northern margin of the Yangtze block-implications for the breakup of Rodinia [J]. Int. Geol. Rev., 2013,55:1865-1884.
    Dixon DE, Clague DA. Volatiles in basaltic glasses from Loihi Seamount, Hawaii:Evidence for a relatively dry plume component[J]. J. Petrology,2001,42 (3):627-654.
    Elkins-Tanton LT, Draper DS, Agee CB, et al. The last lavas erupted during the main phase of the Siberian flood volcanic province [J]. Contrib. Mineral. Petrol.,2007,153:191-209.
    Ernst RE, and Buchan KL. Recognizing mantle plumes in the geological record[J]. Annu. Rev. Earth Planet. Sci.,2003,31:469-523.
    Evans DAD. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction, in Murphy, J.B., et al., eds., Ancient orogens and modern analogues[M]. Geological Society of London Special Publication,2009,327:371-404.
    Faggart BE, and Basu AR. Origin of the Sudbury complex by meteoritic impact:Neodymium isotopic evidence [J]. Science,1985,230:436-459.
    Fan W-M, Wang Y-J, Peng T-P, et al. Ar-Ar and U-Pb geochronology of Late Paleozoic basalts in western Guangxi and its constraints on the eruption age of Emeishan basalt magmatism [J]. Chin. Sci. Bull.,2004,49(21):2318-2327.
    Fan WM, Zhang CH, Wang YJ, et al. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China:Evidence for plume-lithosphere interaction [J]. Lithos,2008,102:218-236.
    Fleet ME, and Wu TW. Volatile transport of precious metal at 1000℃:Speciation, fractionation, and effect of base-metal sulfide[J]. Geochim. Cosmochim. Acta,1995,59:487-495.
    Fleet ME, Crocket JH, Stone WE. Partition of platinum group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt [J]. Geochim. Cosmochim. Acta,1996,60(13): 2397-2412.
    Fu P, Tang Q, Zhang M, et al. The ore genesis of Kalatongke Cu-Ni Sulfide Deposit, west China: Constrains from volatile chemical and carbon isotopic compositions [J]. Acta Geol. Sin.-Engl.,2012,86(3):568-578.
    Ganino C, Arndt NT, Zhou M F, et al. Interaction of magma with sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion, SW China [J]. Miner. Deposita, 2008,43:677-694.
    Ganino C, Arndt NT. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces [J]. Geology,2009,37:323-326.
    Griffin WL, Pearson NJ, Belousova E, et al. The Hf isotope composition of cratonic mantle [J]. Geochim. Cosmochim. Acta,2000,64:133-147.
    Guo F, Fan W, Wang Y, et al. When did the Emeishan mantle plume activity start? [J]. Int. Geol. Rev.,2004,46:226-234.
    Handley HK, Turner S, Macpherson CG, et al. Hf-Nd isotope and trace element constraints on subduction inputs at island arcs [J]. Earth Planet. Sci. Lett.,2011,304:212-223.
    Hanski E, Kamenetsky VS, Luo Z-Y, et al. Primitive magmas in the Emeishan Large Igneous Province southwestern China and northern Vietnam [J]. Lithos,2010,119:75-90.
    Hanski E, Walker RJ, Huhma H, et al. Origin of the Permo-Triassic komatiites, northwestern Vietnam[J]. Contrib. Mineral. Petrol.,2004,147:453-469.
    Hart SR, and Dunn T. Experimental cpx/melt partitioning of 24 trace elements [J]. Contrib. Mineral. Petrol.,1993,113:1-8.
    Haughton DR, Roeder PL, and Skinner BJ. Solubility of sulfur in mafic magmas [J]. Econ. Geol.,1974,69(3):451-467.
    Hauri EH, Wagner TP, Grove TL. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts [J]. Chem. Geol.,1994, 117:149-166.
    Hawkesworth CJ, Lightfoot PC, Fedorenko VA, et al. Magma differentiation and mineralization in the Siberian flood basalts[J]. Lithos,1995,34:61-88.
    He B, Xu Y-G, Huang X-L, et al. Age and duration of the Emeishan flood volcanism SW China [J]. Earth Planet. Sci. Lett.,2007,255:306-323.
    He Q, Xiao L, Balta B, et al. Variety and complexity of the Late-Permian Emeishan basalts: reappraisal of plume-lithosphere interaction processes [J]. Lithos,2010,119:91-107.
    Herzberg C, and Gazel E. Petrological evidence for secular cooling in mantle plumes [J]. Nature, 2009,458:619-622.
    Hill R, and Roeder P. The Crystallization of spinel from basaltic liquid as a function of oxygen fugacity [J]. J. Geol.,1974,82:709-729.
    Honda M, McDougall I, Patterson DB, et al. Possible solar noble-gas component in Hawaiian basalts [J]. Nature,1991,349:149-151
    Hoskin PWO, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis [J]. Rev. Mineral. Geochem.,2003,53:27-62.
    Hou T, Zhang Z, Kusky T, et al. A reappraisal of the high-Ti and low-Ti classification of basalts and petrogenetic linkage between basalts and mafic-ultramafic intrusions in the Emeishan Large Igneous Province, SW China [J]. Ore Geol. Rev.,2011,41:133-143.
    Hou T, Zhang ZC, Encarnacion J, et al. Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe-Ti-oxide ores in the Panxi district, Emeishan Large Igneous Province, southwest China [J]. Ore Geol. Rev.,2012,49:109-127.
    Huang K, and Opdyke ND. Magnetostratigraphic investigations of an Emeishan basalt section in western Guizhou Province, China [J]. Earth Planet. Sci. Lett.,1998,163:1-14.
    Huang X-L, Niu Y, Xu Y-G, et al. Mineralogical and geochemical constraints on the petrogenesis of post-collisional potassic and ultrapotassic rocks from western Yunnan, SW China [J]. J. Petrol.,2010,51:1617-1654.
    Irvine TN. Crystallization sequences of the Muskox intrusion and other layered intrusions:II. Origin of chromitite layers and similar deposits of other magmatic ores [J]. Geochim. Cosmochim. Acta,1975,39(6-7):991-1008.
    Jana D, and Walker D. Core formation in the presence of various C-H-O volatile species [J]. Geochim. Cosmochim. Acta,1999,63:2299-2310.
    Javoy M, and Pineau F. The volatiles record of a "poping" rock from the Mid-Atlantic Ridge at 14°N[J]. Earth Planet. Sci. Lett.,1991,107:598-611.
    Kamenetsky VS, Chung S-L, Kamenetsky MB, et al. Picrites from the Emeishan Large Igneous Province SW China [J]. J. Petrol.,2012,53:2095-2113.
    Kamenetsky VS, Everard JL, Crawford AJ, et al. Enriched end-member of primitive MORB melts:petrology and geochemistry of glasses from Macquarie Island (SW Pacific) [J]. Journal of Petrology,2000,41:411-430.
    Kamo SL, Czamanske GK, Amelin Y, et al. Rapid eruption of Siberian flood volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma [J]. Earth Planet. Sci. Lett.,2003,214:75-91.
    Kamo SL, Czamanske GK, Krogh TE. A minimum U-Pb age for Siberian flood-basalt volcanism[J]. Geochim. Cosmochim. Acta,1996,60:3505-3511.
    Keays RR, and Lightfoot PC. Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits[J]. Miner. Deposit.,2010,45:241-257.
    Keays RR. The role of komatiitic and picritic magmatism and S-saturationin the formation of ore deposits [J]. Lithos,1995,34(1):1-18.
    Kennedy BM, Hiyagon H, and Reynolds JH. Crustal neon:a striking uniformity[J]. Earth Planet. Sci. Lett.,1990,98:277-286
    Kou C, Zhang Z, Santosh M, et al. Picritic porphyrites generated in a slab-window setting[J]. Lithos,2012,155:375-391.
    Lambert DD, Foster JG, Frick LR, et al. Geodynamics of magmatic Cu-Ni-PGE sulfide deposits: new insights from the Re-Os isotope system [J]. Econ. Geol.,1998,93 (2):121-136.
    Lambert DD, Frick LR, Foster JG, et al. Re-Os isotopic systematics of the Voisey's Bay Ni-Cu-Co magmatic sulfide system, Labrador, Canada [J]. Econ. Geol.,2000,95 (4):867-888.
    Laznicka P. Quantitative relationships among giant deposits of metals[J]. Econ. Geol.,1999,94 (4):455-473.
    le Roux PJ, le Roex AP, Schilling JG., et al. Mantle heterogeneity beneath the southern Mid-Atlantic Ridge [J]. Earth Planet. Sci. Lett.,2002,203:479-498.
    Leavitt SW. Annual volcanic carbon dioxide emission:an estimate from eruption chronologies[J]. Environ Geol.1982,4:15-21.
    Lehmann J, Arndt N, Windley B, et al. Field relationships and geochemical constraints on the emplacement of the Jinchuan intrusion and its Ni-Cu-PGE sulfide deposit, Gansu, China[J]. Econ. Geol.,2007,102:75-94.
    Lesher CM, and Campbell IH. Geochemical and fluid dynamic controls on the composition of Komatiite-hosted nickel sulphide ores in Western Australia [J]. Econ. Geol.,1993,88(4): 804-816.
    Li C, and Naldrett AJ. The geology and petrology of the Voisey's Bay intrusion:Reaction of olivine with trapped sulfide and silicate liquids [J]. Lithos,1999,47:1-31.
    Li C, and Ripley EM. Empirical equations to predict the sulfur content of mafic magma at sulfide saturation and applications to magmatic sulfide deposits [J]. Mineral. Deposit., 2005,40(2):218-230.
    Li C, Chen F, Li X. Precise isotopic measurements of sub-nanogram Nd of standard reference material by thermal ionization mass spectrometry using the NdO+ technique [J]. Int. J. Mass Spectrometry,2007,266:34-41.
    Li C, Maier WD, de Waal SA. Magmatic Ni-Cu versus PGE deposits:contrasting genetic controls and exploration implication[J]. S. African J. Geol.2001,104:309-318.
    Li C, Ripley EM, Naldrett AJ, et al. Magmatic anhydrite-sulfide assemblages in the plumbing system of the Siberian Traps[J]. Geology,2009a,37(3):259-262.
    Li C, Ripley EM, Naldrett AJ. A new genetic model for the giant Ni-Cu-PGE sulfide deposits associated with the Siberian flood basalts[J]. Economic Geology,2009b,104:291-301.
    Li C, Ripley EM, Naldrett AJ. Compositional variations of olivine and sulfur isotopes in the Noril'sk and Talnakh intrusions, Siberia [J]. Econ. Geol.,2003,98:69-86.
    Li C, Ripley EM, Thakurta J, et al. Variations of olivine Fo-Ni contents and highly chalcophile element abundances in arc ultramafic cumulates, southern Alaska [J]. Chem. Geol.,2013, 351:15-28.
    Li C, Tao Y, Qi L, et al. Controls on PGE fractionation in the Emeishan picrites and basalts [J]. Geochim. Cosmochim. Acta,2012,90:12-32.
    Li C, Xu Z-H, De Waal S A, et al. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China [J]. Mineral. Deposita,2004,39(2):159-172.
    Li J, Xu JF, Suzuki K, et al. Os, Nd and Sr isotope and trace element geochemistry of the Muli picrites [J]. Lithos,2010,119,108-122.
    Li X-H, Li Z-X, Sinclair JA, et al. Revisiting the "Yanbian terrane" [J]. Precam. Res.,2006,151: 14-30.
    Li XH, Su L, Chung S-L, et al. Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni-Cu sulfide deposit[J]. Geochem., Geophy., Geosys.,2005,6, Q11004, doi:10.1029/2005GC001006.
    Li ZX, Bogdanova SV, Collins AS, et al. Assembly, configuration, and break-up history of Rodinia:A synthesis[J]. Precam. Res.,2008,160:179-210.
    Li ZX, Evans DAD, Halverson GP. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sed. Geol.,2013,294:219-232.
    Li ZX, Li XH, Kinny PD, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton South China and correlations with other continents [J]. Precam. Res., 2003,122:85-109.
    Li ZX, Li XH, Kinny PD, et al. The breakup of Rodinia:did it start with a mantle plume beneath South China [J]? Earth Planet. Sci. Lett.,1999,173:171-181.
    Lightfoot PC, Hawkesworth CJ. Flood basalts and magmatic Ni, Cu, and PGE sulphide mineralization:Comparative geochemistry of the Noril'sk (Siberian Traps) and West Greenland Sequences. In Large Igneous Provinces (eds. Mahoney JJ and Coffin MF) [M].Am. Geophys. Union Mon,1997,100:357-380.
    Lightfoot PC, and Keays RR. Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril'sk Region [J]. Econ. Geol.,2005,100:439-462.
    Lightfoot PC, and Naldrett AJ. Geological and geochemical relationships in the Voisey's Bay intrusion, Nain Plutonic Suite, Labrador, Canada [J]. Geol. As. Can. Short Course Notes, 1999,13:1-30.
    Lightfoot PC, Hawkesworth CJ, Hergt J, et al. Immobilization of the continental lithosphere by a mantle plume:Major-trace-element, and Sr-Nd- and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District, Siberian Trap, Russia[J]. Contrib. Mineral. Petrol.,1993,114(2):171-188.
    Lightfoot PC, Naldrett AJ, Gorbachev NS, et al. Geochemistry of the Siberian Trap of the Noril'sk with implications for the relative contributions of crust and mantle to flood basalt magmatism area, USSR[J]. Contrib. Mineral. Petrol.,1990,104:631-644.
    Liu YS, Gao S, Hu ZC, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen [J]. J. Petrology,2010,51:537-571.
    Lo C-H, Chung S-L, Lee T-Y, et al. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events[J]. Earth Planet. Sci. Lett.,2002,198:449-458.
    Lorand JP. Comment on"Content and isotopic composition of sulphur in ultramafic xenoliths from Central Asia" by Ionov D A, Hoefs J, Wedepohl KH and Wiechert U. Earth Planet. Sci. Lett.,1993,119 (4):627-634.
    Lowenstern JB, Mahood GA, Rivers ML. Evidence for extreme partitioning of copper into a magmatic vapor phase [J]. Science,1991,252:1505-1509.
    Lu Y-J, Kerrich R, Cawood PA, et al. Zircon SHRIMP U-Pb geochronology of potassic felsic intrusions in western Yunnan, SW China [J]. Gond. Res.,2012,22:737-747.
    Ludwig KR. User's manual for Isoplot 3.00:A geolocronolgical toolkit for Microsoft Excel[M]. Berkeley. Berkeley Geochronological Center Special Publication,2003,4:71 p.
    MacLean WH. Liquidus phase relations in the FeS-FeO-Fe3O4-SiO2 system, and their application in geology [J]. Econ. Geol.,1969,64:865-884.
    Malitch KN, Auge T, Badanina IYu., et al. Os-rich nuggets from Au-PGE placers of the Maimecha-Kotui Province, Russia [J]. Mineral. Petrol.,2002,76(1-2):121-148.
    Mavrogenes JA, and O'Neill HS. The relative effect s of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas [J]. Geochim. Cosmochim. Acta, 1999,63 (7-8):1173-1180.
    McDonough WW, and Sun SS. The composition of the Earth [J]. Chem. Geol.,1995,120: 223-253.
    Milanovskiy YY. Rift zones of the geologic past and their associated formations[J]. Report. Int. Geol Rev.,1976,18:619-639.
    Morel MLA, Nebel O, Nebel-Jacobsen YJ, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICP-MS[J]. Chem. Geol., 2008,255:231-235.
    Naldrett A J, Lightfoot P C, Fedorenko V A, et al. Geology and geochemistry of intrusions and flood basalts of the Noril'sk region, USSR, with implications for the origin of the Ni-Cu ores[J]. Econ. Geol.,1992,87:975-1004.
    Naldrett AJ. Fundamentals of magmatic sulfide deposits, in Li C, and Ripley EM, ed., Magmatic Ni-Cu and PGE Deposits [J]. Rev. Econ. Geol.,2011,17:1-50.
    Naldrett AJ. Fundamentals of magmatic sulfide deposits. In:Li C, Ripley EM, New developments in magmatic Ni-Cu and PGE deposits [M]. Geological Publishering House, Beijing,2009, p.1-26.
    Naldrett AJ. Key factors in the genesis of Noril'sk, Sudbury, Jinchuan, Voisey's Bay and other world class Cu-Ni-PGE deposits [J]. Aus. J. Earth Sci.,1997,44:281-351.
    Naldrett AJ. Magmatic Sulfide Deposits:Geology, Geochemistry and Exploration [M], Springer Verlag, Heidelberg, Berlin,2004, pp.1-727.
    Naldrett AJ. Magmatic sulphide deposits [M]. New York:Oxford Univ. Press.1989:1-186.
    Naldrett AJ. World-class Ni-Cu-(PGE) deposits [J]. Miner. Deposit.,1999,34:227-240.
    Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257- a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J]. Geostand. Geoanal. Res., 2008,32:247-265.
    Natali C, Beccaluva L, Bianchini G, et al. Rhyolites associated to Ethiopian CFB[J]. Earth Planet. Sci. Lett.,2011,312:59-68.
    Olmez I, Finnegan DL, Zoller WH. Iridium emissions from Kilauea volcano[J]. J. Geophys. Res.,1986,91 (B1):653-663.
    Osborn EF. Role of oxygen pressure in the crystallization and differentiation of basaltic magmas [J]. Am. J. Sci.,1959,257:609-647.
    Pang KN, Li C, Zhou MF, et al. Abundant Fe-Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions, SW China:Evidence for early saturation of Fe-Ti oxides in ferrobasaltic magma [J]. Contrib. Mineral. Petrol.,2008,156:307-321.
    Pang K-N, Li C, Zhou M-F, et al. Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic intrusion, SW China [J]. Lithos,2009,110:199-214.
    Pang KN, Zhou MF, Qi L, et al. Flood basaltrelated Fe-Ti oxide deposits in the Emeishan large igneous province, SW China [J]. Lithos,2010,119:123-136.
    Pavlov VE, Fluteau F, Veselovskiy RV, et al. Secular geomagnetic variations and volcanic pulses in the Permian-Triassic Traps of the Norilsk and Maimecha-Kotui Provinces[J]. Izv. Phys. Solid Earth,2011,47:402-417.
    Peach CL, Mathez EA, Keays RR. Sulfide melt silicate melt distribution coefficient s for noble metals and other chalcophile elements as deduced from MORB:Implications for partial melting [J]. Geochim. Cosmochim. Acta,1990,54 (12):3379-3389.
    Pearce J. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos,2008,100:14-48.
    Pirajno F. Ore deposits and mantle plumes. Dordrecht, Netherland:Kluwer Acad,2000, p1-556.
    Qi L, and Zhou M-F. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China[J]. Chem. Geol.,2008, 248:83-103.
    Qi L, Gao J, Huang X, et al. An improved digestion technique for determination of platinum group elements in geological samples[J]. J. Anal. Atom. Spectrom.,2011,26:1900-1904.
    Reichow MK, Saunders AD, White RV, et al. Geochemistry and petrogenesis of basalts from the West Siberian Basin [J]. Lithos,2005,79(3-4):425-452.
    Renne PR, and Basu AR. Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary [J]. Science,1991,253:176-179.
    Ripley EM, Li C, and Sarkar A. Mineralogic and stable isotopic studies of hydrothermal alteration at the Jinchuan Cu-Ni deposit, China[J]. Econ. Geol.,2005,100:1349-1361
    Ripley EM, Li C. Paragneiss assimilation in the genesis of magmatic Ni-Cu-Co sulfide mineralization at Voisey's Bay, Labrador [J]. Econ. Geol.,2002,97 (6):1307-1318.
    Ripley EM, Lightfoot PC, Li C, et al. Sulfur isotopic studies of continental flood basalts in the Noril'sk region[J]. Geochim. Cosmochim. Acta,2003,67:2805-2817.
    Roeder PL, and Emslie RF, Olivine-liquid equilibrium:Contrib. Mineral. Petrol.,1970,29: 275-289.
    Ross PS, Ukstins PI, McClintock MK, et al. Mafic volcaniclastic deposits in flood basalt provinces:A review[J]. J. Volcanol. Geoth. Res.,2005,145:281-314.
    Rubin KH. Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes[J]. Geochim. Cosmochim. Acta.,1997,61(17):3525-3542.
    Rudnick RL, and Gao S. Composition of the continental crust[M]. in Rudnick RL, ed, Treatise on Geochemistry V3, The Crust:Elsevier,2003, p.1-64.
    Saal AE, Hauri EH, Langmuir CH, et al. Vapourundersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle[J]. Nature,2002,419:451-456.
    Salters VJM, Mallick S, Hart SR, et al. Domains of depleted mantle:New evidence from hafnium and neodymium isotopes[J]. Geochem. Geophy. Geosy.12,2011, Q08001,doi:10.1029/2011GC003617.
    Sarda P, Staudacher T, Allegre CJ. Neon isotops in submarine basalts[J]. Earth Planet. Sci. Lett., 1988,91:73-88.
    Saunders AD, and Reichow MK. The Siberian Traps and the End-Permian mass extinction:a critical review [J]. Chin. Sci. Bull.,2009,54(1):21-37.
    Saunders AD, England RW, Reichow MK, et al. A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian Basin, Russia [J]. Lithos,2005,79:407-424.
    Scherer E, Munker C, Mezger K. Calibration of the Lutetium-Hafnium clock[J]. Science,2001, 293,683-687.
    Scoates JS, Friedman RM. Precise age of the platineferous merensky Reef, Bushveld Comples, South Africa, By the U-Pb Zircon chemical abrasion ID-TIMS technique [J]. Econ. Geol., 2008,103:465-471.
    Seat Z, Beresford SW, Grguric BA, et al. Reevaluation of the role of external sulfur addition in the genesis of Ni-Cu-PGE deposits[J]. Chem. Geol.,2009,104:521-538.
    Self S, Widdowson M, Thordarson T, et al. Volatile fluxes during flood basalteruptions and potential effects on the global environment:A Deccan perspective [J]. Earth Planet. Sci. Lett.,2006,248 (1-2):518-532.
    Shaw AM, Hilton DR, Macpherson CG, et al. The CO2-He-Ar-H2O systematics of the Manus back-arc basin [J]. Geochim. Cosmochim. Acta,2004,68:1837-1856.
    Shellnutt JG, Zhou M-F. Permian peralkaline peraluminous and metaluminous A-type granites in the Panxi district, SW China[J]. Chem. Geol.,2007,243:286-316.
    Shellnutt JG, Denyszyn SW, Mundil R. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gond. Res.,2012, 22:118-126.
    Shellnutt JG, Jahn B-M. Origin of Late Permian Emeishan basaltic rocks from the Panxi region (SW China)[J], J. Volcanol. Geoth. Res.,2011,199:85-95.
    Shellnutt JG, Wang CY, Zhou M-F, et al. Zircon Lu-Hf isotopic of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China): Constraints on the mantle source. J. Asian. Earth Sci.,2009,35:45-55.
    Shellnutt JG, Wang K-L, Zellmer GF, et al. Three Fe-Ti oxide ore-bearing gabbro-granitoid complexes in the Panxi region of the Permian Emeishan large igneous province, SW China. Am. J. Sci.,2011,311:773-812.
    Shellnutt JG, Zhou M-F, Zellmer G. The role of Fe-Ti crystallization in the formation of A-type granitoids with implications for the Daly gap [J]. Chem. Geol.,2009,259:204-217.
    Simmons SF, and Brown KL, Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit[J]. Science,2006,314:288-291.
    Slama J, Kosler J, Condon D J, et al. Plesovice zircon- A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chem. Geol.,2008,249:1-35.
    Sobolev AV, Krivolutskaya NA, Kuzmin DV, Petrology of the parental melts and mantle sources of Siberian trap magmatism[J]. Petrology,2009a,17(3):253-286.
    Sobolev AV, Sobolev SV, Kuzmin DV, et al. Siberian meimechites:origin and relation to flood basalts and kimberlites[J]. Russian Geology and Geophysics,2009b,50 (12):999-1033.
    Song S, Niu Y, Su L, et al. Tectonics of the North Qilian orogen, NW China[J].Gondwana Research,2013,23:1378-1401.
    Song X-Y, Keays RR, Long X, et al. Platinum-group element geochemistry of the continental flood basalts in the central Emeisihan Large Igneous Province, SW China[J]. Chem. Geol., 2009,262:246-261.
    Song X-Y, Qi H-W, Robinson P-T et al. Melting of the subcontinental lithospheric mantle by the Emeishan mantle plume[J]. Lithos,2008a,100:93-111.
    Song X-Y, Zhong H, Zhou M-F, et al. Magmatic sulfide deposits in the Permian Emeishan Large Igneous Province, SW China[M]. In:Mao, J.W., Bierlein, F.P. (Eds.), Mineral Deposit Research:Meeting the Global Challenge,1. Springer, Berlin,2005, pp.465-468.
    Song X-Y, Zhou M-F, Cao Z-M, et al. Ni-Cu-(PGE) magmatic sulfide deposits in the Yangliuping area, Permian Emeishan igneous province, SW China [J]. Miner. Deposita, 2003,38:831-843.
    Song X-Y, Zhou M-F, Hou Z-Q, et al. Geochemical constraints on the mantle source of the upper Permian Emeishan continental flood basalts, southwestern China[J]. Int. Geol. Rev., 2001,43:213-225.
    Song X-Y, Zhou M-F, Tao Y, et al. Controls on the metal compositions of magmatic sulfide deposits in the Emeishan large igneous province, SW China [J]. Chem. Geol.,2008b, 253(1-2):38-49.
    Sun S-S, and McDonough WE Chemical and isotopic systematics in ocean basalt:implication for mantle composition and processes [J]. Geol. Soc. London Spec. Pub.,1989,42: 313-345.
    Sun X-M, Wang S-W, Sun W-D, et al. PGE geochemistry and Re-Os dating of massive sulfide ores from the Baimazhai Cu-Ni deposit, Yunnan province, China[J]. Lithos,2008,105: 12-24.
    Surkov VS. Neogenean evolution of the young Ural-Siberian Platform[J]. Russ. Geol. Geophys., 2002,43(8):754-761.
    Takahashi, E. Partitioning of Ni2+, Co2+, Fe2+, Mn2+, and Mg2+ between olivine and silicate melts [J]. Geochim. Cosmochim. Acta,1978.42(12):1829-1844.
    Tang Q, Zhang M, Li C, et al. The chemical compositions and abundances of volatiles in the Siberian large igneous province:constraints on magmatic CO2 and SO2 emissions into the atmosphere[J]. Chem. Geol.,2013a,339:84-91.
    Tang Q, Ma Y, Zhang M, et al. The origin of Ni-Cu-PGE sulfide mineralization in the margin of the Zhubu maficultramafic intrusion in the Emeishan large igneous province, SW China[J]. Econ. Geol.,2013b,108:1849-1864.
    Tang Q, Li C, Zhang M, et al. Locating Alxa and Jinchuan ore-bearing mafic-ultramafic intrusion in Rodinia:Constraints from zircon U-Pb-Lu-Hf isotopes and whole-rock geochemical data[J].2013d (submitted to Precam. Res.). PRECAM3895
    Tang Q, Li C, Zhang M, et al. Resovling the disputed age of picrites associated with flood basalts in Sichuan and Yunnan, SW China:Geochronological and geochemical constraints [J].2013c (submitted to Miner.and Petrol.). MIPE-D-13-00050
    Tao Y, Li C, Hu R, et al. Petrogenesis of the Pt-Pd mineralized Jinbaoshan ultramafic intrusion in the Permian Emeishan Large Igneous Province, SW China[J]. Contrib. Mineral. Petrol., 2007,153:321-337.
    Tao Y, Li C, Hu R, et al. Re-Os isotopic constraints on the genesis of the Limahe Ni-Cu deposit in the Emeishan large igneous province, SW China[J]. Lithos,2010,119:137-146.
    Tao Y, Li C, Song X-Y, et al. Mineralogical, petrological, and geochemical studies of the Limahe mafic-ultramatic intrusion and associated Ni-Cu sulfide ores, SW China[J]. Miner. Deposita.,2008,43:849-872.
    Tao Y, Ma Y, Miao LC, et al. SHRIMP U-Pb zircon age of the Jinbaoshan ultramafic intrusion Yunnan Province, SW China[J]. Chin. Sci. Bull.,2009,54:168-172.
    Thordarson T, Self S, Miller JD, et al. Sulphur release from flood lava eruptions in the Veidivotn, Grimsvotn, and Katla volcanic systems, in:Oppenheimer C, Pyle DM, Barclay J (Eds.), Volcanic Degassing[M]. Geological Society London Special Publication,2003,213: 103-122.
    Tung KA, Yang HY, Liu DY, et al. SHRIMP U-Pb geochronology of the detrital zircons from the Longshoushan Group and its tectonic significance[J]. Chin. Sci. Bull.,2007,52: 1414-1425.
    Ulrich T, Guenther D, Heinrich CA. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature,1999,399:676-679.
    Wang CY, Zhou M-F, Qi L. Origin of extremely PGE-rich mafic magma system:An example from the Jinbaoshan ultramafic sill, Emeishan large igneous province, SW China[J]. Lithos,2010,119:147-161.
    Wang CY, Zhou M-F, Keays RR. Geochemical constraints on the origin of the Permian Baimazhai mafic-ultramafic intrusion, SW China[J]. Contrib. Mineral. Petrol.,2006,152: 309-321.
    Wang CY, Zhou M-F, Qi L. Chalcophile element geochemistry and petrogenesis of high-Ti and low-Ti magmas in the Permian Emeishan large igneous province, SW China[J]. Contrib. Mineral. Petrol.,2011,161:237-254.
    Wang CY, Zhou M-F, Qi L. Permian basalts and mafic intrusions in the Jinping (SW China)-Song Da (northern Vietnam) district [J]. Chem. Geol.,2007,243:317-343.
    Wang CY, Zhou M-F, Sun Y, et al. Differentiation, crustal contamination and emplacement of magmas in the formation of the Nantianwan mafic intrusion of the-260 Ma Emeishan large igneous province, SW China[J]. Contrib. Mineral. Petrol.,2012,164:281-301.
    Wang CY, Zhou MF, Zhao D. Fe-Ti-Cr oxides from the Permian Xinjie mafic-ultramafic layered intrusion in the Emeishan large igneous province, SW China[J]. Lithos,2008,102: 198-217.
    Wang CY, Zhou MF, Zhao D. Mineral chemistry of chromite from the Permian Jinbaoshan Pt-Pd- sulphide- bearing ultramafic intrusion in SW China, with petrogenetic implications [J]. Lithos,2005,83:47-66.
    Wang L-J, Griffin WL, Yu J-H, et al. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks[J]. Precam. Res.,2010, 177:131-144.
    Wang L-J, Yu J-H, Griffin WL, et al.Early crustal evolution in the western Yangtze Block: Evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks [J]. Precam. Res.,2012a,222-223:368-385.
    Wang W, Zhou M-F, Yan D-P, et al. Depositional age, provenance, and tectonic setting of the NeoproterozoicSibao Group, southeastern Yangtze Block, South China[J]. Precam. Res.. 2012b,192-195:107-124.
    Wang X-C, Li X-H, Li W-X, et al. The Bikou basalts in the northwestern Yangtze block, South China:Remnants of 820-810 Ma continental flood basalts[J]? Geol. Soc. Am. Bull.,2008, 120:1478-1492.
    Wang X-C, Li X-H, Li Z-X, et al. Episodic Precambrian crust growth:Evidence from U-Pb ages and Hf-O isotopes of zircon in the Nanhua Basin, central South China[J]. Precam. Res.,2012c,222-223:386-403.
    Wang X-L, Jiang S-Y, Dai B-Z, et al. Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830 Ma) gabbros on the southern margin of the North China Craton[J]. Precam. Res.,2011,190:35-47.
    Wang X-L, Zhou J-C, Griffin WL, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnanorogen:Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precam. Res.,2007,159:117-131.
    Wendlandt RF. Sulfide saturation of basalt and andesite melt s at high pressures and temperatures [J]. Am. Mineral.,1982,67 (9210):877-885.
    Wignall PB. Large igneous provinces and mass extinction[J]. Earth-Sci. Rev.,2001,53:1-33.
    Williams, I.S. U-Th-Pb geochronology by ion microprobe[J]. Rev. Econ. Geol.,1998,7:1-35.
    Williams-Jones AE, Migdisov AA, Archibald SM, et al. Vapor-transport of ore metals[M]. In: Roland Hellmann and Scott A. Wood (eds.):Water-Rock Interactions, The Geochemical Society, Special Publication,2002,7:279-305.
    Wooden JL, Czamanske G, Fedorenko VA, et al. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia[J]. Geochim. Cosmochim. Acta,1993,57:3677-3704.
    Wu FY, Yang YH, Xie LW, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chem. Geol.,2006,234:105-126.
    Xiao L, Xu Y-G, Chung S-L, et al. Chemostratigraphic correlation of upper Permian lavas Yunnan province, China[J]. Int. Geol. Rev.,2004a,45:753-766.
    Xiao L, Xu YG, Mei HJ, et al. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China:implications for plume-lithosphere interaction[J]. Earth Planet. Sci. Lett,2004b,228:525-546.
    Xing CM, Wang CY, Zhang MJ. Volatile and C-H-O isotopic compositions of giant Fe-Ti-V oxide deposits in the Panxi region and their implications for the sources of volatiles and the origin of Fe-Ti oxide ores[J]. Sci. China Ser. D-Earth. Sci.,2012,55 (11):1782-1795.
    Xu J-F, Suzuki K, Xu Y-G, et al. Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts [J]. Geochim. Cosmochim. Acta,2007,71:2104-2119.
    Xu Y, Chung S-L, Jahn B-M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos,2001a, 58:145-168.
    Xu Y-G, He B, Chung S-L, et al. Geologic, geochemical, and geophysical consequences of plume invOlement in the Emeishan flood-basalt province[J]. Geology,2004,32:917-920.
    Xu Y-G, Luo Z-Y, Huang X-L, et al. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume[J]. Geochim. Cosmochim. Acta,2008, 72:3084-3104.
    Xu YG, Mei HJ, Xu JF, et al. Origin of two differentiation trends in the Emeishan flood basalts[J]. Chin. Sci. Bull.,2003,48:390-394.
    Xu Y-G, Menzies MA, Thirlwall MF, et al. Exotic lithosphere mantle beneath the western Yangtze craton[J]. Geology,2001b,29:863-866.
    Yakubchuk A, and Nikishin A. Noril'sk-Talnakh Cu-Ni-PGE deposits:a revised tectonic model[J]. Mine. Deposita., Miner. Deposita.,2004,39:125-142.
    Yang SH, Qu WJ, Tian YL, et al. Origin of the inconsistent apparent Re-Os ages of the Jinchuan Ni-Cu sulfide ore deposit, China:Post-segregation diffusion of Os[J]. Chem. Geol.,2008, 247(3-4):401-418.
    Ye XR, Tao MX, Yu CN, et al. Helium and neon isotopic composition in the ophiolites from the Yarlung Zangbo River, Southwestern China[J]. Sci. China (D),2007,50(6):801-812.
    Yogodzinski GM, Vervoort JD, Brown ST, et al. Subduction controls of Hf and Nd isotopes in lavas of the Aleutian island arc[J]. Earth Planet. Sci. Lett.,2010,300:226-238.
    Zhang J, Li J, Liu J, et al. Detrital zircon U-Pb ages of Middle Ordovician flysch sandstones in the western ordos margin:New constraints on their provenances, and tectonic implications[J]. J.Asian Earth Sci.,2011,42:1030-1047.
    Zhang MJ, Hu P, Niu Y, et al. Chemical and stable isotopic constraints on the nature and origin of volatiles in the sub-continental lithospheric mantle beneath eastern China[J]. Lithos, 2007,96(1):55-66.
    Zhang MJ, Kamo S L, Li C, et al. Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China [J]. Miner. Deposita.,2010,45(1):3-9.
    Zhang MJ, Li C, Fu P-E, et al. The Permian Huangshanxi Cu-Ni deposit in western China [J]. Miner. Deposita.,2011,46(2):153-170.
    Zhang MJ, Niu Y, Hu PQ. Volatiles in the mantle lithosphere:Occurrence modes and chemical compositions [M]. Jarod E. Anderson and Robert W. Coates Eds., "The Lithosphere: Geochemistry, Geology and Geophysics" Nova Sci. Pub.,2009, Chapter 5, p171-212.
    Zhang MJ, Shen H, Tang QY, et al. Volatile composition and carbon isotope constraints on ore genesis of the Jinchuan Cu-Ni Deposit, Western China.11th International Platinum Symposium.2010.
    Zhang MJ, Tang QY, Hu PQ, et al. Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu-{PGE) sulfide ore-bearing ultramafic intrusion, Western China[J]. Chem. Geol.,2013,339:301-312.
    Zhang MJ, Wang XB, Liu G, et al. The compositions of upper mantle fluids beneath Eastern China:Implications for mantle evolution [J]. Acta Geol. Sin.-English Edition,2004,78(1): 125-130.
    Zhang ZC, Mahoney JJ, Mao JW, et al. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China [J]. J. Petrol,2006,47:1997-2019.
    Zhang Z-C, Mao J-W, Saunders AD, et al. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints [J]. Lithos,2009,113:369-392.
    Zhang Z-C, Zhi X-C, Chen L, et al. Re-Os isotopic compositions of picrites from the Emeishan flood basalt province, China [J]. Earth Planet. Sci. Lett.,2008,276:30-39.
    Zhao G, Cawood PA. Precambrian geology of China[J].Precambrian Research,2012,222-223: 13-54.
    Zhao J-H, Zhou M-F, Yan D-P, et al. Zircon Lu-Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China[J]. Precam. Res.,2008,163:189-209.
    Zhong H, Zhu W-G. Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province, SW China[J]. Miner. Deposita,2006,41:599-606.
    Zhong H, Campbell IH, Zhu W-G, et al. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province[J]. Geochim. Cosmochim. Acta,2011,75:1374-1395.
    Zhong H, Yao Y, Prevec SA, et al. Trace-element and Sr-Nd isotopic geochemistry of the PGE-bearing Xinjie layered intrusion in SW China [J]. Chem. Geol.,2004,203:237-252.
    Zhong H, Zhu W-G, Chu Z-Y, et al. SHRIMP U-Pb zircon geochronology geochemistry and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China[J]. Chem. Geol.,2007,236:112-133.
    Zhong H, Zhu W-G, Hu R-Z, et al. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust [J]. Lithos,2009,110:109-128.
    Zhou JC, Wang XL, Qiu JS. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China:Coeval arc magmatism and sedimentation [J]. Precam. Res.,2009,170:27-42.
    Zhou M-F, Arndt NT, Malpas J, et al. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos,2008,103:352-368.
    Zhou M-F, Ma Y, Yan D-P, et al. The Yanbian terrane (southern Sichuan province, SW China):A Neoproterozoic arc assemblage in the western margin of the Yangtze block[J]. Precam. Res.,2006,144:19-38.
    Zhou M-F, Robinson PT, Lesher CM, et al. Geochemistry petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits Sichuan Province, SW China[J]. J. Petrol.,2005,46:2253-2280.
    Zhou M-F, Yan DP, Kennedy AK, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze block, South China[J]. Earth Planet. Sci. Lett.,2002a,196:51-67.
    Zhou M-F, Yang Z-X, Song X-Y, et al. Magmatic Ni-Cu-(PGE) sulfide deposits in China. In: Cabri LJ (Ed.), The Geology, Geochemistry, Mineralogy, Mineral Benification of the PGE. Can. Inst. Min., Metal. Petrol., Spec.,2002b,154:619-636.
    Zhou M-F, Zhao J-H, Qi L, et al. Zircon U-Pb geochronology and elemental and Sr-Nd isotopic geochemistry of Permian mafic rocks in the Funing area, SW China[J]. Contrib. Mineral. Petrol.,2006,51:1-19.
    Zhu F, Tao Y, Hu R, et al. Geochemical Characteristics and metallogenesis of the Qingkuangshan Ni-Cu-PGE mineralized mafic-ultramafic intrusion in Huili County, Sichuan province, SW China[J]. Acta Geol. Sin.,2012,86(3):590-607.
    Zhu W-G, Zhong H, Deng H-L, et al. SHRIMP Zircon U-Pb age, geochemistry, and Nd-Sr isotopes of the Gaojiacun mafic-ultramafic intrusive complex, Southwest China[J]. Int. Geol. Rev.,2006,48:650-668.
    Zi J-W, Fan W-M, Wang YJ, et al. U-Pb geochronology and geochemistry of the Dashibao Basalts in the Songpan-Ganzi Terrane, SW China, with implications for the age of Emeishan volcanism[J]. Am. J. Sci.,2010,310:1054-1080.
    Zindler A, and Hart SR. Chemical geodynamics[J]. Annu. Rev. Earth Planet. Sci.,1986,14: 493-571.
    傅飘儿.新疆北部晚古生代岩浆铜镍硫化物矿床成因:岩石及流体地球化学制约[D].2012.兰州大学博士毕业论文.
    葛文春,李献华,李正祥,等.桂北宝坛-元宝山地区镁铁质-超镁铁质岩石的地球化学及其地质意义[J].地球化学,2001,30(2):123-130.
    宫江华,张建新,于胜尧.阿拉善地块南缘龙首山岩群及相关岩石的起源和归属——来自LA-ICP-MS锆石U-Pb年龄的制约[J].岩石矿物学杂志,2011,30:795-818.
    宫江华,张建新,于胜尧.阿拉善地块南缘龙首山东段“龙首山岩群”的再厘定——来自碎屑锆石U—-Pb定年的证据[J].岩石矿物学杂志,2013,32:1-22.
    侯可军,李延河,田有荣.LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,2009,28(4):481-492.
    侯可军.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595-2604.
    胡沛青,张铭杰,汤庆艳,等.金川Cu-Ni硫化物矿床成矿岩浆过程稀有气体同位素组成示踪[J].岩石学报,2010,26(11):3375-3386.
    胡瑞忠,陶琰,钟宏,等.地幔柱成矿系统:以峨眉山地幔柱为例[J].地学前缘,2005,12(1):42-54.
    姜寒冰,姜常义,钱壮志,等.云南峨眉山高钛和低钛玄武岩的岩石成因[J].岩石学报,2009,25(5):1117-1134.
    李潮峰,陈福坤,王芳.采用氧化物方式高精度地测量微量样品钕同位素比值[J].地球科学,2008.33:243-250.
    李潮峰,林杨挺,郭敬辉,等.热电离质谱法超高精度测定142Nd/144Nd同位素比[J].分析化学,2010,7:989-993.
    李秋立,陈福坤,王秀丽,等.超低本底化学流程和单颗粒云母Rb-Sr等时线定年[J].科学通报.2006.51:321-325.
    刘丛强,黄智龙,李和平,等.地幔流体及其成矿作用[J].地学前缘,2001,8(4):231-243.
    马言胜,陶琰,朱丹,等.云南朱布镁铁-超镁铁岩体地球化学特征及成因机理探讨[J].地球化学.2012,4:359-370.
    邵辉,徐义刚,何斌,等.峨眉山大火成岩省晚期酸性火山岩的岩石地球化学特征[J].矿物岩石地球化学通报,2007,26(4):350-358.
    石贵勇,孙晓明,王生伟,等.云南白马寨铜镍硫化物矿床Re-Os同位素定年及其地质意义[J].岩石学报,2006,22(10):2451-2456.
    宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48(增):26-30.
    宋谢炎,胡瑞忠,陈列锰.铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义[J].地学前缘,2009,16(4):287-305.
    宋谢炎,张成江,胡端忠,等.峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系[J].矿物岩石,2005,25(4):35-44.
    宋谢炎.地幔柱成矿体系的基本特点-以峨眉大火成岩省为例[J].矿物学报(增),2007,71-73.
    汤庆艳,张铭杰,何佩佩,等.Noril'sk Cu-Ni-PGE硫化物矿床成矿过程流体组成示踪[J].矿物学报(增),2011,172-173.
    汤庆艳,张铭杰,李晓亚,等.西秦岭新生代高钾质玄武岩流体组成及地幔动力学意义[J].岩石学报,2012,28(4):1251-1260.
    汤庆艳,张铭杰,余明,等.晚二叠世峨眉山地幔柱岩浆成矿作用[J].岩石矿物学杂志,2013,32(5):680-692.
    汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M].北京:地质出版社1995.
    陶琰,胡瑞忠,漆亮,等.四川力马河镁铁-超镁铁质岩体的地球化学特征及成矿分析[J].岩石学报,2007,23(11):2785-2900.
    陶琰,胡瑞忠,屈文俊,等.力马河镍矿Re-Os同位素研究[J].地质学报,2008a,82(9):1292-1304.
    陶琰,胡瑞忠,王兴阵,等.峨眉山大火生岩省Cu-Ni-PGE)戊矿作用-几个典型矿床岩石地 球化学特征的分析[J].矿物岩石地球化学通报,2006,25(3):236-244.
    陶琰,马言胜,苗来成,等.云南金宝山超镁铁质侵入体的SHRIMP U-Pb锆石年龄[J].科学通报,2008b,53(22):2828-2832.
    王登红,楚萤石,罗辅勋,等.四川杨柳坪Cu-Ni-PGE富矿体的成因及意义[J].地球学报,2000a,21(3):260-265.王登红,楚萤石,罗辅勋,等.杨柳坪铜-镍-铂族元素矿床的矿化类型及意义[J].矿物岩石地球化学通报,2000b,19(4):323-325.
    王登红,李建康,王成辉,等.与峨眉地幔柱有关年代学研究的新进展及其意义[J].矿床地质,2007,26(5):550-556.
    王登红,刘凤山,楚萤石,等.峨眉地幔柱与杨柳坪铜镍铂族元素矿床[M].北京,兵器工业出版社,2003,78p.
    王登红,应汉龙,骆耀南,等.试论与布什维尔德杂岩体有关的铂族元素-铬铁矿矿床成矿系列及其对中国西南部的意义[J].地质与资源,2002,11(4):243-249.
    王生伟,孙晓明,石贵勇,等.云南金宝山和白马寨铜镍硫化物矿床铂族元素地球化学的差异及其成因意义[J].地质学报,2007,81(1):1-16.
    吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220.
    夏林圻,徐学义,李向民,等.亚洲3个大火成岩省对比研究[J].西北地质,2012,2:1-26.
    肖龙,徐义刚,梅厚钧,等.云南宾川地区峨眉山玄武岩地球化学特征:岩石类型及随时间演化规律[J].地质科学,2003b,38(4):478-494.
    肖龙,徐义刚,梅厚钧,等.云南金平晚二叠纪玄武岩特征及其与峨眉地幔柱关系:地球化学证据[J].岩石学报,2003a,19(1):38-48.
    徐义刚,钟孙霖.峨眉山大火成岩省:地幔柱活动的证据及其熔融条件[J].地球化学,2001,30(1):1-9.
    姚家栋.西昌地区硫化铜(铂)镍矿床成因[J].重庆:重庆出版社,1986,143.
    尹荷中.朱布铂矿成矿模式探讨[J].大地构造与成矿学.1983,7(4):345-354.
    云南省1:2000000地质图,G-47-ⅩⅩⅢ(大理)和G-47-ⅩⅦ(河庆)幅[R],1975.中国云南省地质调查局.
    云南省元谋地区朱布铂矿储量报告[R].云南省地质局第三地质队,1970,内部资料:170p
    张进,李锦轶,刘建峰,等.早古生代阿拉善地块与华北地块之间的关系:来自阿拉善东缘中奥陶统碎屑锆石的信息[J].岩石学报,2012,28:2912-2934
    张铭杰,李延鑫,胡沛青,等.中国东部陆下岩石圈地幔中的再循环地壳流体组分[J].地质学报,2009.83(3):1-12.
    张铭杰,王廷印,高军平,等.内蒙古哈沙图北超镁铁杂岩体成因的地球化学制约[J].岩石学报,2001,17(2):206-214.
    张铭杰,王先彬,李立武,等.幔源矿物中H2赋存状态的初步研究[J].地质学报,2002,76(1):39-44.
    张铭杰,王先彬,李立武.地幔流体组成[J].地学前缘,2000a,7(1):401-412.
    张铭杰,王先彬,李立武.对幔源岩中流体组分的不同测定方法评价[J].地质论评,2000b.46(2):160-166.
    张铭杰,王先彬,刘刚,等.中国东部新生代碱性玄武岩及幔源岩捕虏体中的流体组成[J].地质学报,1999.73(2):162-166.
    张云湘,骆耀南,杨崇喜.攀西裂谷[M].北京:地质出版社,1988.p1-325.
    张招崇,郝艳丽,王福生.大火成岩省中苦橄岩的研究意义[J].地学前缘,2003b,10(3):105-114.
    张招崇,李莹,赵莉,等.攀西三个镁铁-超镁铁质岩体的地球化学及其对源区的约束[J].岩石学报,2007,23(10):2339-2352.
    张招崇,王福生,峨眉山大火成岩省中发现二叠纪苦橄岩[J].地质论评,2002,48:448.
    张招崇,王福生,郝艳丽,等.峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束[J].地质学报,78(2):171-180.
    张招崇,王福生,郝艳丽,等.峨嵋山大火成岩省和西伯利亚大火成岩省地球化学特征的比较及其成因启示[J].岩石矿物学杂志,2005,24(1):12-20.
    张招崇,王福生.峨眉山玄武岩Sr-Nd-Pb同位素特征及其物源探讨[J].地球科学,2003a,28(4):431-439.
    张招崇.关于峨眉山大火成岩省一些重要问题的讨论[J].中国地质,2009,36(3):634-646.
    中国云南大理1:50000大营街幅地质图[R],云南省地质局第三地质队,1993.
    周继彬,李献华,葛文春,等.桂北元宝山地区超镁铁岩的年代、源区及其地质意义[J].地质科技情报,2007,(26):11-18.
    周金城,王孝磊,邱检生,等.桂北中-新元古代镁铁质-超镁铁质岩的岩石地球化学[J].岩石学报,2003,19(1):9-18.
    朱丹,高振敏,罗泰义,等.Soret效应在基性-超基性岩浆成岩和成矿过程中作用的研究进展[J].矿物学报,2007b.27(3/4):265-272.
    朱丹,徐义刚,罗泰义,等.峨眉山玄武岩的输送通道:云南元谋朱布岩体[J].矿物学报,2007a.27(3/4):273-280.
    朱飞霖,陶琰,胡瑞忠,等.四川省会理县青矿山Ni-Cu-PGE矿床成因机制的Re-Os同位素证据[J].岩石学报,2011,27(09):2655-2664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700