用户名: 密码: 验证码:
催化裂化脱硫助剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了共建一个“健康、安全、环保”的新环境,社会对汽柴油的要求也越来越苛刻。中国在2008年汽油硫含量标准降低到了150μg/g,欧美有些国家的汽油标准已经降低到10μg/g。然而另一方面,随着我国石油炼制工业的发展,国内原油越来越难以满足炼油工业的需要,加工进口高硫原料已成为发展的趋势。在我国,大约有80%的汽油来自于催化裂化过程,其中的硫约占商品汽油硫含量的90%。因此对于催化裂化汽油脱硫技术的研究开发,降低汽油中硫含量已经成为当务之急。
     USY/ZnO/Al2O3体系脱硫效果明显,并且不会降低重油转化率,但水热条件下ZnO易于和体系中的Al反应,致使吸附脱硫活性中心和裂化脱硫中心同时失活。本文在原有助剂基础上,以自制纯硅多孔材料为载体,将ZnO装入孔道中从而使它和Al得到隔离,这样既可以使吸附硫化物的活性中心ZnO和裂化硫化物的活性中心USY都得以保护而不会相互反应,又可以保持助剂的选择性脱除硫化物的性能。在微反和固定流化床装置上对引入自制纯硅多孔材料的助剂进行评价,并且利用X射线衍射仪器(XRD)对助剂结构进行扫描。实验结果表明,自制纯硅多孔材料对ZnO和USY起到有效阻隔的作用;以兰州VGO为原料,某炼厂催化剂为平衡剂(微反活性为59),引入自制多孔材料的助剂添加量为25%时,汽油脱硫率可以达到30%以上,并且汽油选择性、烃类组成、以及汽油辛烷值没有明显变化。考察活性组分A的脱硫性能,由于A较高的L酸酸性,Al2O3/USY/A/自制多孔材料体系的脱硫效果也较好。
With development of the society, the environment which humankind lived in is required cleanner. Air pollution, caused by gasoline engine exhaust gas (SOX), is one of the most serious problems in the world, and much attention has been focused on the deeping desulfurization of gasoline. Sulfur in gasoline is not only a direct contributor to SOX emissions, it is also a poison affecting the low-temperature activity of automobile catalytic converters. Therefore, it influences volatile organic compounds, NOX, and total toxic emissions. Consequently, every country limits the content of sulfur in gasoline stringently. Sulfur content has been lower than 10μg/g in some states of the United States. In China it is reduced to 150μg/g from 300μg/g in 2008. About 90% of sulfur in gasoline originates from FCC (fluid catalytic cracking) gasoline, so reducing the sufur content of FCC gasoline is main target of sufer removal.
     Several different routes to reduce the content of sulfur can be considered, but using additives for sulfur removal to reduce sulfur content of FCC gasoline during the in situ FCC process is the most economical route to desulfurization. The USY/ZnO/Al2O3 additive we developed can reduce more than 30% of sulfur in gasoline. However, the hydrothermal treatment at high temperature may cause deactivation of the additive. After the fresh additive is aged at 800℃with 100% steam, the micro-activity and sulfur removal activity drop significantly. These changes may be caused by the strong interactions between USY and ZnO. ZnO can capture the framework Al of USY to form inert ZnAl2O4 spinel and cause the collapse of the framework. When the content of ZnO in the samples is enough, ZnO can react with the Si in the collapsed framework to form Zn2SiO4 willemite. Here, we introduce a porous mass to isolate ZnO and USY, in order to depress the interactions between them. In this paper, additives for desulfurization of FCC gasoline during FCC process have been evaluated in a Confined-Fluidized-Bed reaction apparatus with Lanzhou VGO as feedstock. The results were as follows: the hydrothermal stability of additives can be improved by introducing the porous mass, but there is a optimum adding amount of porous mass in additives; The optimum mass of additive in equilibrium catalyst is 25%, and the sulfur content of gasoline can be reduced by more than 30 %,compared with only using equilibrium catalyst, while products distribution do not change obviously. Another additive sample Al2O3/USY/A/porous mass has a higher desulfurization ratio, yet products distribution change obviously.
引文
[1]李春义,杨洪燕,顾艳萍,等.催化裂化汽油脱硫添加剂的研究进展[J].石油大学学报(自然科学版), 2005.6, 29(3): 148-156
    [2] Siddiqui M.A., Ahmed S., Aitani A.M., et al. Sulfur reduction in FCC gasoline using catalyst additives[J]. Applied Catalysis A: General, 2006, V303(1): 116-120
    [3]庞新梅,孙书红,高雄厚.生产低硫汽油新型FCC催化剂研究进展[J].石油技术与应用, 2001.12, 19(6): 384-388
    [4]山红红,李春义,赵博艺,等. FCC汽油中硫分布和催化脱硫研究[J].石油大学学报(自然科学版), 2001, 25(6): 78-82
    [5]张哲民,石亚华,傅军.降低催化裂化汽油硫和烯烃含量的技术途径[J].石油炼制与化工, 2003.7, 34(7): 28-32
    [6]杜伟,黄星亮.催化裂化汽油脱硫技术及其进展[J].石油与天然气化工, 2002, 31(2): 74-79
    [7] Saintigny X., Santen R.A., Clémendot S., et al. A Theoretical Study of the Solid Catalyzed Desulfurization of Thiophene[J]. Journal of Catalysis, 1999,V183: 107-11
    [8]王鹏,郑爱国,田辉平,等.催化裂化条件下噻吩在氧化钒上的反应机理研究[J].石油炼制与化工, 2005.7, 36(7): 41-45
    [9] SHAN H.H., LI C.Y., ZHAO H., et al, Discussions on the Mechanism of Thiophene Cracking over a USY zeolite[J]. Journal of Fuel Chemistry and Technology, 2001.12, V29(6): 481-485
    [10]朱根权,夏道宏,阙国和.催化裂化过程中硫化物的分布及转化规律[J].石油化工高等学校学报, 2000, 13(2): 40-44
    [11]罗国华,王学勤,王祥生.焦化苯中的噻吩和乙醇在HZSM-5沸石上的反应[J].催化学报, 1998, 19(1): 53-57
    [12]王祥生,罗国华. HZSM-5沸石上焦化苯的精制脱硫[J].催化学报. 1996, 17(6):530-534
    [13] Richard F. Wormsbecher, Gwan Kim. Sulfur reduction in FCC gasoline[P]. US, US5376608, 1994
    [14] Richard F. Wormsbecher, Gwan Kim. Sulfur reduction in FCC gasoline[P]. US,US5525210, 1996
    [15]卜欣立,闫永辉,王玉环. FCC汽油脱硫新技术[J].石家庄职业技术学院学报. 2002.12, 14(4): 8-10
    [16] Laan J.V., Sughrue E.L., Dodwell G, et al. Control sulfur levels in FCC products [J]. Hydrocabon Processing, 2006,V85(2): 49-54
    [17]王天普.催化裂化汽油脱硫技术进展[J].齐鲁石油化工, 2001, 29(1): 48-51
    [18] Kerry L. Pock.. NPRA Annual Meeting. San Francisco. 1998. AM-98-37.
    [19] Michael S. Ziebarth, Michael D. Amirldis, Rorbert H. Harding, Richard F. Wormsbecher. Composition for use in catalytic cracking to make reduced sulfur content gasoline[p]. US6036847, 2000
    [20]曹锡章,宋天佑,王杏乔.无机化学[M].第三版.北京:高等教育出版社, 1994: 767-790
    [21] Hynaux A., Sayag C., Suppan S., et al. Kinetic study of the deep hydrodesulfurization of dibenzothiophene over molybdenum carbide supported on a carbon black composite: Existence of two types of active sites[J]. Catalysis Today, 2007,V119:3-6
    [22]闫永辉,卜欣立,尚平.吸附法脱除FCC汽油中含硫化合物的新技术[J].河北化工. 2003, 6: 5-8
    [23]田龙胜,唐文成. FCC汽油溶剂抽提脱硫的研究[J].石油炼制与化工, 2001.9, 32(9): 7-9
    [24] Eri Ito, J. A. Rob van Veen. On novel processes for removing sulphur from refinery streams[J]. Catalysis Today, 2006, V116: 446-460
    [25]王宏伟,贺振富,田辉平. FCC汽油非临氢脱硫技术进展[J].化工进展, 2005, 24(11): 1216-1224
    [26] Kilbane. Institute of Gas Technology.Mutant microoganisms useful for cleavage of organic C - S bonds[P] . US 5104801, 2001
    [27]于国庆,高金森,徐春明.催化裂化加工含硫原油的技术[J].石化技术, 2004, 11(1): 58-61
    [28] Gore W. Method of Desulfurization of Hydrocarbons[P]. US 6160193, 2000
    [29] Gore W. Method of Desulfurization of Hydrocarbons[P]. US 6274785, 2001
    [30] Stanciulescu M, Ikura M. Method for the Production of Hydrocarbon Fuels withUltra-low Sulfur Content[P]. US 2003/0075483, 2003
    [31] Kocal J A, Brandvold T A. Removal of Sulfur-containing Compounds from Liquid Hydrocarbon Streams[P]. US 6368495, 2002
    [32]单玉华,邬国英,李为民等.氧化法精制汽油或柴油的方法[P]. CN 1302844A, 2001
    [33]宋丽芝,吕志辉,王海波等.馏分油氧化脱硫催化剂及其制备[P]. CN 1458228A , 2003
    [34]陆善祥,余国贤,陈辉等.石油馏分油催化氧化脱硫法[P]. CN 1563284A, 2005
    [35] Kong L Y, Li G, Wang X S. [J ]. Catalysis Today, 2004 , V93-95: 341-345
    [36] Schucker, et al. Electrochemical Oxidation of Sulfur Compounds in Naphtha Using Ionic Liquids[P]. US 6274026, 2001
    [37] Schucker. Electrochemical Oxidation of Sulfur Compounds in Naphtha[P]. US 6338778, 2002
    [38]梅海.生产超低硫柴油的超声-催化-氧化脱硫方法[P]. CN 1412280A, 2003
    [39] Yen T F, Mei H, Lu S H. Oxidative Desulfurization of Fossil Fuels with Ultrasound[P]. US 6402939, 2002
    [40] Gunnerman R W. Continuous Process for Oxidative Desulfurization of Fossil Fuels with Ultrasound and Product s Thereof[P]. US 6500219, 2002
    [41]刘万楹,雷正兰,吕伟等.有机硫化物的等离子体液相氧化脱硫[J].应用化学, 1997(5): 83-85
    [42] Liu W. Y. Kinetics and mechanism of plasma oxidative desulfurization in liquid phase[J]. Energy & fuels, 2001,V15:38-43
    [43]张竹梅.生产低硫汽油的新技术[J].石油化工环境保护, 2004, 27(1): 53-56
    [44] Virginie Belliére, Chantal Lorentz, Christophe Geantet, Yuji Yoshimura, Dorothée Laurenti, Michel Vrinat, Kinetics and mechanism of liquid-phase alkylation of 3-methylthiophene with 2-methyl-2-butene over a solid phosphoric acid[J]. Applied Catalysis B: Environmental, 2006,V64:254-261
    [45] Eri Ito, J. A. Rob van Veen. On novel processes for removing sulphur from refinery streams[J]. Catalysis Today, 2006, V116: 446-460
    [46] Cheng W. C., Purnell S. K. Gasoline sulfur reduction in fluid catalytic craking[P]. US 20020153282A1, 2002
    [47] Pang X. M., Sun S. H., Gao X. H.. Progresses in the production of FCC gasoline with low sulfur[J]. Petrochemical Technology and application, 2001, V19(6):384-388
    [48] Roberie T. G., kumar R. Gasoline sulfur reduction in fluid catalytic cracking[P]. US 0034275A1, 2003
    [49] Arthur W. C.. Gasoline sulfur reduction in fluid catalytic cracking[P]. US 20020153283A1, 2002
    [50]王鹏,田辉平,龙军.噻吩在钒氧化物上的反应机理研究[J].催化裂化协作组第十一界年会报告论文预印本(上), 2006,9. 67-71
    [51]刘宇键,龙军,朱玉霞,达志坚,周涵.催化剂上沉积钒氧化数对降低FCC汽油中硫含量的影响[J].石油学报(石油加工), 2004.6, 20(3):7-12
    [52] Long J.,Zhu Y. X., Liu Y. J., Da Z. J., et al. Effect of Vanadium oxidation number on desulfurization performance of FCC catalyst[J]. Applied Catalysis A: General, 2005, V282: 295-301
    [53] Trond Myrstad , Engan H., Seljestokken B., et al.Sulphur reduction of fluid catalytic cracking (FCC) naphtha by an in situ Zn/Mg(Al)O FCC additive[J]. Applied Catalysis A: General. 1999, V187:207-212
    [54]山红红,李春义,袁起民,等人.催化裂化汽油脱硫添加剂USY/ZnO/Al2O3的性能评价[J].催化学报, 2002.5, 23(3): 245-249
    [55]李春义,山红红,赵博艺,等人.汽油催化裂化脱硫USY/ZnO/Al2O3催化剂[J].物理化学学报, 2001, 17(7): 641-644
    [56]牟庆平,郭宁,高利军,等人.制备条件对催化剂脱硫性能的影响[J].石油化工, 2003, 32(8): 663-665
    [57]赵博艺,杨朝合,山红红,等人.温度和剂油比对汽油催化裂化脱硫的影响[J].催化学报, 2001.11, 22(6): 595-597
    [58]陈焕章,李永丹,赵地顺.吸附法脱除催化裂化汽油中含硫化合物的研究[J].化工科技, 2005, 13(1): 30-34
    [59]王震,段树成.甲基的吸电性和给电性及其应用[J].集宁师专学报, 2001, 23(4):57-5
    [60]山红红,李春义,袁起民,等人.催化裂化汽油脱硫添加剂USY/ZnO/Al2O3的性能评价[J].催化学报, 2002.5, 23(3): 245-249
    [61]李春义,袁起民,庞新梅,等人.催化裂化USY/ZnO/Al2O3脱硫添加剂的高温水热失活[J].催化学报, 2003.6, 24(6): 457-464
    [62]张春雷,吴志芸,闽秋斌.杂原子ZSM-5、ZSM-11和ZSM-48型分子筛的合成[J].高等学校化学学报, 1994,15(10): 1433-1438
    [63]窦涛,冯芳霞,萧塘壮. ZSM-5沸石的合成及表征[J].高等学校化学学报, 1997,13(10): 100-103
    [64]刘磊,王兰芝,侯凯湖. FCC汽油中噻吩与烯烃在AlCl3-NKC9催化剂上的烷基化反应[J].石油炼制与化工, 2007, 38: 30-32
    [65]齐文义,刘淑芳,王龙延.催化裂化汽油脱硫助剂的研究[J].炼油技术与工程. 2003,33(11): 18-20
    [66]王鹏,达志坚,何鸣元.降低催化裂化汽油硫含量助剂的研究[J].石油学报, 2004,19(2): 70-7
    [67]黄仲涛.工业催化[M].北京,化学工业出版社, 1994: 83-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700