用户名: 密码: 验证码:
粘土矿物/DOM复合体对多环芳烃的吸附特征及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(PAHs)作为环境中广泛存在的一类有机污染物,因被证实具有“致癌、致畸、致突变”效应而被列为环境监测中的优先污染物。为了揭示水溶性有机物(DOM)对粘土矿物吸附PAHs的影响,选取蒙脱石和高岭土为粘土矿物的代表,以垃圾渗滤液为DOM提取原料,模拟制备了蒙脱石/高岭土-DOM有机无机复合体,并对原土和复合体表面微结构变化进行测试分析,然后通过批量静态吸附平衡法考察了复合体对菲、芘的吸附特征及吸附稳定性,最后探讨了粘土矿物/DOM复合体对PAHs的吸附机理,为多环芳烃类物质在环境中的环境化学行为和迁移转化规律提供理论依据。本研究得到的主要结论如下:
     首先,粘土矿物与DOM发生复合后微结构发生了一系列变化:XRD分析表明,与DOM复合后,粘土矿物的层间距只发生了微小的变化,没有发生明显的插层反应;IR分析表明,蒙脱石和高岭土与DOM发生了一定程度的化学键合,蒙脱石还增加了C-H振动的特征吸收;SEM分析表明,与DOM复合后粘土矿物表面则变得比较粗糙,结构也变得相对疏松;TG分析表明:在整个温度范围内空白粘土原土的失重量大于复合体的失重量,另外,与空白粘土失重曲线相比,复合体失重曲线向低温区偏移,表明这少量的DOM也影响了粘土原土脱去结构水和层间水的起始温度。
     其次,粘土矿物/DOM复合体吸附PAHs的实验研究发现:粘土矿物/DOM复合体对菲、芘的吸附速度都非常快,并很快达到吸附平衡,蒙脱石/DOM复合体对PAHs的吸附能力较原土有较大程度提高,而高岭土/DOM复合体对PAHs的吸附能力提高较小;pH值对吸附过程的影响很小;吸附过程为放热反应,随着吸附温度的升高,吸附量都有不同程度的减少,吸附能力降低;随着吸附剂投加量的增加,单位平均吸附量呈递减趋势,总吸附去除率增大;随着PAHs初始浓度的升高,吸附量都有明显的增加。
     最后,吸附等温线拟合结果表明:蒙脱石/DOM复合体对PAHs的吸附过程比较符合Henry线性方程和Freundlich经验方程,属于线性吸附;高岭土/DOM复合体对PAHs的吸附过程则比较符合Langmuir吸附等温方程描述,属于非线性吸附。吸附解吸动力学拟合结果表明:Pseudo-first order模型和Pseudo-second order模型都可以较好的描述PAHs在两种粘土矿物/DOM复合体上的吸附和解吸动力学过程,拟合结果与实验的实际吸附解吸量值比较接近,吸附过程以快速吸附为主。
As a kind of organic pollutants which widely exist in the environment, polycyclic aromatic hydrocarbons (PAHs) were confirmed―carcinogenic, teratogenic, mutagenic effect‖, and have been classified as priority pollutants in environmental monitoring. In order to reveal the adsorption effect of the dissolved organic matter (DOM) on PAHs of clay minerals, we first select montmorillonite and kaolinite as clay mineral representation, taking landfill leachate as DOM material, and then prepared montmorillonite/kaolinite-DOM complexes simulation, and tests of the surface microstructure changes of the raw clays and the complexes was carried out. Then through the batch adsorption equilibrium method, we investigated adsorption characteristics and absorption stability of the complexes to phenanthrene and pyrene. Finally, we discussed the adsorption mechanism of clay mineral/DOM complexes to the PAHs, which provides the theoretical basis for environmental chemistry behavior and the migration transformation rules of the multi-link aromatic hydrocarbon materials in the environment. The main conclusions of the thesis will be shown as following:
     Firstly, after the compounding of clay mineral and DOM, the microstructure of the complexes takes a series of changes: the results of XRD showed that, after compounding with DOM, the distance between clay mineral change a little, without obvious intercalation phenomena; IR analysis shows that the montmorillonite and the kaolinite have certain extent chemistry linkage with DOM, and the montmorillonite also has an extra C-H vibration characteristic absorption; the SEM analysis indicated that, after compounding with DOM, clay mineral surface becomes quite rough, and the structure becomes relatively loose; the thermal analysis figure of clay minerals and complexes showed that the lost weight of clay minerals is obviously larger than that of complexes, and comparing to the lost weight curve of the clay minerals, the lost weight curve of complexes shift to the low temperature area, which indicates that DOM also cause some effects on the initial temperature of the clay minerals dewatering structure water and interlayer water.
     Secondly, we studied the adsorption of PAHs on clay mineral/DOM complexes. The result showed that: the adsorption rate of PAHs on clay mineral/DOM complexes is very fast and soon reached equilibrium. the adsorptive capacity of montmorillonite /DOM complexes to the PAHs has been largely improved, but that of the kaolinite/DOM complexes just improves a little.; the pH value has a little effects on the adsorption process; the adsorption is an exothermic process, along with the rising adsorption temperature, adsorption content had different reduction, and adsorption capacity decreases; along with the absorbent increasing, the unit average adsorptive content tends to decrease, and the total desorption rate increases; with the rising initial concentration of PAHs , the adsorption capacity increase significantly.
     Finally, the fitting results of adsorption isotherm curve showed that: the adsorption process of montmorillonite /DOM complexes to the PAHs fits to the Henry linear equation and the Freundlich empirical equation much better, which belongs to the linear adsorption; and, the adsorption process of kaolinite/DOM complexes to the PAHs is more consistent with the Langmuir adsorption uniform temperature equation, which belongs to the nonlinear adsorption. The fitting results of adsorption-desorption indicated that: both Pseudo first order model and Pseudo-second the order model can describe well the adsorption and desorption dynamics process of PAHs in the two kinds of clay mineral/DOM complexes, the fitting results are close to the experiment's actual adsorption-desorption content, and the adsorption process is primarily a fast adsorption.
引文
[1]周明耀.环境有机污染与致癌物质[M].成都:四川大学出版社, 1990
    [2] Chllahan M A,Slimake M W,Gablec N W, et al. Water-related environmental fate of priority Pollutants [J].US environmental. Protection agency, Washington DC, 1979, EPA-440/4-79-029
    [3] Suess, M J. The environmental load and cycle of polycyclic aromatic hydroearbons [J]. Environ. Sci. Technol. , 1976, 6: 239-250
    [4] Shabad, L.M. Circulation of carcinogenic polycyclic aromatic hydrocarbons in the human environment and cancer prevention [J]. Natl.CareerInst.1980, 64(3): 405一410
    [5]展慧英.多环芳烃类污染物在黄土中的迁移转化: (硕士论文).西安:西北师范大学, 2004
    [6]罗雪梅,刘昌明,何孟常.土壤与沉积物对多环芳烃类有机物的吸附作用[J].生态环境, 2004, 13(3): 394-398
    [7]王连生.有机污染物化学(下)[M].北京:科学出版社, 1991
    [8]孙红文,李书霞.多环芳烃的光致毒效应[J].环境科学进展, 1998, 6(6): 1210
    [9] Huang X D, Zeilerlf, Dixondg, et al. Photo induced toxicity of PAHs to the flora regions of Brassy canapés and cucumbers sati us in simulated solar radiation [J]. Ecotoxicology and Environsafy, 1996, 35(2): 190-197
    [10]聂麦茜,张志杰.环境中多环芳烃污染规律及其生物净化技术[J].环境导报, 200l(l): 182-221
    [11]赵学坤,杨桂朋.海洋沉积物中稠环芳烃的研究进展[J].海洋科学, 2000, 24(12): 16-20
    [12]陈畅曙. HDTMA改性粘土对水中低浓度多环芳烃的吸附固定作用研究: (硕士论文).大连:大连海事大学, 2006
    [13]刘敏,侯立军,邹惠仙等.长江口潮滩表层沉积物中多环芳烃分布特征[J].中国环境科学, 2001, 21(4): 343-346
    [14]许士奋,蒋新,王连声等.长江和辽河沉积物中的多环芳烃类污染物[J].中国环境学, 2000, 20(2): 128-131
    [15]林秀梅.渤海表层沉积物中多环芳烃的分布与生态风险评价[J].环境科学学报, 2005, 25(1): 70-75
    [16]田蕴.厦门西港表层沉积物中多环芳烃的含量分布及来源[J].海洋与湖沼, 2005,35(l): 15-20
    [17]田蕴.厦门马蜜湾养殖海区多环芳烃的污染特征[J].海洋环境科学, 2003, 22(1): 29-33
    [18]梁重山,党志.超临界二氧化碳流体萃取土壤有机污染物的研究进展[J].重庆环境科学, 2001(1): 48-50
    [19]丁爱芳,潘根兴,张旭辉等.吴江市水稻土中多环芳烃(PAHs)含量及来源的研究[J].农业环境科学学报, 2005, 24(6): 1166-1170
    [20]杨国义,张天彬,高淑涛等.珠江三角洲典型区域农业土壤土壤中多环芳烃的含量分布特征及其污染来源[J].环境科学, 2007, 28(10): 2350-2354
    [21]吴启航,麦碧娴,杨清书等.珠江广洲河段重污染沉积物中多环芳烃赋存状态初步研究[J].地球化学, 2004, 33(1): 37-45
    [22]罗雪梅.黄河沉积物中多环芳烃的分布特征及来源分[J].环境科学研究, 2005, 1(18): 48-65
    [23]许中坚,刘广深,刘维屏.土壤中溶解性有机质的环境特性与行为[J].环境化学, 2003, 22(5): 427-433
    [24]吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社, 2004
    [25] Greenland D J. Interactions between humic and fulvic acids and clays [J]. Soil Sci, 1971, 11(1): 34-41
    [26] Arias M, Barral M T, Mejuto. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids [J] .Chemosphere, 2002, 48: 1081-1088
    [27]谢晓梅,翁棣.有机酸对镉在土壤矿物上吸附特征的影响[J].浙江大学学报(农业与生命科学版), 2003, 29(2): 210-214
    [28] McCarthy J F, Roberson L E, Burros L W. Associations of benzoic preens with dissolved organic matter: Prediction of dome from structural and chemical properties of the organic mater [J]. Chemosphere, 1989, 19: 1911-1920
    [29] Chiou C T. Theoretical considerations of the partition uptake of nonionic organic compounds by soil organic matter [A]. Sawhney B L, Brown K. eds. Reactions and Movement of Organic Chemicals in Soils [C]. Madison, Wisconsin: Soil Science Society of America. 1989, 1-29
    [30] Karickhoff S W. Organic pollutant sorption in aquatic systems [J]. Hydraulic Eng, 1984, 110: 707-713
    [31]李红阳,牛树根,王宝德.矿物材料与环境污染治理—以粘土矿物和沸石为例[J].北京地质, 2001, 13(4): 8-12
    [32]唐靖炎,王学群,张明.二十一世纪非金属矿物环保材料的发展前景及建议[J].非金属矿, 2003, 26(3): 1-2
    [33]杨雅秀.中国黏土矿物[M].北京:地质出版社, 1994: 187-190
    [34]鲁安怀.环境矿物材料基本性能—无机界矿物天然自净化功能[J].岩石矿物学杂志, 2001, 20(4): 371-381
    [35]吴平霄,廖宗文.粘土矿物层间域的研究进展[J].自然杂志, 2000, 22(1): 25-32
    [36]王鸿禧.膨润土[M].北京:地质出版社, 1980: 1-137
    [37]吴大清,刁桂仪,袁鹏等.矿物表面活性及其量度[J].矿物学报, 2001, 21(3): 307-311
    [38]威维尔、L. D.普拉德著.粘土矿物化学[M].张德玉译.北京:地质出版社, 1983
    [39]汤艳杰,贾建业,谢先德.粘土矿物的环境意义[J].地学前缘, 2002, 9(2): 337-344
    [40]李爱民,朱燕,代静玉.胡敏酸在高岭土上的吸附行为[J].岩石矿物学杂志, 2005, 24(2): 145-150
    [41]王濮,潘兆橹,翁玲宝等.系统矿物学(中册)[M].北京:地质出版社, 1984
    [42] Petrolia M, Kastelan-macan M and HorvataJ.Interaetion sorption of metal ions and humic acids onto mineral Particles [J]. Water,Air,and soil Pollution, 1998, 111: 41-56
    [43] OmerYavuza, Yal-CinAltunkaynakb, FuatG.Uzel. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite [J]. Water Research, 2003, 37: 948-952
    [44] Huertas F J, Chou L, Wollast R. Mechanism of Kaolinite dissolution at room temperature and pressure: Part 1. Surface speciation [J]. Geochim Cosmochim Acta, 1998, 62(3): 417-431
    [45] JorgeC, Miranda Trevino,CynthiaA. Coles. Kaolinite properties, structure and influence of metal retention on pH [J]. Applied Clay Science, 2003, 23: 133-139
    [46]须藤俊男著.粘土矿物学[M].严寿鹤等译.北京:地质出版社, 1981
    [47]吴平霄.环境污染物在蒙脱石层间域中的环境化学行为[J].地学前缘, 2001, 8(1): 106
    [48] Kalbitz K, Solinger S, et al. Controls on the dynamics of dissolved organic matter in soil Review [J]. Soil Science, 2000, 165(4): 277-304
    [49]陈同斌,陈志军.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响[J].植物营养与肥料学报, 1998, 4(3): 201-210
    [50]王良梅,周立祥.陆地生态系统中水溶性有机物动态及其环境学意义[J].应用生态学报, 2003, 14(11):2019-2025
    [51]代静玉,秦淑平,周江敏.土壤中溶解性有机质分组组分的结构特征研究[J].土壤学报, 2004, 41(5): 722-727
    [52]李廷强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响[J].应用生态学报, 2004, 15(6): 1083-1087
    [53] Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy [J]. Marine Chemistry Volume, 2003, 2(3-4): 239-254
    [54] Kim Y J, Osako M. Leaching characteristics of polycyclic aromatic hydrocarbons (PAHs) from spiked sandy soil [J]. Chemosphere, 2003, 51(5): 387-395
    [55] Weng L P, Ellen P M J F, Jeroen F, et al. Transport of humic and fulvic acids in relation to metal mobility in a copper-contaminated acid sandy soil [J]. Environ Sci Technol, 2002, 36(8): 1699-1704
    [56]郭朝晖,黄昌勇,廖柏寒.模拟酸雨对红壤中铝和水溶性有机质溶出及重金属活动性的影响[J].土壤学报, 2003, 40(3): 380-385
    [57]张甲坤,陶澍,曹军.中国东部土壤水溶性有机物荧光特征及地域分异[J].地理学报, 2001, 54(4): 409-416
    [58]周江敏,代静玉,潘根兴.土壤中水溶性有机质的结构特征及环境意义[J].农业环境科学学报, 2003, 22(6): 731-735
    [59] Kalbitz K, Solinger S, Park J-H, et al. Controls on the dynamics of dissolved organic matter in soils: a review [J]. Soil Sci , 2000, 165: 277-304
    [60] McDowell WH Likens GE. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley [J]. Ecol Monogr , 1988, 58: 177-195
    [61] Zsolnay A. Dissolved humus in soil waters. In: Piccolo Aed. Humic Substances in Terrestrial Ecosystems [J]. Amsterdam: Elsevier. 1996, 171-223
    [62] Guggenberger, G, Zech, W. Composition and dynamics of dissolved organic carbohydrates and lignin-degeneration products in two coniferous forests, N.E, Bavaria, Germany [J]. Soil Biology and Biochemistry, 1994, 26: 19-27
    [63]郑立臣,解宏图,张威等.秸秆不同还田方式对土壤中溶解性有机碳的影响[J].生态环境, 2006, 15(l): 80-83
    [64] Park, J H, Kalbitz, K, Matzner, E. Resource control on the production of dissolvedorganic carbon and nitrogen in a deciduous forest floor [J]. Soil Biology and Biochemistry, 2002, 34(6): 813-822
    [65]代静玉,秦淑平,周江敏.水杉凋落物分解过程中溶解性有机质的分组组成变化[J].生态环境, 2004, 13(2): 207-210
    [66] Guggenberger G, Zech W, Schulten H-R. Formation and mobilization pathways of dissolved organic matter: Evidence from chemical structural studies of organic matter f reactions in acid forest floor solutions [J]. Org Geochem , 1994, 21: 51-66
    [67] Huang Y, Eglinton G, van der Hage ERE, et al. Dissolved organic matter and its parent organic matter in grass upland soil horizons studied by analytical pyrolysis techniques [J]. Eur J Soil l Sci , 1998, 49: 1-15
    [68] Leenheer J.A., Huffman E.W.D. Classification of organic solutes in water by using macro reticular resins [J]. Journal Research US Geol Survey, 1976, 4(6): 737-751
    [69] Guggenberger G, Glaser B, Zech W. Heavy metal binding by hydrophobic and hydrophilic dissolved organic fractions in a spodosol A and B horizon [J]. Water, Air, Soil Pollute, 1994, 72: 111-127
    [70] Qualls RG, Haines BL. Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem [J]. Soil l Sci Soc A m J, 1991, 55: 1112-1123
    [71]凌婉婷,徐建民,高彦征等.水溶性有机物对土壤中有机污染物环境行为的影响[J].应用生态学报, 2004, 15(20): 326-330
    [72] HYUN-HEE CHOI, JAEYOUNG CHOI, MARK N G, et al. Combined effect of natural organic matter and surfactants on the apparent solubility of polycyclic aromatic hydrocarbons [J]. Journal of Environmental Quality, 2002, 31: 275-280
    [73] Herry V M. Association of hydrophobic organic contaminants with soluble organic matter: Evaluation of the database of Kdoc values [J]. Adv. Envrion. Res., 2002, 6: 577-593
    [74] Klaus U, Mohamed S, Volk M, et al. Interaction of aquatic hurnic substances with anliazine and its derivatives: The nature of the bound residues [J]. Chemosphere, 1998, 37(2): 341-361
    [75]周江敏,代静玉,潘根兴.应用光谱分析技术研究土壤水溶性有机质的分组及其结构特征[J].光谱学与光谱分析, 2004, 24(9): 1061-1064
    [76] Zhu D, Herbert B E, Schlautman M A, et al. Caution-πbonding: A new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces [J]. Environ. Qual., 2004, 33: 1322-1330
    [77]占新华,周立祥,杨红等.水溶性有机物与多环芳烃结合特征的红外光谱学研究[J].土壤学报, 2007, 44(l): 47-53
    [78]方晓航,仇荣亮,刘雯等.小分子有机酸对蛇纹岩发育土壤Ni、Co的活化影响[J].中国环境科学, 2005, 25(5): 618-621
    [79]方晓航,仇荣亮,曾晓雯等. EDTA、小分子有机酸对蛇纹岩发育土壤Ni、Co活性的影响[J].中山大学学报:自然科学版, 2005, 44(4): 111-114,128
    [80]吴宏海,张秋云,卢平等.土壤和水体环境中矿物-腐殖质交互作用的研究进展[J].岩石矿物学杂志, 2003, 22(4): 429-432
    [81]贺纪正,刘冬碧.中南地区几种土壤的表面电荷特性[J].华中农业大学学报, 2000, 19(3): 240-248
    [82] Morrison R T, Boyd R N. Organic Chemistry [J]. Newton, Massachusetts: Allyn and Bacon, Inc., 1987, 574-576
    [83]张颖心,张天胜.膨润土在环境污染治理方面的研究进展[J].工业水处理, 2002, 22(10): 9-12
    [84] Xie W., Xie R., Pan W.-P., Hunter D., Koene B., Tan L.-S., Vaia R.. Thermal stability of quaternary phosphonium modified montmorillonites [J]. Chemistry of Materials, 2002, 14: 4837–4845
    [85] Schlaut man M A and Morgan J J. Adsorption of aquatic humic substances on colloidal size aluminum oxide particles: influence of solution chemistry [J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4293-4303
    [86]黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应[J].生态学报, 2002, 22(2): 259-269
    [87] Nkedi-Kizza P, Rao P S C, Hornsby A G. Influence of organic co solvents on sorption of hydrophobic organic chemicals by soils [J]. Environ Sci Technol, 1985, 19: 975-979
    [88] Cox L, Celis R, Hermosin M C, et al. Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter [J]. Environmental Science and Technology, 2000, 34: 4600-4605
    [89]许明珠,刘文新,邢宝山等.水-土体系中溶解有机质对菲解吸动力学的影响[J].环境科学学报, 2008, 28(5): 976-981
    [90]陈华林,陈英旭,沈梦蔚.西湖底泥对多环芳烃(菲)的吸附性能[J].农业环境科学学报, 2003, 22(5): 585-589
    [91]朱利中,李益民,陈曙光. CTMAB-膨润土吸附水中有机物的性能及应用[J].环境化学, 1997, 16(3): 233-237
    [92]吴宏海,卢燕莉,杜娟等.红壤中矿物表面对腐殖质吸附萘的影响[J].岩石矿物学杂志, 2007, 26(6): 539-543
    [93]高彦征,熊巍,凌婉婷等.重金属污染的长春水田黑土对菲的吸附作用[J].中国环境科学, 2006, 26(2): 161-165
    [94]朱馄,展惠英,王恩鹏等.蔡和菲在天然和改性黄土中的吸附特性研究[J].农业环境科学学报, 2006, 25(4): 958-963
    [95]魏俊峰,吴大清,彭金莲等.铅在高岭石表面的解吸动力学[J].矿物岩石, 2002, 22(2): 5-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700