用户名: 密码: 验证码:
MST1促进细胞凋亡机制方面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     蛋白激酶MST1(mammalian Sterile 20-like kinase 1)在其氨基端有一个Ste20相关的激酶催化域,羧基端有一个调节区。MST1在细胞增殖、分化、形态和细胞骨架重排方面发挥了重要作用。先前已有研究指出氨基端催化域的缺失会使MST1被半胱氨酸蛋白酶3(caspase-3)在为数众多的细胞凋亡刺激素的作用下所切割,例如由CD95/FasL触发的死亡受体,或被星孢菌素(STS),神经酰胺,热休克和亚砷酸盐处理。被切割后的MST1的氨基末端会转移至核内,然后对于染色质的固缩和随后发生的细胞凋亡产生一定的作用。而且,有实验表明在细胞内过表达MST1的情况下,已经发现了其被切割的情况和因此诱发的细胞凋亡。并且已经有报道证实第326和第349位的天冬氨酸是两个主要的切割位点。突变掉这些切割位点后,MST1的激活,核转位和诱导细胞凋亡的能力都会明显减弱。最近已经明确了在MST1的第八亚结构域的第183位的苏氨酸是其主要的磷酸激活位点并且这个苏氨酸位点的自磷酸化对于MST1激酶的激活是必须的。Hippo是哺乳动物的MST1在果蝇中的同源蛋白,并且已经被大量实验证实其通过抑制转录和(或者)降解细胞周期蛋白E(cyclin E)和DIAPs或者磷酸化并抑制Yorkie来限制细胞生长和增殖。在哺乳动物中,MST1已经被证实可以分别通过促细胞分裂剂激活性蛋白激酶激酶4/促细胞分裂剂激活性蛋白激酶激酶7(MKK4/MKK7)和促细胞分裂剂激活性蛋白激酶激酶3/促细胞分裂剂激活性蛋白激酶激酶6(MKK3/MKK6)激活c-Jun氨基末端激酶(JNK)和p38MAPK激酶信号通路。最近有报道称JNK对于MST1的激活和由MST1介导的通过磷酸化MST1上的第82位丝氨酸引起的细胞凋亡是必须的。此外,JNK的显性失活突变体能抑制MST1诱导的caspase的激活和从而产生的细胞凋亡,而p38的显性失活突变体和p38抑制剂则不能抑制MST1诱导的细胞凋亡。
     MST1还能通过磷酸化组蛋白H2B上相对保守的位点(哺乳动物细胞上第14位丝氨酸,酵母菌上第10位丝氨酸)来诱导的细胞凋亡。我们实验室的研究表明MST1能通过磷酸化O亚型叉头框3a(FOXO3a)上的第207位丝氨酸和FOXO1上对应的第212位丝氨酸从而涉及依赖于FOXO的神经元细胞凋亡过程。近期我们还发现磷酸肌醇3(phosphoinositide 3)激酶/Akt能磷酸化第120位苏氨酸从而抑制MST1介导的细胞凋亡前信号通路。
     沉默信息调节因子2相关酶1(Sirt1)是NAD+依赖的去乙酰化酶,它有相当数量的底物并且参与了多种细胞进程。去乙酰化这些靶蛋白导致其蛋白活性既有可能被抑制也有可能被激活,从而影响机体生理的许多方面,例如转录沉默,基因水平控制的寿命长短,细胞的新陈代谢,能量的动态平衡,DNA修复和细胞存活。P53作为一个关键肿瘤抑制基因,在反馈细胞所接受的众多压力信号包括DNA损伤,组织缺氧和异常增殖过程中发挥了极其重要的作用。P53维持基因组稳定性的方式主要是依赖于p53诱导的细胞凋亡,包括抑制肿瘤生长或是清除肿瘤。总的来说,p53应对DNA损伤的生物活性是和其转录后的修饰状态密切相关的,特别是特殊位点的磷酸化、乙酰化和泛素化。Sirt1已经被报道能强烈与其底物p53结合,并能去乙酰化p53的第382位赖氨酸。Sirt1介导的去乙酰化能对抗依赖于p53的转录激活并能特定地抑制在DNA损伤或氧化应激下引起的依赖于p53的细胞凋亡。
     先前的研究已经指出MST1促进的细胞凋亡有可能是依赖于p53的,但是MST1-p53在细胞凋亡过程中信号通路的分子机制还有很大一部分都是未知。所以本研究旨在明确MST1在遗传毒性因子诱导的依赖于p53的细胞凋亡过程中扮演的角色,并期待着能发现MST1、Sirt1和p53在这个过程中的相互调节机制。
     方法
     1.1 MST1和Sirt1对p53和p21转录活性的影响
     A. H1299细胞在转染14*p53人工荧光素酶报告基因的同时分别共转了p53、MST1、MST1 K59R和Sirt1质粒。细胞裂解液用双荧光素酶报告基因系统检测转录活性。B. H1299细胞在转染p21启动子荧光素酶报告基因的同时分别共转了p53、MST1和Sirt1质粒。细胞裂解液用双荧光素酶报告基因系统检测转录活性。
     1.2 MST1和Sirt1对p53介导的细胞凋亡的影响
     A. U2OS细胞转染编码MST1和p53 shRNA或者空载体的质粒,然后用Etoposide处理36小时后用流式细胞仪检测Annexin-V染色的细胞凋亡情况。B. HCT116 p53+/+和HCT116 p53-/-细胞被稳定转染MST1,对照组稳定转染空载体,然后用CDDP处理36小时后用流式细胞仪检测Annexin-V染色的细胞凋亡情况。C. HCT116 p53+/+和HCT116 p53-/-细胞转染MST1的小干扰RNA,对照组转染随机小干扰RNA,然后用CDDP处理48小时后用流式细胞仪检测Annexin-V染色的细胞凋亡情况。D. U2OS细胞在转染MST1质粒的同时共转Sirt1质粒或空载体。用Etoposide处理36小时后用流式细胞仪检测Annexin-V染色的细胞凋亡情况。
     2.1 MST1对Sirt1介导的p53去乙酰化作用的影响
     A.稳定转染MST1的HCT116 p53+/+细胞和其稳定转染空载体的对照组细胞的裂解液用免疫印迹方法检测,所用的抗体包括抗p53-k382乙酰化抗体和抗p53抗体。上样量通过内参14-3-3β蛋白调整,从而保持一致。B.转染HA-p53或同时转染GFP-MST1的细胞中FLAG-Sirt1的免疫沉淀物用免疫印迹方法检测,所用的抗体包括抗HA抗体和抗FLAG抗体。C.转染p53、p300、Sirt1、MST1质粒的293T细胞的裂解液用免疫印迹方法检测,所用抗体有抗p53-k382乙酰化抗体等。
     2.2 MST1如何通过和Sirt1作用增强p53乙酰化
     A.体外MST1激酶实验,重组MST1蛋白和其底物GST-Sirt1在32P-ATP存在的情况下进行孵育。反应后用聚丙烯酰胺凝胶电泳分离蛋白质进行荧光放射自显影术测定。B.体外MST1激酶实验,有活性的重组MST1蛋白在32P-ATP存在的情况下和不同的Sirt1蛋白片段(P1、P2、P3)进行孵育。反应后用聚丙烯酰胺凝胶电泳分离蛋白质进行荧光放射自显影术测定。C.体外磷酸化实验,有活性的MST1蛋白和Sirt1蛋白在不带放射性的ATP存在的情况下进行孵育,然后将磷酸化实验产物和乙酰化p53孵育进行去乙酰化实验。反应后用聚丙烯酰胺凝胶电泳分离蛋白质并用免疫印迹方法检测,所用抗体有抗p53-K382乙酰化抗体、抗GST抗体和抗Sirt1抗体。
     结果与结论
     1.1 MST1通过抑制Sirt1活性增强p53转录活性。
     在14*p53报告基因中,Sirt1能显著抑制p53的表达,而野生型MST1能明显挽救Sirt1诱导的p53降低,但是ATP结合位点突变的激酶活性失活的MST1(MST1 K59R)不能挽救Sirt1诱导的p53降低。与之相似的,Sirt1抑制了依赖于p53的p21荧光素酶活性,而MST1可以逆转Sirt1诱导的p21表达的降低。综上所述,MST1通过抑制Sirt1来促进p53的转录活性。
     1.2 MST1促进细胞凋亡是依赖于p53并且Sirt1能抑制MST1诱导的细胞凋亡。
     U2OS细胞在干扰掉p53基因的情况下过表达MST1,用Etoposide处理后,细胞凋亡减少。我们在HCT116 p53-/-细胞中也发现MST1的稳定表达不能增加Cisplatin诱导的细胞凋亡数目,但是在HCT116 p53+/+细胞中MST1的稳定表达却能增加Cisplatin诱导的细胞凋亡数目,并且我们还发现在HCT116 p53+/+细胞中干扰掉MST1后Cisplatin诱导的细胞凋亡明显减少而在HCT116 p53-/-细胞中干扰掉MST1后Cisplatin诱导的细胞凋亡不能被降低。这些实验证据证明MST1在DNA损伤情况下促进细胞凋亡是依赖于p53。同时在Sirt1过表达细胞中,MST1介导的细胞凋亡会减少。
     2.1 MST1抑制Sirt1介导的p53去乙酰化。
     我们在体外MST1激酶实验中发现MST1不能直接磷酸化p53。而Western blot使用p53特异的乙酰化抗体检测结果表明在MST1过表达细胞中内源p53乙酰化水平有所增高。然后我们用IP实验证明MST1和Sirt1有直接的相互作用。接着,我们观察到MST1的过表达会减弱p53和Sirt1的相互作用。与之一致的,在MST1过表达的细胞中Sirt1介导的p53去乙酰化是被抑制的。综上所述,MST1抑制了Sirt1介导的p53去乙酰化。我们同时发现在体外MST1也能减少Sirt1介导的FOXO3去乙酰化,表明MST1也可能调控Sirt1其他底物的生物活性。
     2.2 MST1通过磷酸化Sirt1增加p53乙酰化。
     体外MST1激酶实验中用重组Sirt1蛋白作为底物表明Sirt1能被MST1磷酸化。我们接着用重组GST融合蛋白分别编码了3个不重叠的Sirt1区域(肽段P1-P3)并以此指出在Sirt1上的磷酸化区域。在体外激酶实验中显示包含了C末端的第489-747位氨基酸片段的P3是磷酸化的主要区域。在体外磷酸化和去乙酰化实验中,MST1磷酸化Sirt1确实减少了Sirt1诱导的p53去乙酰化。通过以上实验我们阐明了MST1通过负调控Sirt1的去乙酰化活性来调节p53功能的分子机制。
Background and Objectives
     The protein kinase mammalian Sterile 20-like kinase 1(MST1) contains a Ste20-related kinase catalytic domain in the amino-terminal segment followed by a regulatory domain at the COOH-terminus. It has been implicated in the diverse biological functions including cell proliferation, differentiation, morphogenesis and cytoskeleton rearrangement. Previous studies have indicated that non-catalytic tail of MST1 is cleaved by caspase-3 upon a numbers of apoptotic stimuli for example death receptor triggering by CD95/FasL and treatments with Staurosporine (STS), Ceramide, as well as heat shock and arsenite. The amino-terminal fragment of cleaved MST1 translocates into the nucleus, where it contributes to chromatin condensation and then apoptosis. Furthermore, under the condition of overexpressing MST1, the cleavage and herein induced apoptosis could also be observed. It has been reported that D326 and D349 are the two major cleavage sites. The kinase activation, nuclear translocation and ability to induce cell death of MST1 areapparently attenuated by mutating these cleavage sites. Recently it has been defined Threonine 183 as a dominating phosphoactivation site in subdomain VIII of MST1 and it is essential for kinase activation with the auto-phosphorylation of Threonine 183 within the MST1 kinase domain. Hippo, a mammalian homolog of MST1/2 in Drosophila, has been extensively shown to restrain cell from growth and proliferation through the inhibition of transcription and/or degradation of cyclin E and DIAPs or phosphorylation and inhibition of Yorkie. In mammals, it has been indicated that MST1 can activate c-Jun n-terminal kinase (JNK) and p38MAPK kinase signaling pathways through MKK4/MKK7 and MKK3/MKK6, respectively. Recently it is suggested that JNK is essential and sufficient for MST1 activation and MST1-mediated apoptosis via phosphorylating the serine 82 on MST1. Furthermore, MST1-induced caspase activation and apoptosis are inhibited by dominant-negative mutant of JNK, not dominant-negative p38 or the p38 inhibitor.
     MST1 induces apoptosis by phosphorylating Histone H2B on a relatively conserved site, Ser-14 in mammalian cells and Ser-10 in Saccharomyces cerevisiae, respectively. We reported that MST1 has also been implicated in the control of FOXO-dependent neuronal cell death via phosphorylating FOXO3a at Ser-207 and the corresponding site of FOXO1 at Ser-212. Recently we have shown that phosphorylation of Threonine 120 by phosphoinositide 3-kinase/Akt can inhibit MST1-mediated pro-apoptotic signaling pathway.
     Sirt1 is a NAD+-dependent deacetylase with numbers of substrates that participates in various cellular processes. Deacetylation of these target proteins may either inhibit or activate their activities, thus influences many aspects of organism physiology, such as transcriptional silencing, genetic control of aging, cell metabolism, energy homeostasis, DNA repair and cell survival. And the p53 protein functions as a key tumor suppressor, and plays a vital role in invoking cellular responses to numerous stress signals, including DNA damage, hypoxia and aberrant proliferation. The way of p53 in maintaining genome stability is mainly carried out by p53-dependent apoptosis, which is in mediating tumor suppression or tumor clearance. In general, p53 biological activity in responding to DNA damage is tightly regulated by its post-translational modification status, particularly by site-specific phosphorylation, acetylation and ubiquitination. Sirt1 has been reported to strongly bind to its substrate p53 and can deacetylate p53 at Lysine 382. The Sirt1-mediated deacetylation antagonizes p53-dependent transcriptional activation and specifically inhibits p53-dependent apoptosis in response to DNA damage as well as oxidative stress.
     Previous studies have shown that MST1 promotes cell death is p53-dependent, but the molecular mechanism underlying MST1-p53 signaling during apoptosis is still largely unknown. In this work, we aim to identify the role of MST1 in promotion of genotoxic agents-induced apoptosis dependent on p53. And we also expect to find out the regulator mechanism among MST1, Sirt1 and p53.
     Methods
     1.1 Effects of MST1 and Sirt1 on the p53 and p21 transcriptional activity
     A. H1299 cells were co-transfected with 14*p53 artificial-luciferase construct with p53, MST1, MST1 K59R or Sirt1. Lysates were assayed for the dual-luciferase activity. B. H1299 cells were co-transfected the p21-luciferase promoter construct with the plasmids encoding p53, MST1 or Sirt1. Lysates were assayed for the dual-luciferase activity as in A.
     1.2 Effects of MST1 and Sirt1 on the p53-mediated cell death
     A. U2OS cells were transfected with the plasmids encoding MST1 together with p53 shRNA or control vector, then treated with Etoposide (36h) before apoptosis analysis and the apoptosis was analyzed by Annexin-V staining followed by flow cytometry. B. Both HCT116 p53+/+ and p53-/- cells stably transfected with MST1 or control vectors were treated with Cisplatin (CDDP) and the cell death analysis was performed as in A. C. U2OS cells were transfected with the plasmids encoding MST1 together with Sirt1 or control empty vector and the cell death analysis was performed as in A.
     2.1 Effects of MST1 on Sirt1-mediated deacetylation of p53
     A. Lysates of HCT116 p53+/+ cells stably transfected with MST1 or control vector were immunoblotted with anti-p53-K382Ac or anti-p53 antibody and the loading was normalized by using the protein 14-3-3β. B. FLAG-Sirt1 immunoprecipitates from cells transfected with HA-p53 or GFP-MST1 were immunoblotted with anti-HA or anti-FLAG antibody. C. Lysates of 293T cells transfected with the plasmids encoding p53, p300, Sirt1, MST1 were immunoblotted with anti-p53-K382Ac antibody as well as the other antibodies.
     2.2 How MST1 enhances p53 acetylation through its interaction with Sirt1
     A. In vitro MST1 kinase assay was performed by incubating the recombinant active MST1 with GST-Sirt1 as substrate in the presence of 32P-ATP. The reaction was analyzed by SDS-PAGE followed by autoradiography. B. In vitro MST1 kinase assay was performed by incubating the recombinant active MST1 with different Sirt1 fragments (P1, P2, and P3) in the presence of 32P-ATP. The reaction was analyzed by SDS-PAGE followed by autoradiography. C. In vitro phosphorylation was performed by incubating active MST1 and Sirt1 in the presence of cold ATP. Then the deacetylation reaction was performed by incubating the products of in vitro phosphorylation reaction with the acetylated p53. The reaction was analyzed by SDS-PAGE followed by immunoblotting with anti-p53-K382Ac, anti-GST or Sirt1 antibody.
     Results and Conclusions
     1.1 MST1 promotes p53 transcriptional activities by inhibiting Sirt1 activity.
     Sirt1 dramatically inhibits p53-mediated expression of the 14*p53 reporter. Wild type MST1, significantly rescues Sirt1-induced p53 repression, but the kinase dead MST1 in which the ATP binding site was mutated (MST1 K59R) failed to do so. Similarly, Sirt1 inhibits p53-dependent p21 luciferase’s activity and MST1 could reverse Sirt1-induced p21 repression. Taken together, MST1 promotes p53 biological activities by inhibiting Sirt1.
     1.2 MST1 promotes cell death is p53-dependent and Sirt1 can inhibition of MST1-induced apoptosis.
     P53 knockdown in U2OS cells reduces MST1 overexpression-induced cell death upon Etoposide treatment. We also found that MST1 cannot induce Cisplatin-triggered cell death in HCT116 p53-/- cells. However, MST1 increases Cisplatin-induced cell death in HCT116 p53+/+ cells. These experiments together strikingly support our conclusion that MST1 induces cell death under DNA damage is p53-dependent. And Sirt1 overexpression decreases MST1 mediated apoptosis.
     2.1 MST1 inhibits Sirt1-mediated deacetylation of p53.
     In vitro MST1 kinase assay using recombinant p53 or Histone H2B as the substrate, we found MST1 failed to phosphorylate p53 in vitro. Western blot analysis by using p53 specific acetylation antibody revealed that the acetylation of endogenous p53 was upregulated in the MST1 overexpressing cells. Then first, we examined the physical interaction between MST1 and Sirt1, indicating they might interact functionally. Secondly, we observed that MST1 overexpression reduced the interaction between p53 and Sirt1. Consistently, the Sirt1 mediated deacetylation of p53 is inhibited in the presence of MST1 in cells. Collectively, MST1 inhibits Sirt1 mediated p53 deacetylation. We also found that MST1 reduces Sirt1-mediated FOXO3 deacetylation in vitro, indicating that MST1 might regulate the biological function of other Sirt1’s substrates.
     2.2 MST1 enhances p53 acetylation through phosphorylating Sirt1.
     In vitro MST1 kinase assay using the recombinant Sirt1 as the substrate indicates Sirt1 could be phosphorylated by MST1. We then delineated the phosphorylated region within Sirt1 using recombinant GST fusion proteins encoding three non-overlapping Sirt1 domains (peptides P1-P3). In vitro kinase assay shows the P3 fragment containing C-terminal 489-747 amino acids is the major region of phosphorylation. And MST1 phosphorylation of Sirt1 indeed decreases Sirt1-induced p53 deacetylation by using in vitro phosphorylation followed by in vitro deacetylation reaction. Here we elucidate the mechanism of MST1 regulating p53 through negative regulation of Sirt1’s deacetylation activity.
引文
1. Creasy, C.L., D.M. Ambrose, and J. Chernoff, The Ste20-like protein kinase, Mst1, dimerizes and contains an inhibitory domain. J Biol Chem, 1996. 271(35): p. 21049-53.
    2. Reszka, A.A., et al., Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J Biol Chem, 1999. 274(49): p. 34967-73.
    3. Sun, S. and K. Ravid, Role of a serine/threonine kinase, Mst1, in megakaryocyte differentiation. J Cell Biochem, 1999. 76(1): p. 44-60.
    4. Praskova, M., et al., Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J, 2004. 381(Pt 2): p. 453-62.
    5. Ura, S., et al., MST1-JNK promotes apoptosis via caspase-dependent and independent pathways. Genes Cells, 2001. 6(6): p. 519-30.
    6. Glantschnig, H., G.A. Rodan, and A.A. Reszka, Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. J Biol Chem, 2002. 277(45): p. 42987-96.
    7. Hwang, E., et al., Structural insight into dimeric interaction of the SARAH domains from Mst1 and RASSF family proteins in the apoptosis pathway. Proc Natl Acad Sci U S A, 2007. 104(22): p. 9236-41.
    8. Grigorian, M. and E. Lukanidin, [Activator of metastasis in cancer cells, Mst1/S100A4 protein binds to tumor suppressor protein p53]. Genetika, 2003. 39(7): p. 900-8.
    9. Lin, Y., et al., Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis. J Biol Chem, 2002. 277(50): p. 47991-8001.
    10. Aoyama, Y., J. Avruch, and X.F. Zhang, Nore1 inhibits tumor cell growth independent of Ras or the MST1/2 kinases. Oncogene, 2004. 23(19): p. 3426-33.
    11. Yuan, Z., et al., Regulation of neuronal cell death by MST1-FOXO1 signaling. J Biol Chem, 2009. 284(17): p. 11285-92.
    12. Choi, J., et al., Mst1-FoxO signaling protects Naive T lymphocytes from cellular oxidative stress in mice. PLoS One, 2009. 4(11): p. e8011.
    13. Li, Z.M., et al., [Overexpression of hSav1 promotes Mst1-induced apoptosis in HeLa cells]. Zhonghua Zhong Liu Za Zhi, 2009. 31(7): p. 481-4.
    14. Cinar, B., et al., The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. Embo J, 2007. 26(21): p. 4523-34.
    15. Ghosh, H.S., M. McBurney, and P.D. Robbins, SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 5(2): p. e9199.
    16. Caito, S., et al., SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. Faseb J.
    17. Gurd, B.J., et al., High-intensity interval training increases SIRT1 activity in human skeletal muscle. Appl Physiol Nutr Metab. 35(3): p. 350-7.
    18. Uhl, M., et al., Role of SIRT1 in homologous recombination. DNA Repair (Amst). 9(4): p. 383-93.
    19. Gottlieb, S. and R.E. Esposito, A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell, 1989. 56(5): p. 771-6.
    20. Tang, B.L., Sirt1 and cell migration. Cell Adh Migr. 4(2): p. 163-5.
    21. Schug, T.T., The skinny on SIRT1 regulation. Dis Model Mech.
    22. Schug, T.T., et al., Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol Cell Biol.
    23. Satoh, A., et al., SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci. 30(30): p. 10220-32.
    24. Smith, N.D., et al., The p53 tumor suppressor gene and nuclear protein: basic science review and relevance in the management of bladder cancer. J Urol, 2003. 169(4): p. 1219-28.
    25. Schmidt, M., et al., p53 expression and resistance against paclitaxel in patients with metastatic breast cancer. J Cancer Res Clin Oncol, 2003. 129(5): p. 295-302.
    26. Zhu, Y. and C. Prives, p53 and Metabolism: The GAMT Connection. Mol Cell, 2009. 36(3): p. 351-2.
    27. Zhao, L., et al., Srcasm inhibits Fyn-induced cutaneous carcinogenesis withmodulation of Notch1 and p53. Cancer Res, 2009. 69(24): p. 9439-47.
    28. Zhang, Y. and H. Lu, Signaling to p53: ribosomal proteins find their way. Cancer Cell, 2009. 16(5): p. 369-77.
    29. Zhu, W., et al., Triptolide induces apoptosis in human anaplastic thyroid carcinoma cells by a p53-independent but NF-kappaB-related mechanism. Oncol Rep, 2009. 22(6): p. 1397-401.
    30. Sekido, Y., et al., Heterogeneous gene alterations in primary breast cancer contribute to discordance between primary and asynchronous metastatic/recurrent sites: HER2 gene amplification and p53 mutation. Int J Oncol, 2003. 22(6): p. 1225-32.
    31. Zhu, H., et al., A role for p53 in the regulation of extracellular matrix metalloproteinase inducer in human cancer cells. Cancer Biol Ther, 2009. 8(18): p. 1722-8.
    32. Zhang, X.P., et al., Cell fate decision mediated by p53 pulses. Proc Natl Acad Sci U S A, 2009. 106(30): p. 12245-50.
    33. Yamamori, T., et al., SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Res. 38(3): p. 832-45.
    34. Kim, S., et al., Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. Mol Biol Cell, 1999. 10(10): p. 3125-36.
    35. Zhang, R., et al., SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages. J Biol Chem. 285(10): p. 7097-110.
    36. Cohen, H.Y., et al., Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 2004. 305(5682): p. 390-2.
    37. Walker, A.K., et al., Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24(13): p. 1403-17.
    38. Yu, J. and J. Auwerx, Protein deacetylation by SIRT1: an emerging key post-translational modification in metabolic regulation. Pharmacol Res. 62(1): p. 35-41.
    39. Sung, J.Y., et al., Balance between SIRT1 and DBC1 expression is lost in breast cancer. Cancer Sci. 101(7): p. 1738-44.
    40. Wang, J., et al., The role of Sirt1: at the crossroad between promotion of longevityand protection against Alzheimer's disease neuropathology. Biochim Biophys Acta. 1804(8): p. 1690-4.
    41. Yoshizaki, T., et al., SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab. 298(3): p. E419-28.
    42. Takata, T. and F. Ishikawa, Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun, 2003. 301(1): p. 250-7.
    43. Makino, H., et al., p53 mutations in MeIQ-induced mouse forestomach tumors. Nippon Ika Daigaku Zasshi, 1997. 64(1): p. 39-44.
    44. Sato, T., et al., Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line. Biochem Biophys Res Commun, 2008. 377(1): p. 126-30.
    45. Sgura, A., et al., Chromosome aberrations and telomere length modulation in bone marrow and spleen cells of melphalan-treated p53+/- mice. Environ Mol Mutagen, 2008. 49(6): p. 467-75.
    46. Brachman, D.G., et al., p53 gene mutations and abnormal retinoblastoma protein in radiation-induced human sarcomas. Cancer Res, 1991. 51(23 Pt 1): p. 6393-6.
    47. Zuckerman, V., et al., Tumour suppression by p53: the importance of apoptosis and cellular senescence. J Pathol, 2009. 219(1): p. 3-15.
    48. Zhang, L., et al., Efficient activation of p53 pathway in A549 cells exposed to L2, a novel compound targeting p53-MDM2 interaction. Anticancer Drugs, 2009. 20(6): p. 416-24.
    49. Yu, Z., et al., A recombinant cell-permeable p53 fusion protein is selectively stabilized under hypoxia and inhibits tumor cell growth. Cancer Lett, 2009. 279(1): p. 101-7.
    50. Yoo, G.H., et al., A phase 2 trial of surgery with perioperative INGN 201 (Ad5CMV-p53) gene therapy followed by chemoradiotherapy for advanced, resectable squamous cell carcinoma of the oral cavity, oropharynx, hypopharynx, and larynx: report of the Southwest Oncology Group. Arch Otolaryngol Head Neck Surg, 2009. 135(9): p. 869-74.
    51. Ying, J.E., et al., [Relationship between the protein expression of P53, c-erbB-2, vascular endothelial growth factor and CD44 and the survival rates of stage II( colorectal cancer patients without radiochemotherapy after radical resection]. Zhonghua Wei Chang Wai Ke Za Zhi, 2009. 12(4): p. 395-8.
    52. Zhang, G., et al., HPV-16E6 can induce multiple site phosphorylation of p53. Oncol Rep, 2009. 21(2): p. 371-7.
    53. Zakaria, Y., et al., Eurycomanone induce apoptosis in HepG2 cells via up-regulation of p53. Cancer Cell Int, 2009. 9: p. 16.
    54. Yun, Y.P., et al., Diesel exhaust particles induce apoptosis via p53 and Mdm2 in J774A.1 macrophage cell line. Toxicol In Vitro, 2009. 23(1): p. 21-8.
    55. Yoshizawa, K., et al., N-methyl-N-nitrosourea-induced retinal degeneration in mice is independent of the p53 gene. Mol Vis, 2009. 15: p. 2919-25.
    56. Yoshida, M., et al., Chronic doxorubicin cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway and attenuated by pitavastatin through the inhibition of Rac1 activity. J Mol Cell Cardiol, 2009. 47(5): p. 698-705.
    57. Yoon, C.H., et al., PKR, a p53 target gene, plays a crucial role in the tumor-suppressor function of p53. Proc Natl Acad Sci U S A, 2009. 106(19): p. 7852-7.
    58. Yamakuchi, M. and C.J. Lowenstein, MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle, 2009. 8(5): p. 712-5.
    59. Shariat, S.F., et al., Association of p53 and p21 expression with clinical outcome in patients with carcinoma in situ of the urinary bladder. Urology, 2003. 61(6): p. 1140-5.
    60. Yeo, J., et al., Label-free electrochemical detection of the p53 core domain protein on its antibody immobilized electrode. Anal Chem, 2009. 81(12): p. 4770-7.
    61. Wakoh, T., et al., A novel p53-dependent apoptosis function of TARSH in tumor development. Nagoya J Med Sci, 2009. 71(3-4): p. 109-14.
    62. Volonte, D., et al., Caveolin-1 expression is required for the development of pulmonary emphysema through activation of the ATM-p53-p21 pathway. J Biol Chem, 2009. 284(9): p. 5462-6.
    63. Vasilescu, F., et al., P53, p63 and Ki-67 assessment in HPV-induced cervicalneoplasia. Rom J Morphol Embryol, 2009. 50(3): p. 357-61.
    64. van Leeuwen, I. and S. Lain, Sirtuins and p53. Adv Cancer Res, 2009. 102: p. 171-95.
    65. Tedeschi, A., et al., A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ, 2009. 16(4): p. 543-54.
    66. Takwi, A. and Y. Li, The p53 Pathway Encounters the MicroRNA World. Curr Genomics, 2009. 10(3): p. 194-7.
    67. Taii, A., et al., Correlations between p53 gene mutations and histologic characteristics of pancreatic ductal carcinoma. Pancreas, 2009. 38(2): p. e60-7.
    68. Szoke, D., et al., Polymorphisms of the ApoE, HSD3B1, IL-1beta and p53 genes are associated with the development of early uremic complications in diabetic patients: results of a DNA resequencing array study. Int J Mol Med, 2009. 23(2): p. 217-27.
    69. Sun, Y., et al., Functional characterization of p53 in nasopharyngeal carcinoma by stable shRNA expression. Int J Oncol, 2009. 34(4): p. 1017-27.
    70. Speetjens, F.M., et al., Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin Cancer Res, 2009. 15(3): p. 1086-95.
    71. Srivastava, S., et al., Rapid and efficient hydrophilicity tuning of p53/mdm2 antagonists. J Comb Chem, 2009. 11(4): p. 631-9.
    72. Songgang, L., et al., Somatostatin enhances the chemosensitivity of GBC-SD cell line to doxorubicin through arresting the cell cycle to S phase rather than through the P53/Bax-depended apoptosis way in vitro. Hepatogastroenterology, 2009. 56(94-95): p. 1253-60.
    73. Sax, J.K. and W.S. El-Deiry, p53 downstream targets and chemosensitivity. Cell Death Differ, 2003. 10(4): p. 413-7.
    74. Yamaguchi, H., et al., p53 acetylation is crucial for its transcription-independent proapoptotic functions. J Biol Chem, 2009. 284(17): p. 11171-83.
    75. Sundqvist, A., et al., Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep, 2009. 10(10): p. 1132-9.
    1. Creasy, C.L., and Chernoff, J. (1995). Cloning and characterization of a member of the MST subfamily of Ste20-like kinases. Gene 167, 303–306.
    2. Creasy, C.L., Ambrose, D.M., and Chernoff, J. (1996). The Ste20-like protein kinase, Mst1, dimerizes and contains an inhibitory domain. J. Biol. Chem.271, 21049–21053.
    3. Creasy, C.L., and Chernoff, J. (1995). Cloning and characterization of a human protein kinase with homology to Ste20. J. Biol. Chem. 270, 21695–21700.
    4. Taylor, L.K., Wang, H.C., and Erikson, R.L. (1996). Newly identified stressresponsive protein kinases, Krs-1 and Krs-2. Proc. Natl. Acad. Sci. USA 93, 10099–10104.
    5. Scheel, H., and Hofmann, K. (2003). A novel interaction motif, SARAH, connects three classes of tumor suppressor. Curr. Biol. 13, R899–R900.
    6. Graves, J.D., Gotoh, Y., Draves, K.E., Ambrose, D., Han, D.K., Wright, M., Chernoff, J., Clark, E.A., and Krebs, E.G. (1998). Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J. 17, 2224–2234.
    7. Ura, S., Masuyama, N., Graves, J.D., and Gotoh, Y. (2001). Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc. Natl. Acad. Sci. USA 98, 10148–10153.
    8. Pantalacci, S., Tapon, N., and Leopold, P. (2003). The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat. Cell Biol. 5, 921–927.
    9. Udan, R.S., Kango-Singh, M., Nolo, R., Tao, C., and Halder, G. (2003). Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat. Cell Biol. 5, 914–920.
    10. Harvey, K., and Tapon, N. (2007). The Salvador-Warts-Hippo pathway– an emerging tumour-suppressor network. Nat. Rev. Cancer 7, 182–191.
    11. Pan, D. (2007). Hippo signaling in organ size control. Genes Dev. 21, 886–897.
    12. Saucedo, L.J., and Edgar, B.A. (2007). Filling out the Hippo pathway. Nat. Rev. Mol. Cell. Biol. 8, 613–621.
    13. Striedinger, K., VandenBerg, S.R., Baia,G.S., McDermott,M.W.,Gutmann,D.H., and Lal, A. (2008). The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 10, 1204–1212.
    14. Lau, Y.K., Murray, L.B., Houshmandi, S.S., Xu, Y., Gutmann, D.H., and Yu, Q. (2008). Merlin is a potent inhibitor of glioma growth. Cancer Res. 68, 5733–5742.
    15. Yokoyama, T., Osada, H., Murakami, H., Tatematsu, Y.,Taniguchi, T.,Kondo, Y., Yatabe, Y., Hasegawa, Y., Shimokata, K., Horio,Y., et al. (2008).YAP1 is involved in mesothelioma development and negatively regulated by Merlin through phosphor- ylation. Carcinogenesis 29, 2139–2146.
    16. Kakeya, H., Onose, R., and Osada, H. (1998). Caspase-mediated activation of a 36-kDa myelin basic protein kinase during anticancer drug-induced apoptosis. Cancer Res. 58, 4888–4894.
    17. Watabe, M., Kakeya, H., Onose, R., and Osada, H. (2000). Activation of MST/ Krs and c-Jun N-terminal kinases by different signaling pathways during cytotrienin A-induced apoptosis. J. Biol. Chem. 275, 8766–8771.
    18. Watabe, M., Kakeya, H., and Osada, H. (1999). Requirement of protein kinase (Krs/MST) activation for MT-21-induced apoptosis. Oncogene 18, 5211–5220.
    19. Glantschnig, H., Rodan, G.A., and Reszka, A.A. (2002). Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. J. Biol. Chem. 277, 42987– 42996. 20. Graves, J.D., Draves, K.E., Gotoh, Y., Krebs, E.G., and Clark, E.A. (2001). Both phosphorylation and caspase-mediated cleavage contribute to regulation of the Ste20-like protein kinase Mst1 during CD95/Fas-induced apoptosis. J. Biol. Chem. 276, 14909–14915.
    21. Jang, S.W., Yang, S.J., Srinivasan, S., and Ye, K. (2007). Akt phosphorylates MstI and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation. J. Biol. Chem. 282, 30836–30844.
    22. Anand, R., Kim, A.Y., Brent, M., and Marmorstein, R. (2008). Biochemical analysis of MST1 kinase: Elucidation of a C-terminal regulatory region. Biochemistry, epub ahead of print.
    23. Guo, C., Tommasi, S., Liu, L., Yee, J.K., Dammann, R., and Pfeifer, G.P. (2007). RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/ Lats tumor- suppressor network. Curr. Biol. 17, 700–705.
    24. Zhou, D., Medoff, B.D., Chen, L., Li, L., Zhang, X.F., Praskova, M., Liu, M., Landry, A., Blumberg, R.S., Boussiotis, V.A., et al. (2008). The Nore1B/ Mst1 complex restrainsantigen receptor-induced proliferation of na?ve T cells. Proc. Natl. Acad. Sci. USA 105, 20321–20326.
    25. Katagiri, K., Katakai, T., Ebisuno, Y., Ueda, Y., Okada, T., and Kinashi, T. (2009). Mst1 controls lymphocyte trafficking and interstitial motility within lymph nodes. EMBO J., epub ahead of print.
    26. Matallanas, D., Romano, D., Yee, K., Meissl, K., Kucerova, L., Piazzolla, D., Baccarini, M., Vass, J.K., Kolch, W., and O’Neill, E. (2007). RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol. Cell 27, 962–975.
    27. Praskova, M., Khoklatchev, A., Ortiz-Vega, S., and Avruch, J. (2004). Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem. J. 381, 453–462.
    28. Oh, H.J., Lee, K.K., Song, S.J., Jin, M.S., Song, M.S., Lee, J.H., Im, C.R., Lee, J.O., Yonehara, S., and Lim, D.S. (2006). Role of the tumor suppressor RASSF1A in Mst1- mediated apoptosis. Cancer Res. 66, 2562–2569.
    29. Sells, M.A., and Chernoff, J. (1997). Emerging from the Pak: the p21-activated protein kinase family. Trends Cell Biol. 7, 162–167.
    30. Cheung, W.L., Ajiro, K., Samejima, K., Kloc, M., Cheung, P., Mizzen, C.A.,Beeser, A., Etkin, L.D., Chernoff, J., Earnshaw, W.C., et al. (2003). Apoptoticphosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113, 507–517.
    31. Ura, S., Nishina, H., Gotoh, Y., and Katada, T. (2007). Activation of the c-Jun N-terminal kinase pathway by MST1 is essential and sufficient for the induction of chromatin condensation during apoptosis. Mol. Cell Biol. 27,5514–5522.
    32. Lehtinen, M.K., Yuan, Z., Boag, P.R., Yang, Y., Villen, J., Becker, E.B.,DiBacco, S., de la Iglesia, N., Gygi, S., Blackwell, T.K., et al. (2006). A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125, 987–1001.
    33. Yuan, Z., Lehtinen, M., Merlo, P., and Bonni, A. (2009). Regulation of neuronal cell death by MST1-FOXO1 signaling. J. Biol. Chem. 284, 11285–11292.
    34. Chan, E.H., Nousiainen, M., Chalamalasetty, R.B., Schafer, A., Nigg, E.A., and Sillje, H.H. (2005). The Ste20-like kinase Mst2 activates the human large tumor suppressorkinase Lats1. Oncogene 24, 2076–2086.
    35. Hirabayashi, S., Nakagawa, K., Sumita, K., Hidaka, S., Kawai, T., Ikeda, M., Kawata, A., Ohno, K., and Hata, Y. (2008). Threonine 74 of MOB1 is a putative key phosphorylation site by MST2 to form the scaffold to activate nuclear Dbf2-related kinase 1. Oncogene 27, 4281–4292.
    36. Vichalkovski, A., Gresko, E., Cornils, H., Hergovich, A., Schmitz, D., and Hemmings, B.A. (2008). NDR kinase is activated by RASSF1A/MST1 in response to Fas receptor stimulation and promotes apoptosis. Curr. Biol.18, 1889–1895.
    37. Praskova, M., Xia, F., and Avruch, J. (2008). MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr. Biol. 18, 311–321.
    38. Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421–434.
    39. Thompson, B.J., and Cohen, S.M. (2006). The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767–774.
    40. Yabuta, N., Okada, N., Ito, A., Hosomi, T., Nishihara, S., Sasayama, Y., Fujimori, A., Okuzaki, D., Zhao, H., Ikawa, M., et al. (2007). Lats2 is an essential mitotic regulator required for the coordination of cell division. J. Biol. Chem. 282, 19259–19271.
    41. Yang, X., Yu, K., Hao, Y., Li, D.M., Stewart, R., Insogna, K.L., and Xu, T. (2004). LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1. Nat. Cell Biol. 6, 609–617.
    42. Lin, Y., Khokhlatchev, A., Figeys, D., and Avruch, J. (2002). Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis. J. Biol. Chem. 277, 47991–48001.
    43. Kimchi, A. (1998). DAP genes: novel apoptotic genes isolated by a functional approach to gene cloning. Biochim. Biophys. Acta. 1377, F13–F33.
    44. You, B., Yan, G., Zhang, Z., Yan, L., Li, J., Ge, Q., Jin, J.P., and Sun, J. (2009). Phosp- horylation of cardiac troponin I by mammalian sterile 20-like kinase 1. Biochem. J. 418, 93–101.
    45. Miller, M.L., Jensen, L.J., Diella, F., Jorgensen, C., Tinti, M., Li, L., Hsiung, M., Parker, S.A., Bordeaux, J., Sicheritz-Ponten, T., et al. (2008). Linear motif atlas for phosphor- rylation-dependent signaling. Sci. Signal 1, ra2.
    46. Blethrow, J.D., Glavy, J.S., Morgan, D.O., and Shokat, K.M. (2008). Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc. Natl. Acad. Sci. USA 105, 1442–1447.
    47. Chi, Y., Welcker, M.,Hizli,A.A.,Posakony, J.J.,Aebersold, R., andClurman, B.E.(2008). Identification of CDK2 substrates in human cell lysates. Genome Biol. 9, R149.
    48. Seidel, C., Schagdarsurengin, U., Blumke, K., Wurl, P., Pfeifer, G.P., Hauptmann, S., Taubert, H., and Dammann, R. (2007). Frequent hypermethylation of MST1 and MST2 in soft tissue sarcoma. Mol. Carcinog. 46, 865–871.
    49. Minoo, P., Zlobec, I., Baker, K., Tornillo, L., Terracciano, L., Jass, J.R., and Lugli, A. (2007). Prognostic significance of mammalian sterile20-like kinase 1 in colorectal cancer. Mod. Pathol. 20, 331–338.
    50. Anguera, M.C., Liu, M., Avruch, J., and Lee, J.T. (2008). Characterization of two Mst1-deficient mouse models. Dev. Dyn. 237, 3424–3434.
    [1]C.L.Brooks, W.Gu, How does SIRT1 affect metabolism, senescence and cancer, Nat. Rev. Cancer9 (2009)123–128.
    [2]C.Deng, SIRT1, is it a tumor promoter or tumor suppressor, Int. J. Biol. Sci. 5(2009) 147–152.
    [3]J.Luo, A.Y.Nikolaev, S.Imai, D.Chen, F.Su, A.Shiloh, L.Guarente, W.Gu, Negative Control of p53 by Sir2alpha promotes cell survival under stress, Cell 107(2001)137–148.
    [4]H.Vaziri,S.K.Dessain,E.NgEaton,S.I.Imai,R.A.Frye,T.K.Pandita,L.Guarente,R.A.Weinberg, hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase,Cell 107(2001) 149–159.
    [5]J.Luo, F.Su, D.Chen, A.Shiloh, W.Gu, Deacetylation of p53 modulates its effect on Cell growth and apoptosis, Nature408 (2000)377–381.
    [6]S.Imai, C.M.Armstrong, M.Kaeberlein, L.Guarente, Transcriptional silencing and Longevity protein Sir2 is an NAD-dependent histone deacetylase, Nature403 (2000) 795–800.
    [7]S.Imai, F.B.Johnson, R.A.Marciniak, M.McVey, P.U.Park, L.Guarente, Sir2: an NAD- dependent histone deacetylase that connects chromatin silencing, metabolism, and aging, Cold Spring Harb. Symp. Quant. Biol.65 (2000)297–302.
    [8]E.Langley,M.Pearson,M.Faretta,U.Bauer,R.A.Frye,S.Minucci,P.G.Pelicci,T.Kouzarides,Human SIR2 deacetylates p53 and antagonizes PML/p53-induced Cellular senescence, EMBOJ.21(2002)2383–2396.
    [9]W.Gu, R.G.Roeder, Activation of p53 sequence-specific DNA binding by Acetylation of the p53 C-terminal domain, Cell90 (1997)595–606.
    [10]C.L.Brooks, W.Gu, Ubiquitination, phosphorylation and acetylation:the Molecular basis for p53 regulation,Curr.Opin.CellBiol.15(2003)164–171.
    [11]E.Appella, C.W.Anderson, Post-translational modifications and activation of p53 By genotoxic stresses, Eur.J.Biochem.268 (2001)2764–2772.
    [12]C.D.Knights, J.Catania, S.DiGiovanni, S.Muratoglu, R.Perez, A.Swartzbeck, A.A.Quong, X.Zhang, T.Beerman, R.G.Pestell, M.L.Avantaggiati, Distinct p53 Acetylation cassettes differentially in?uence gene-expression patterns and cell fate,J.CellBiol.173 (2006)533–544.
    [13]S.M.Sykes, H.S.Mellert, M.A.Holbert, K.Li, R.Marmorstein, W.S.Lane, S.B. McMahon, Acetylation of the p53 DNA-binding domain regulates apoptosis induction, Mol.Cell24 (2006)841–851.
    [14]Y.Tang, J.Luo, W.Zhang, W.Gu, Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis, Mol.Cell24 (2006)827–839.
    [15]Y.Tang, W.Zhao, Y.Chen, Y.Zhao, W.Gu, Acetylation is indispensable for p53 activation, Cell133 (2008)612–626.
    [16]S.Erster,M.Mihara,R.H.Kim,O.Petrenko,U.M.Moll, In vivo mitochondrial p53 Translo- cation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation, Mol.Cell. Biol.24 (2004) 6728–6741.
    [17]M.Han, E.Song, Y.Guo, X.Ou, C.Mantel, H.E.Broxmeyer, SIRT1 regulates Apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization, CellStemCell2(2008)241–251.
    [18]M.W.McBurney,X.Yang,K.Jardine,M.Bieman,J.Th'ng,M.Lemieux,The absence Of SIR2αprotein has no effect on global gene silencing in mouse embryonic stem cells11National Cancer Institute of Canada and the Canadian Institutes of Health Research,Mol.CancerRes.1(2003)402–409.
    [19]M.W.McBurney,X.Yang,K.Jardine,M.Hixon,K.Boekelheide,J.R.Webb,P.M. Lansdorp,M.Lemieux,The mammalian SIR2alpha protein has a role in Embryogenesis and gametogenesis,Mol.Cell.Biol.23(2003)38–54.
    [20]H.Cheng,R.Mostoslavsky,S.Saito,J.P.Manis,Y.Gu,P.Patel,R.Bronson,E.Appella,F.W.Alt,K.F.Chua,Developmental defects and p53 hyperacetylation in Sir2 Homolog (SIRT1)-deficient mice,Proc.Natl.Acad.Sci.U.S.A.100(2003)10794–10799.
    [21]B.Vogelstein, D.Lane, A.J.Levine, Surfing the p53 network, Nature408 (2000)307–310.
    [22]S.Lain, D.Lane, Improving cancer therapy by non-genotoxic activation of p53, Eur.J.Cancer39 (2003)1053–1060.
    [23]H.Ota,E.Tokunaga,K.Chang,M.Hikasa,K.Iijima,M.Eto,K.Kozaki,M.Akishita,Y.Ouchi,M.Kaneki,Sirt1 inhibitor,Sirtinol,induces senescence-like growth arrest With attenuated Ras-MAPKsignaling in humancancer cells,Oncogene25(2006)176–185.
    [24]J.Kim, J.Chen, Z.Lou, DBC1 is a negative regulator of SIRT1, Nature451(2008)583–586.
    [25]W.Zhao, J.Kruse, Y.Tang, S.Y.Jung, J.Qin, W.Gu, Negative regulation of the Deacety- lase SIRT1 by DBC1, Nature451 (2008)587–590.
    [26]C.A.Bradbury,F.L.Khanim,R.Hayden,C.M.Bunce,D.A.White,M.T.Drayson,C. Craddock,B.M.TurnerBM,Histone deacetylases in acute myeloid leukaemiashow A distinctive pattern of expression that changes selectively in response to deacetylase inhibitors,Leukemia19(2005)1751–1759.05)1751–1759.
    [27]D.M.Huffman, W.E.Grizzle, M.W.Bamman, J.Kim, I.A.Eltoum, A.Elgavish, T.R. Nagy, SIRT1 is significantly elevated in mouse and human prostate cancer,Cancer Res.67 (2007)6612–6618.
    [28]W.Stünkel,B.K.Peh,Y.C.Tan,V.M.Nayagam,X.Wang,M.Salto-Tellez,B.Ni,M. Entzeroth,J.Wood,Function of the SIRT1 protein deacetylase in cancer, Biotechnol. J.2(2007)1360–1368.
    [29]Y.Hida, Y.Kubo, K.Murao, S.Arase, Strong expression of a longevity-related protein, SIRT1, in Bowen's disease, Arch.Dermatol.Res.299 (2007)103–106.
    [30]R.Firestein,G.Blander,S.Michan,R.Oberdoerffer,S.Ogino,J.Campbell,A.Bhimavarapu,S.Luikenhuis,R.deCabo,C.Fuchs,W.C.Hahn,L.P.Guarente,D.A.Sinclair,The SIRT1 deace- tylase suppresses intestinal tumorigenesis and colon Cancer growth, PLoSONE3 (2008)e2020.
    [31]D.C.Altieri, Survivin, cancer networks and pathway-directed drug discovery, Nat.Rev.Cancer8 (2008)61–70.
    [32]R.Wang,Y.Zheng,H.Kim,X.Xu,L.Cao,T.Luhasen,M.Lee,C.Xiao,A.Vassilopoulos,W.Chen,K.Gardner,Y.Man,M.Hung,T.Finkel,C.Deng,Interplay Among BRCA1,SIRT1,and Survivin during BRCA1-associated tumorigenesis,Mol.Cell32(2008)11–20.
    [33]R.Wang,K.Sengupta,C.Li,H.Kim,L.Cao,C.Xiao,S.Kim,X.Xu,Y.Zheng,B.Chilton,R.Jia,Z.Zheng,E.Appella,X.W.Wang,T.Ried,C.Deng,Impaired DNA Damage response, genom- einstability,and tumorigenesis in SIRT1 mutant mice,Cancer Cell14(2008)312–323.
    [34]W.Y.Chen, D.H.Wang, R.C.Yen, J.Luo, W.Gu, S.B.Baylin, Tumor suppressor HIC1 Directly regulates SIRT1 to modulate p53-dependent DNA-damage responses, Cell 123(2005)437–448.
    [35]M.Yamakuchi, M.Ferlito, C.J.Lowenstein, miR-34a repression of SIRT1 regulatesapoptosis, Proc.Natl.Acad.Sci.U.S.A.105 (2008)13421–13426.
    [36]R.A.Morton, J.J.Watkins, G.S.Bova, M.M.Wales, S.B.Baylin, W.B.Isaacs, Hyperm- ethylation of chromosome 17PlocusD17S5in human prostate tissue, J.Urol.156 (1996)512–516.
    [37]H.Fujii, M.A.Biel, W.Zhou, S.M.Weitzman, S.B.Baylin, E.Gabrielson, Methylation Of the HIC-1 candidate tumor suppressor gene in human breast cancer, Oncogene 6(1998)2159–2164.
    [38]C.A.Eads,R.V.Lord,K.Wickramasinghe,T.I.Long,S.K.Kurumboor,L.Bernstein,J.H.Peters,S.R.DeMeester,T.R.DeMeester,K.A.Skinner,P.W.Laird,Epigenetic Patterns in the progression of esophageal adenocarcinoma, CancerRes.61(2001)3410–3418.
    [39]M.Hayashi,Y.Tokuchi,T.Hashimoto,S.Hayashi,K.Nishida,Y.Ishikawa,K.Nakagawa,S.Tsuchiya,S.Okumura,E.Tsuchiya, Reduced HIC-1 gene expression In non-small cell lung cancer and its clinical significance,AnticancerRes.21 (2001)535–540.
    [40]S.Koul,J.Houldsworth,M.M.Mansukhani,A.Donadio,J.M.McKiernan,V.E.Reuter,G.J.Bosl,R.S.Chaganti,V.V.Murty,Characteristic promoter hypermethy-Lation signatures in male germ cell tumors,Mol.Cancer1(2002)8.
    [41]C.Fleuriel, M.Touka, G.Boulay, C.Guérardel, B.R.Rood, D.Leprince, HIC1 (hypermeth- ylatedincancer1) epigenetic silencing in tumors, Int.J.Biochem.Cell Biol.41 (2009) 26–33.
    [42]M.M.Wales,M.A.Biel,W.elDeiry,B.D.Nelkin,J.P.Issa,W.K.Cavenee,S.J.Kuerbitz,S.B.Baylin,p53 activates expression of HIC-1,a new candidate tumour suppressor gene on17p13.3,Nat.Med.1(1995)570–577.
    [43]S.Deltour, S.Pinte, C.Guérardel, D.Leprince, Characterization of HRG22, human Homologue of the putative tumor suppressor gene HIC1, Biochem.Biophys. Res. Commun.287 (2001)427–434.
    [44]G.A.Calin,C.Sevignani,C.D.Dumitru,T.Hyslop,E.Noch,S.Yendamuri,M.Shimizu,S.Rattan,F.Bullrich,M.Negrini,C.M.Croce,Human microRNA genes are Frequently located at fragile sites and genomic regions involved in cancers,Proc.Natl.Acad.Sci.U.S.A.101 (2004)2999–3004.
    [45]J.Lu,G.Getz,E.A.Miska,E.Alvarez-Saavedra,J.Lamb,D.Peck,A.Sweet-Cordero,B.L.Ebert,R.H.Mak,A.A.Ferrando,J.R.Downing,T.Jacks,H.R.Horvitz,T.R.Golub,MicroRNAexpression profiles classify human cancers,Nature435(2005)834–838.
    [46]L.He, X.He, S.W.Lowe, G.J.Hannon, microRNAs join the p53 network—another Piece in the tumour-suppression puzzle, Nat.Rev.Cancer7 (2007)819–822.
    [47]H.Izumi,J.Inoue,S.Yokoi,H.Hosoda,T.Shibata,M.Sunamori,S.Hirohashi,J.Inazawa,I.Imoto,Frequent silencing of DBC1 is by genetic or epigenetic mechanisms In non-smallcell lung cancers,Hum.Mol.Genet.14(2005)997–1007.
    [48]E.SanJosé-Enériz,X.Agirre,J.Román-Gómez,L.Cordeu,L.Garate,A.Jiménez-Velasco,I.Vázquez,M.J.Calasanz,A.Heiniger,A.Torres,F.Prósper, Down-Regulation of DBC1 expre- ssion in acute lymphoblastic leukaemia is mediated by Aberrant methylation of its promoter,Br.J.Haematol.134(2006)137–144.
    [49]V.Anantharaman, L.Aravind, Analysis of DBC1 and its homologs suggests a Potential mechanism for regulation of Sirtuin domain deacetylases by NAD metabolites, CellC- ycle7 (2008)1467–1472.
    [50]Z.Li, L.Chen, N.Kabra, C.Wang, Fang, J.Chen, Inhibition of SUV39H1 Methyltransferase activity by DBC1,J.Biol.Chem.284(2009)10361–10366.
    [51]F.J.Alcaín, J.M.Villalba, Sirtuin inhibitors, ExpertOpin.Ther.Pat.19 (2009)283–294.
    [52]F.J.Alcaín, J.M.Villalba, Sirtuin activators, ExpertOpin.Ther.Pat.19 (2009)403–414.
    [53]C.Canto, J.Auwerx, Caloric restriction, SIRT1 and longevity,Trends Endocrinol.Metab. 20(2009)325–331.
    [54]J.L.Barger,T.Kayo,J.M.Vann,E.B.Arias,J.Wang,T.A.Hacker,Y.Wang,D.Raederstorff,J.D.Morrow,C.Leeuwenburgh,D.B.Allison,K.W.Saupe,G.D.Cartee,R.Weindruch,T.A.Prolla,A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice,PLoSONE3(2008)e2264.
    [55]S.Lain,J.J.Hollick,J.Campbell,O.D.Staples,M.Higgins,M.Aoubala,A.McCarthy,V.Appleyard,K.E.Murray,L.Baker,A.Thompson,J.Mathers,S.J.Holland,M.J.R.Stark,G.Pass,J.Woods,D.P.Lane,N.J.Westwood, Discovery,in vivo activity,and Mechanism of action of a small-molecule p53 activator,CancerCell13 (2008) 454–463.
    [56]B.Heltweg,T.Gatbonton,A.D.Schuler,J.Posakony,H.Li,S.Goehle,R.Kollipara,R.A.Depinho,Y.Gu,J.A.Simon,A.Bedalov,Anti tumor activity of a small- molecule Inhibitor of human silent in formation regulator 2 enzymes,CancerRes. 66(2006)4368–4377.
    [57]E.Lara,A.Mai,V.Calvanese,L.Altucci,P.Lopez-Nieva,M.L.Martinez-Chantar,M.Varela-Rey,D.Rotili,A.Nebbioso,S.Ropero,G.Montoya,J.Oyarzabal,S.Velasco,M.Serrano,M.Witt,A.Villar-Garea,A.Imhof,A.Inhof,J.M.Mato,M.Esteller,M.F.Fraga,Salermide,a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect, Oncogene28(2009)781–791.
    [58]S.Zhong, P.Salomoni, P.P.Pandolfi, The transcriptional role of PML and the Nuclear body, Nat.CellBiol.2 (2000) E85–E90.
    [59]M.Pearson,R.Carbone,C.Sebastiani,M.Cioce,M.Fagioli,S.Saito,Y.Higashimoto,E.Appella,S.Minucci,P.P.Pandolfi,P.G.Pelicci,PML regulates p53 acetylation and Premature senescence induced by oncogenic Ras,Nature406 (2000)207–210.
    [60]W.S.Wu,S.Vallian,E.Seto,W.M.Yang,D.Edmondson,S.Roth,K.S.Chang,The Growth suppressor PML represses transcription by functionally and physically Interacting with histone deacetylases,Mol.Cell.Biol.21(2001)2259–2268.
    [61]V.Fogal,M.Gostissa,P.Sandy,P.Zacchi,T.Sternsdorf,K.Jensen,P.P.Pandolfi,H.Will,C.Schneider,G.DelSal,Regulation of p53 activity in nuclear bodies by a specific PML isoform,EMBOJ.19(2000)6185–6195.
    [62]H.Ota, M.Akishita, M.Eto, K.Iijima, M.Kaneki, Y.Ouchi, Sirt1 modulates Premature senescence-like phenotype in human endothelial cells,J.Mol.Cell. Cardiol.43 (2007) 571–579.
    [63]K.F.Chua,R.Mostoslavsky,D.B.Lombard,W.W.Pang,S.Saito,S.Franco,D.Kaushal,H.L.Cheng,M.R.Fischer,N.Stokes,M.M.Murphy,E.Appella,F.W.Alt,Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress,CellMetab.2(2005)67–76.
    [64]E.vanderVeer, C.Ho, C.O'Neil, N.Barbosa, R.Scott, S.P.Cregan, J.G.Pickering, Extension of human cell life span by nicotinamide phosphoribosyltransferase, J.Biol.Chem.282 (2007)10841–10845.
    [65]T.Araki, Y.Sasaki, J.Milbrandt, Increased nuclear NAD biosynthesis and SIRT1 Activation prevent axonal degeneration, Science305 (2004)1010–1013.
    [66]J.Wang, Q.Zhai, Y.Chen, E.Lin, W.Gu, M.W.McBurney, Z.He, Alocal mechanism Mediates NAD-dependent protection of axon degeneration, J.CellBiol.170 (2005)349–355.
    [67]K.Hasegawa, K.Yoshikawa, Necdin regulates p53 acetylation via Sirtuin1 to Modulate DNA damage response in cortical neurons, J.Neurosci.28 (2008)8772–8784.
    [68]D.Kim,M.D.Nguyen,M.M.Dobbin,A.Fischer,F.Sananbenesi,J.T.Rodgers,I.Delalle,J.A.Baur,G.Sui,S.M.Armour,P.Puigserver,D.A.Sinclair,L.Tsai,SIRT1 Deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis,EMBOJ.26(2007)3169–3179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700