用户名: 密码: 验证码:
镍催化铬卡宾卡宾转移,环化和消除反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属催化分解重氮化合物得到相应的有机金属体卡宾在有机合成中具有广泛的应用,这是得到金属卡宾的常见的方法。然而,通过金属催化铬卡宾发生配体的转移也可以得到金属卡宾。在卡宾配体转移过程中,铬卡宾和生成的金属卡宾存在平衡。它们的应用如在生成金属卡宾或类卡宾后,可以也双键发生环丙烷化反应,同时铬卡宾和镍卡宾发生消除反应生成稀烃。与它们在实验方面的广泛应用相比,它们的理论报道不多见。
     本文以量子化学中的分子轨道理论为基础,利用密度泛函理论(DFT)和极化连续介质(PCM)模型,对研究的体系选择合适的机组,通过计算找到反应物中各物种的优化构型,进而得到体系的势能面,动力学数据和热力学数据。我们利用这些数据综合分析反应机理问题,为进一步的实验研究提供理论的依据。
     全文共分为四章。第一章,综述了金属卡宾和金属类卡宾促进稀烃环丙烷化反应和卡宾的消除反应的研究进展及本文的工作。第二章,概述了本文工作的理论背景和计算方法,这两章主要概括了本文的理论背景和理论依据,为我们的研究提供了可靠的理论和实践基础。
     第三章,计算研究了镍催化铬卡宾卡宾转移,环化和消除反应机理研究。首先是金属镍催化铬卡宾生成镍的类卡宾,主要有(PH3)2NiCH2Cl)Cl和PH3Ni(CH2PH3)Cl2两种形式存在,并且生成的镍类卡宾和铬卡宾存在平衡。因此,环丙烷化反应产物来源有镍卡宾和铬卡宾。镍卡宾的反应通道有三种形式,亚甲基转移,碳金属化和单磷形态的环丙烷化反应,铬卡宾主要有亚甲基反应通道。最有利的反应通道是铬卡宾亚甲基反应通道,需要克服能垒9.63 kcal mol-1。消除反应主要是铬卡宾和镍类卡宾之间及铬卡宾之间,最有利的反应是铬卡宾之间,需要克服能垒5.41 kcal mol-1。因此,环丙烷化反应和消除反应是相互竞争的。我们也用了连续介质模型研究了二氯甲烷,四氰呋喃和苯溶剂中的溶剂化效应,结果显示,它们受到的影响很小。
     第四章,在密度泛函理论下对Ni(0)和Ni((II)催化环丙烷的机理做了研究.研究的模型是乙烯和催化剂活性体,它是CH2和NiCl2,Ni(PH3)3,Ni(PH3)2作用形成的。计算结果显示催化剂的活性体是(Cl2NiCH2 (IMC),(PH3)3NiCH2 (IME)和(PH3)2NiCH2 (IMG))和类卡宾(ClNiCH2Cl (IMD) , Ni(CH2PH3)(PH3)2 (IMF)和Ni(CH2PH3)PH3 (IMH))。主要反应通道为协同机理和分步机理.计算结果显示,二配位二价的镍催化剂催化活性比四配位二价的镍催化活性好,而四配位零价的镍催化机理同二配位零价的镍催化机理相似,因为四配位零价的镍在催化过程中脱去PH3配体生成二配位零价的镍催化剂催。零价的镍催化活性比二价的催化活性强。从动力学和热力学的角度来说,最有利的反应路径是零价的镍催化环丙烷化反应。
It is also generally accepted that transition metal-catalyzed cyclopropanation reactions proceed via a metal-carbene complex, which is formed by association of the diazo compound and the catalyst with concomitant extrusion of nitrogen. However, the transfer of heteroatom-stabilized carbene transformation also forms the metal carbene. The chromium carbene complex likely in equilibrium with the nickel carbenoids is postulated to represent the active form of the cyclopropane reaction. Alao, the dimerization reactions can occur between the nickel carbenoids and chromium carbene, which have been comprehensively studied of experiment, but there is little theoretical report about the reaction.
     In the paper, we chose several typical reactions that have been carefully studied using the molecular orbital theory, the tradition transition state theory as well as quantum chemistry theory, the selected systems have been investigated using comparison DFT- B3LYP and the polarized continuum model (PCM). The structures of the intermediates and the transition states along the reaction paths were fully optimized. The thermodynamic datums were all used to obtain the potential surface. The information of orbitals was also used to explain the reaction mechanism.
     The whole paper consists of four chapters. Chapter 1 is mainly about the development and application of quantum chemistry and the characteristics of organic gas-phase anion molecule reaction are also concerned. The second chapter, we will introduce the theory and computation methods that we based on. The contents of two chapters were the basis the background of our studies and offer us with useful and reliable quantum methods.
     In Chapter 3, a theoretical investigation the nickel-catalyzed transmetalation from chromium carbene complex has been presented. Firstly, nckel carbenoids were obtained by the chromium carbene transfer process. The nickel carbenoids can exist in two forms, namely (PH3)2NiCH2Cl)Cl and PH3Ni(CH2PH3)Cl2. Also, the chromium carbene complex is in equilibrium with the nickel carbenoids. So, the cyclopropane product comes from nickel carbenoids and chromium carbene. Nickel carbenoids proceeds through three pathways: methylene transfer, carbometalation and the reaction of a monophosphinic, chromium carbene also have the methylene transfer channel. The most favored reaction channel is chromium carbene with a barrier height only 9.63 kcal mol-1. The dimerization process occurs between nickel carbenoids and chromium carbene and between chromium. The most favored reaction channel barrier height is 5.41 kcal mol-1. So, the cyclopropanation reactions and the dimerization reactions are competitive. The solvent effect, which mimic dichloromethane, THF, and benzene, both have negligible consequence on the activation barriers.
     In Chapter 4, a theoretical investigation the cyclopropanation reactions catalyzed by nickel(0) and nickel(II) have been extensively investigated. The computation results show that the active catalytic species formed by a CH2 fragment and the Cl2Ni(PH3)2 is carbenoids (PH3)2Ni(CH2Cl)Cl (IMA) and (PH3)Ni(CH2PH3)Cl2 (IMB), but both the carbenes (Cl2NiCH2 (IMC), (PH3)3NiCH2 (IME) and (PH3)2NiCH2 (IMG)) and carbenoids (ClNiCH2Cl (IMD), Ni(CH2PH3)(PH3)2 (IMF) and Ni(CH2PH3)PH3 (IMH)) are active catalytic species obtained from NiCl2, Ni(PH3)3, Ni(PH3)2 and a CH2 fragment.
     The cyclopropanation reaction proceeds through either concerted or multistep reaction pathway. The computed results show that the two-coordinated nickel(II) catalyst is more active than the four-coordinated nickel(II) catalyst, but the two-coordinated nickel(0) catalyzed cyclopropanation reaction is similar with the four-coordinated nickel catalyst, because the four-coordinated nickel catalyst is formed two-coordinated nickel(0) catalyst in the cyclopropanation reaction by loss of a PH3 ligand. The nickel(0) catalyzed cyclopropanation reactions proceed easer than nickel(II). From the kinetic and thermodynamic viewpoints, the most favored reaction pathway is that nickel(0) catalyzed cyclopropanation reaction.
引文
[1] (a) Moss, R. Acc. Chem. Rev. 1989. 22. 15.
    (b) Lebel, H. Marcoux, J.P. Molinaro, C. Charette, A.B. Chem. Rev. 2003. 103. 977.
    (c) Dovie, m.p. Chem. Rev. 1986. 86.919.
    [2] (a) Doyle, M.P. Chem. Rev. 1986. 86. 919.
    (b) Lautens, M. Klute, W. Tam, W. Chem. Rev. 1996. 96. 49.
    [3] Charette, A.B. Marcoux, J.-F. Belanger-Gariepy, F. J. Am. Chem. Soc. 1996. 118. 6792.
    [4] Knorr, R. Pires, C. Behringer, C. Menke, T. Freudenreich, J Rossmann, E.C. B?hrer, P. J. Am. Chem. Soc. 2006. 128. 14845.
    [5] (a) H.E. Simmons, Smith, R.D. J. Am. Chem. Soc. 1958. 80. 5323. (b) Simmons, H.E. Smith, R.D. J. Am. Chem. Soc. 1959. 81. 4256. (c) Simmons, H.E. Cairns, T.L. Vladuchick, S.A.; Hoiness, C.M. Org. React. 1972. 20. 1.
    [6] Fritschi, H. Leutenegger, U. Pfaltz, Helv, A. Chim. Acta. 1988. 71. 1553.
    [7] (a) Moser, W.R. J. Am. Chem. Soc. 1969. 91. 1141.
    (b) Gupta, A.D. Bhuniya, D. Singh, V.K. Tetrahedron. 1994. 50. 13725.
    (c) Gant, T.G. Noe, M.C. Corey, E.J. Tetrahedron Lett. 1995. 36 8745.
    (d) Kwong, H.L. Lee, W.-S. Tetrahedron: Asymmetry. 2000. 11. 2299.
    [8] Casey, P. C.; Polichnwsky, S. W.; Shusterman, A. J.; Jones, C. R. J. Am. Chem. Soc. 1979, 101, 7282.
    [9] Fischer, E. O.; Maasb?l, A. Angew. Chem. 1964, 76, 645; Angew. Chem., Int. Ed. Engl. 1964, 3, 580.
    [10] (a) D?tz, K. H. Angew. Chem. 1984, 96, 573;
    (b) Schwindt, M. A.; Miller, J. R.; Hegedus, L. S. J. Organomet. Chem. 1991, 413, 143.
    (c) Rudler, H.; Audouin, M.; Chelain, E.; Denise, B.; Goumont, R.; Massoud, A.; Parlier, A.; Pacreau, A.; Rudler, M.; Yefsah, R.; Alvarez, C.; Delgado-Reyes, F. Chem. Soc. Rev. 1991, 20, 503.
    (f) Grotjahn, D. B.; D?tz, K. H. Synlett. 1991, 381.
    (d) Harvey, D. F.; Sigano, D. M. Chem. Rev. 1996, 96, 271.
    (e) Aumann, R.; Nienaber, H. Adv. Organomet. Chem. 1997, 41, 163.
    (f) Alcaide, B.; Casarrubios, L.;Domínguez, G.; Sierra, M. A. Curr. Org. Chem. 1998, 2, 551.
    (g) Sierra, M. A. Chem. Rev. 2000, 100, 3591.
    (h) de Meijere, A.; Schirmer, H.; Duetsch, M. Angew. Chem. 2000, 112, 4124; Angew.Chem., Int. Ed. 2000, 39, 3964.
    [11] (a) Brookhart, M.; Studabaker, W. B. Chem. Rev. 1987, 87, 411.
    (b) Barluenga, J.; Fernández-Acebes, A.; Trabanco, A. A.; Flórez, J. J. Am. Chem. Soc. 1997, 119, 7591.
    (c) D?tz, K. H. Angew. Chem., Int. Ed. Engl. 1984, 23, 587.
    [12] Cooke, M. D.; Fischer, E. O. J. Organomet. Chem. 1973, 56, 279.
    [13] (a) Fischer, E. O.; Heckl, B.; D?tz, K. H.; Müller, J.; Werner, H. J. Organomet. Chem. 1969, 16, P 29.
    (b) Fischer, E. O.; D?tz, K. H. J. Organomet. Chem. 1972, 36, C 4.
    (c) Fischer, E. O.; Plabst, D. Chem. Ber. 1974, 107, 3326.
    [14] (a) Aumann, R.; Fischer, E. O. Chem. Ber. 1981, 114, 1853.
    (b) Fischer, E. O.; B?ck, M.; Aumann, R. Chem. Ber. 1983, 116, 3618.
    (c) Fischer, E. O.; B?ck, M. Monatsh. Chem. 1984, 115, 1159.
    (d) Fischer, E. O.; B?ck, M. J. Organomet. Chem. 1985, 287, 279.
    [15] Fischer, E. O.; Beck, H.-J. Angew.Chem. 1970, 82, 44; Angew. Chem., Int. Ed. Engl. 1970, 9, 72.
    [16] Jordi, L.; Moretó, J. M.; Ricart, S.; Vi?as, J. M. Organometallics. 1992, 11, 3507.
    [17] (b) Barluenga, J.; López, L. A.; L?ber, O.; Tomás, M.; García-Granda, S.;álvarez-Rúa, C.; Borge J. Angew.Chem. 2001, 113, 3495; Angew.Chem., Int. Ed. 2001, 40, 3392.
    [18] Barluenga, J.; Vicente, R.; López, L. A.; Rubio, E.; Tomás, M.;álvarez-Rúa, C. J. Am. Chem. Soc. 2004, 126, 470.
    [19] (a) Liu, S.-T.; Hsieh T.-Y.; Lee, G.-H.; Peng, S.-M. Organometallics. 1998, 17, 993.
    (b) Ku, R.-Z.; Huang, J.-C.; Cho, J.-Y.; Kiang, F.-M.; Reddy, K. R.; Chen, Y.-C., Lee, K.-J.; Lee, J.-H.; Lee, G.-H.; Peng, S.-M.; Liu, S.-T.Organometallics. 1999, 18, 2145.
    (c) Albéniz, A. C.; Espinet, P.; Manrique, R.; Pérez-Mateo, A. Angew.Chem. 2002, 114, 2469; Angew. Chem., Int. Ed. 2002, 41, 2363.
    [20] Barluenga, J.; Vicente, R.; Barrio, P.; López, L. A.; Tomás, M. J. Am. Chem. Soc. 2004, 126, 5974.
    [21] Straub, B.F. Hofmann, P. Angew. Chem, Int. Ed. Engl. 2001. 40. 1288.
    [22] Nakamura, E. Hirai, A. Nakamura, M. J. Am. Chem. Soc. 1998. 120. 5844.
    [23] Jennings, P.W. Johnson, L.L. Chem. Rev. 1994. 94. 2241.
    [24] Dias, E.L. Nguyen, S.T. Grubbs, R.H. J. Am. Chem. Soc. 1997. 119. 3887.
    [25] Ulman, M. Grubbs, R.H. Organometallics.1998. 17. 2484.
    [26] Charette, A.B. Marcoux, F. BelangerGariepy, J.-F, J. Am. Chem. Soc.1996. 118. 6792.
    [27] Theberge, C. R. Verbicky, C.A. Zercher, C.K. J. Org. Chem, 1996. 61. 8792.
    [28] Nishino, F. Miki, K. Kato, Y. Ohe, K. Uemura, S. Org. Lett. 2003. 5. 2615.
    [29] Fournier, J.-F. Mathieu, S. Charette, A.B. J. Am. Chem. Soc. 2005. 127. 13140.
    [30] Reddy, R.P. Lee, G.H. Davies, H.M.L. Org. Lett. 2006. 8. 3437.
    [31] Knorr, R. Pires, C. Behringer, C. Menke, T. Freudenreich, J. Rossmann, E.C. B?hrer, P. J. Am. Chem. Soc. 2006. 128. 14845.
    [32] (a) Moser, W.R. J. Am. Chem. Soc. 1969. 91. 1141.
    (b) Gupta, A.D. Bhuniya, D. Singh, V.K. Tetrahedron. 1994. 50. 13725.
    (c) Gant, T.G. Noe, M.C. Corey, E.J. Tetrahedron Lett. 1995. 36 8745.
    (d) Kwong, H.L. Lee, W.-S. Tetrahedron: Asymmetry. 2000. 11. 2299.
    [33] (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New York, 1994.
    (b) Ichiyanagi, T. Shimizu, M. Fujisawa, T. Tetrahedron 1997. 53. 9599.
    (c) Cho, D.-J. Jeon, S.J. Kim, H.S. Cho, C.S. Shim, S.C. Kim, T.J. Tetrahedron: Asymmetry 1999. 10. 3833.
    (d) Li, Z. Liu, G. Zheng, Z. Chen, H. Tetrahedron. 2000. 56. 7187.
    [34] Sierra, M. A.; Amo del, J. C.; Mancheno, M. J.; Gómez-Gallego, M. J. Am. Chem. Soc. 2001, 123, 851.
    [1]唐敖庆;杨忠志;李前树,量子化学,北京,科学出版社,1982
    [2]徐光宪;黎乐民;王德民,量子化学基本原理和从头计算方法(中册),北京,科学出版社,1985
    [3] Loewdin,P.O. Advan. Chem.Phys. 1959, 2:207.
    [4]Foresman,J.B.;Gordon,M.H.;Pople,J.A.;Frisch,M.J. J.Chem.Phys. 1992, 96:135.
    [5] Teller, E., J.Phys.Chem. 1937, 41, 109
    [6] Hehre, W. J.; Radom, L.; Schleyer, P. V. R., Ab Initio Molecular Orbital Theory. John Wiley & Sons, Inc. 1986
    [7] McQuarrie, D. A., Quantum chemistry University Science Books: Mill Vally. CA. 1983
    [8] Chong, D. P., World Scientific. 1995, 11, 782
    [9] Parr, R. G.; Yang, W., Density-functional theory of atoms and molecules. Oxford University Press: Oxford, 1989
    [10] Thomas, H., Camb. Phil. Soc. 1927, 23, 545
    [11] Fermi, R. A., Atti. Accad. Lincei. 1927, 6, 602
    [12] Hohenberg, P.; Kohn, W., Phys.Rev. 1964, 136, 864
    [13] Foresman, J. B.; Frisch, A., Exploring Chemistry With Electronic Structure Method. Gaussian, Inc. Pittsburgh, PA. 2002, 21
    [14] Wynne, J.; Eyring, H., J. Chem. Phys. 1935, 3, 492
    [15] Eying, H., Chem. Revs. 1935, 17, 65
    [16] Frost., Pearson.Kinetics and mechanism. 1961
    [17]赵学庄,化学反应动力学原理.北京:高等教育出版社. 1984, 1
    [18]韩德刚,高盘良.化学动力学基础.北京:北京大学出版社. 1987, 1
    [19] Fukui, K., Int J Quantum Chem. 1981, 12, 633
    [20] Fukui, K., Int J Quantum Chem. 1981, 15, 621
    [21] Foresman, J.B.; Frisch, A., Exploring Chemistry With Electronic Structure Method. Gaussian, Inc.Pittsburgh, PA. 2002, 37
    [22] Stanton, R.W.; Mclver, J.V., J. Am.Chem. Soc. 1975, 97, 3632
    [23] Murrell, J.N.; Laidler, K., J. Trans. Farday Soc. 1968, 94, 371
    [24]Von Neuman, J.; Wigner, E. P., Z.Phys. 1929, 30, 467
    [25] Hartree, D., Calculations of Atomic Structure. Wliey. 1957
    [26] Herzberg, G.; Louguet-Higgins, H. C., Discuss. Faraday Soc. 1963, 35, 77
    [27] Louguet-Higgins, H. C., Proc. Roy. Soc. London. Ser. A. 1975, 344, 147
    [28] Alml?f, J., Taylor, P. R., Adv. Quantum Chem. 1991, 22, 301
    [29]王志中,现代量子化学计算方法,吉林大学出版社,1998.
    [30]赵学庄,罗渝然,臧雅茹,万学适,化学反应动力学原理(下册)高等教育出版社,1990.
    [31] Born, M.; Oppenheimer, R., Zur Quantentheorie der Molekeln Ann. Physik. 1927, 84, 457
    [32] Born, M.; Huang, K.,“Dynamical Theory of Crystal Lattices,”Oxford UniversityPress, New York, 1954
    [1] Boche, G.; Lohrenz, J. C. W. Chem. Rev. 2001, 101, 697.
    [2] Fraile, J. M.; Garcia, J. I.; Martinez-Merino, V.; Mayoral, J. A.; Salvatella, L. J. Am. Chem. Soc. 2001, 123, 7616.
    [3] Rodriguze-Garcia, C.; Oliva, A.; Ortuno, R. M.; Branchhadell, V. J. Am. Chem. Soc. 2001, 123, 6157.
    [4] Straub, B. F.; Hofmann, P. Angew. Chem, Int. Ed. Engl. 2001, 40, 1288.
    [5] Smith, D. A.; Reynolds, D. N.; Woo, L. K. J. Am. Chem. Soc. 1993, 115, 2511.
    [6] Jennings, P. W.; Johnson, L. L. Chem. Rev. 1994, 94, 2241.
    [7] Charette, A. B.; Marcoux, J.-F.; Belanger-Gariepy, F. J. Am. Chem. Soc. 1996, 118, 6792.
    [8] Fournier, J.-F.; Mathieu, S.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 13140.
    [9] Reddy, R. P.; Lee, G. H.; Davies, H. M. L. Org. Lett. 2006, 8, 3437.
    [10] Knorr, R.; Pires, C.; Behringer, C.; Menke, T.; Freudenreich, J.;Rossmann, E. C.; B?hrer, P. J. Am. Chem. Soc. 2006, 128, 14845
    [11] Casey, P. C.; Polichnwsky, S. W.; Shusterman, A. J.; Jones, C. R. J. Am. Chem. Soc. 1979, 101, 7282.
    [12] Fischer, E. O.; Maasb?l, A. Angew. Chem. 1964, 76, 645; Angew. Chem., Int. Ed. Engl. 1964, 3, 580.
    [13] (a) D?tz, K. H. Angew. Chem. 1984, 96, 573;
    (b) Schwindt, M. A.; Miller, J. R.; Hegedus, L. S. J. Organomet. Chem. 1991, 413, 143.
    (c) Rudler, H.; Audouin, M.; Chelain, E.;Denise, B.; Goumont, R.; Massoud, A.; Parlier, A.; Pacreau, A.; Rudler, M.; Yefsah, R.; Alvarez, C.; Delgado-Reyes, F. Chem. Soc. Rev. 1991, 20, 503. (f) Grotjahn, D. B.; D?tz, K. H. Synlett. 1991, 381. (d) Harvey, D. F.; Sigano, D. M. Chem. Rev. 1996, 96, 271. (e) Aumann, R.; Nienaber, H. Adv. Organomet. Chem. 1997, 41, 163. (f) Alcaide, B.; Casarrubios, L.; Domínguez, G.; Sierra, M. A. Curr. Org. Chem. 1998, 2, 551. (g) Sierra, M. A. Chem. Rev. 2000, 100, 3591. (h) de Meijere, A.; Schirmer, H.; Duetsch, M. Angew. Chem. 2000, 112, 4124; Angew.Chem., Int. Ed. 2000, 39, 3964.
    [14] (a) Brookhart, M.; Studabaker, W. B. Chem. Rev. 1987, 87, 411. (b) Barluenga, J.; Fernández-Acebes, A.; Trabanco, A. A.; Flórez, J. J. Am. Chem. Soc. 1997, 119, 7591. (c) D?tz, K. H. Angew. Chem., Int. Ed. Engl. 1984, 23, 587.
    [15] Cooke, M. D.; Fischer, E. O. J. Organomet. Chem. 1973, 56, 279.
    [16] (a) Fischer, E. O.; Heckl, B.; D?tz, K. H.; Müller, J.; Werner, H. J. Organomet. Chem. 1969, 16, P 29.
    (b) Fischer, E. O.; D?tz, K. H. J. Organomet. Chem. 1972, 36, C 4. (c) Fischer, E. O.; Plabst, D. Chem. Ber. 1974, 107, 3326.
    [17] Sierra, M. A.; Amo del, J. C.; Mancheno, M. J.; Gómez-Gallego, M. J. Am. Chem. Soc. 2001, 123, 851.
    [18] (a) Aumann, R.; Fischer, E. O. Chem. Ber. 1981, 114, 1853.
    (b) Fischer, E. O.; B?ck, M.; Aumann, R. Chem. Ber. 1983, 116, 3618.
    (c) Fischer, E. O.; B?ck, M. Monatsh. Chem. 1984, 115, 1159.
    (d) Fischer, E. O.; B?ck, M. J. Organomet. Chem. 1985, 287, 279.
    [19] Fischer, E. O.; Beck, H.-J. Angew. Chem. 1970, 82, 44; Angew. Chem., Int. Ed. Engl. 1970, 9, 72.
    [20] Jordi, L.; Moretó, J. M.; Ricart, S.; Vi?as, J. M. Organometallics. 1992, 11, 3507.
    [21] (b) Barluenga, J.; López, L. A.; L?ber, O.; Tomás, M.; García-Granda, S.;álvarez-Rúa, C.; Borge J. Angew.Chem. 2001, 113, 3495; Angew. Chem., Int. Ed. 2001, 40, 3392.
    [22] Barluenga, J.; Vicente, R.; López, L. A.; Rubio, E.; Tomás, M.;álvarez-Rúa, C. J. Am. Chem. Soc. 2004, 126, 470.
    [23] (a) Liu, S.-T.; Hsieh T.-Y.; Lee, G.-H.; Peng, S.-M. Organometallics. 1998, 17, 993.
    (b) Ku, R.-Z.; Huang, J.-C.; Cho, J.-Y.; Kiang, F.-M.; Reddy, K. R.; Chen, Y.-C., Lee, K.-J.; Lee, J.-H.; Lee, G.-H.; Peng, S.-M.; Liu, S.-T. Organometallics. 1999, 18, 2145. (c) Albéniz, A. C.; Espinet, P.; Manrique, R.; Pérez-Mateo, A. Angew. Chem. 2002, 114, 2469; Angew. Chem., Int. Ed. 2002, 41, 2363.
    [24] Barluenga, J.; Vicente, R.; Barrio, P.; López, L. A.; Tomás, M. J. Am. Chem. Soc. 2004, 126, 5974.
    [25] Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 4414.
    [26] (a) Takeda, K.; Okamoto, Y.; Nakajima, A.; Yoshii, E.; Koizumi, T. Synlett.. 1997, 1181.
    (b) Barluenga, J.; Aznar, F.; Fernández, M. Chem. Eur. J. 1997, 3, 1629.
    (c) Barluenga, J.; Rodríguez, F.; Vadecard, J.; Bendix, M.; Fa?anas, F. J. J. Am. Chem. Soc. 1996, 118, 6090.
    (d) Takeda, K.; Takeda, M.; Nakajima, A.; Yoshii, E. J. Am. Chem. Soc. 1995, 117, 6400.
    (e) Wang, S. L. B.; Su, J.; Wulff, W. D. J. Am. Chem. Soc. 1992, 114, 10665.
    (f) Wienand, A.; Reissig, H.-U. Angew. Chem., Int. Ed. Engl. 1990, 29, 1129.
    (g) Fischer, H.; Schmid, J. Chem. Commun. 1985, 572.
    [27] (a) Casey, C. P.; Burkhardt, T. J. J. Am. Chem. Soc. 1973, 95, 5833.
    (b) Casey, C. P.; Burkhardt, T. J.;Bunnell, C. A.; Calabrese, J. C. J. Am. Chem. Soc. 1977, 99, 2127.
    (c) Casey, C. P.; Polichnowski, S. W. J. Am. Chem. Soc. 1977, 99, 6097.
    (d) Fischer, H.; Zeuner, S.; Ackermann, K. Chem. Commun. 1984, 685.
    (e) Fischer, H.; Zeuner, S.; Ackermann, K.; Schmid, J. Chem. Ber. 1986, 119, 1546.
    (f) Fischer, H.; Jungklaus, H. J. Organomet. Chem. 1999, 572, 105
    [28] (a) Fischer, E. O.; D?tz, K. H. J. Organomet. Chem. 1972, 36, C4.
    (b) Fischer, E. O.; Heckl, B.; D?tz, K. H.; Muller, J.; Werner, H. J. Organomet. Chem. 1969, 16, P 29.
    [29] Casey, C. P.; Anderson, R. L. J. Chem. Soc., Chem. Commun. 1975, 895.
    [30] Sierra, M. A.; Manche?o, M. J.; Sáez, E.; del Amo, J. C. J. Am.Chem. Soc. 1998, 120, 6812.
    [31] (a) Sierra, M. A.; del Amo, J. C.; Manche?o, M. J.; Gómez-Gallego, M.; Torres, M. R. Chem. Commun. 2002, 1842.
    (b) Sakurai, H.; Tanabe, K.; Narasaka, K. Chem. Lett. 1999, 309.
    (c) Sakurai, H.; Tanabe, K.; Narasaka, K. Chem. Lett. 2000, 168.
    (d) Yamane, M.; Ishibashi, Y.; Sakurai, H.; Narasaka, K. Chem. Lett. 2000, 174.
    [32] (a) Modarelli, D. A.; Morgan, S.; Platz, M. S. J. Am. Chem. Soc. 1992, 114, 7034.
    [33] (a) Sierra, M. A.; del Amo, J. C.;Manche?o, M. J.; Gómez-Gallego, M.; Torres, M. R. Acc. Chem. Res. 2005, 38, 44.
    (b) Sierra, M. A.; delAmo, J. C.; Manche?o, M. J.; Gómez-Gallego, M. Organometallics. 2004, 23, 5021-5029.
    (c) JoséBarluenga, Alvaro Fernández-Acebes, Andrés A. Trabanco, And Josefa Flórez, J. Am. Chem. Soc. 1997 119, 7591
    [34] (a) Geng, Z. Y. Yan, P. J. Yao, X. Q. Han, Y. X. J. Phys. Chem. A. 2007. 111. 9961-9968
    (b) Fernando, B.; Andrea, B.; Gian, P. M. Organometallics. 2001, 20, 2751
    [35] Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
    [36] Becke, A. D. Phys. Rev. A 1988, 38, 3098.
    [37] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785.
    [38] Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154; J. Phys. Chem. 1990, 94, 5523.
    [39] Glukhovtse, M. N.; Pross, A.; McGrath, M. P.; Radom, L. J. Chem.Phys. 1995, 103, 1878.
    [40] Miertus, S.; Scrocco, E.; Tomasi, J. J. Chem. Phys. 1981, 55, 117.
    [41] Miertus, S.; Tomasi, J. J. Chem. Phys. 1982, 65, 239.
    [42] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.5; Gaussian, Inc.: Pittsburgh, PA, 1998.
    [43] C. P. Casey, R. L. Anderson, J. Chem. Soc., Chem. Commun. 1975, 895.
    [1] (a) Moss, R. Acc. Chem. Rev. 1989. 22. 15. (b) Lebel, H. Marcoux, J.P. Molinaro, C. Charette, A.B. Chem. Rev. 2003. 103. 977. (c) Dovie, m.p. Chem. Rev. 1986. 86.919.
    [2] (a) Doyle, M.P. Chem. Rev. 1986. 86. 919. (b) Lautens, M. Klute, W. Tam, W. Chem. Rev. 1996. 96. 49.
    [3] Straub, B.F. Hofmann, P. Angew. Chem, Int. Ed. Engl. 2001. 40. 1288.
    [4] Nakamura, E. Hirai, A. Nakamura, M. J. Am. Chem. Soc. 1998. 120. 5844.
    [5] Jennings, P.W. Johnson, L.L. Chem. Rev. 1994. 94. 2241.
    [6] Dias, E.L. Nguyen, S.T. Grubbs, R.H. J. Am. Chem. Soc. 1997. 119. 3887.
    [7] Ulman, M. Grubbs, R.H. Organometallics.1998. 17. 2484.
    [8] Charette, A.B. Marcoux, F. BelangerGariepy, J.-F, J. Am. Chem. Soc.1996. 118. 6792.
    [9] Theberge, C. R. Verbicky, C.A. Zercher, C.K. J. Org. Chem. 1996. 61. 8792.
    [10] Nishino, F. Miki, K. Kato, Y. Ohe, K. Uemura, S. Org. Lett. 2003. 5. 2615.
    [11] Fournier, J.-F. Mathieu, S. Charette, A.B. J. Am. Chem. Soc. 2005. 127. 13140.
    [12] Reddy, R.P. Lee, G.H. Davies, H.M.L. Org. Lett. 2006. 8. 3437.
    [13] Knorr, R. Pires, C. Behringer, C. Menke, T. Freudenreich, J. Rossmann, E.C. B?hrer, P. J. Am. Chem. Soc. 2006. 128. 14845.
    [14] Charette, A.B. Marcoux, J.-F. Belanger-Gariepy, F. J. Am. Chem. Soc. 1996. 118. 6792.
    [15] Knorr, R. Pires, C. Behringer, C. Menke, T. Freudenreich, J Rossmann, E.C. B?hrer, P. J. Am. Chem. Soc. 2006. 128. 14845.
    [16] (a) H.E. Simmons, Smith, R.D. J. Am. Chem. Soc. 1958. 80. 5323. (b) Simmons, H.E. Smith, R.D. J. Am. Chem. Soc. 1959. 81. 4256. (c) Simmons, H.E. Cairns, T.L. Vladuchick, S.A.; Hoiness, C.M. Org. React. 1972. 20. 1.
    [17] Fritschi, H. Leutenegger, U. Pfaltz, Helv, A. Chim. Acta. 1988. 71. 1553.
    [18] (a) Moser, W.R. J. Am. Chem. Soc. 1969. 91. 1141. (b) Gupta, A.D. Bhuniya, D. Singh, V.K. Tetrahedron. 1994. 50. 13725. (c) Gant, T.G. Noe, M.C. Corey, E.J. Tetrahedron Lett. 1995. 36 8745. (d) Kwong, H.L. Lee, W.-S. Tetrahedron: Asymmetry. 2000. 11. 2299.
    [19] Aratani, T. Pure Appl. Chem. 1985. 57. 1839.
    [20] (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New York. 1994. (b) Ichiyanagi, T. Shimizu, M. Fujisawa, T. Tetrahedron. 1997. 53. 9599. (c) Cho, D.-J. Jeon, S.J. Kim, H.S. Cho, C.S. Shim, S.C. Kim, T.J. Tetrahedron: Asymmetry. 1999. 10. 3833. (d) Li,Z. Liu, G. Zheng, Z. Chen, H. Tetrahedron. 2000. 56. 7187.
    [21] (a) Dargel, T.K. Koch, W. J. Chem. Soc., Perkin Trans. 1996. 2. 877. (b) Bernardi, F. Bottoni, A. Miscione, G.P. J. Am. Chem. Soc. 1997. 119. 12300. (c) Hirai, A. Nakamura, M. Nakamura, E. Chem. Lett. 1998, 927. (d) Bernardi, F. Bottoni, A. Miscione, G.P. Organometallics. 2000. 19. 5529.
    [22] (a) Jennings, P.W. Johnson, L.L. Chem. Rev. 1994. 94. 2241. (b) Cámpora, J. Palma, P. Carmona, E. Coord. Chem. Rev. 1999. 193-195 207-281.
    [23] Fernando, B. Andrea, B. Gian, P.M. Organometallics. 2000. 19. 5529.
    [24] Bernardi, F. Bottoni, A. Miscione, P. J. Am. Chem. Soc. 1997. 119. 12300.
    [25] Dargel, T.K. Koch, W.J. Chem. Soc. Perkin Trans. 1996. 2. 877.
    [26] Hermann, H. Lohrenz, J.C.W. Kühn, A. Boche, G. Tetrahedron. 2000. 56. 4109.
    [27] Nakamura, E. Hirai, A. Nakamura, M. J. Am. Chem. Soc. 1998. 120. 5844.
    [28] Fang, W.H. Phillips, D.L. Wang, D. Li, Y.L. J. Org. Chem. 2002. 67. 154.
    [29] Nakamura, M. Hirai, A. Nakamura, E. J. Am. Chem. Soc. 2003. 125. 2341.
    [30] Zhao, C.Y. Wang, D. Phillips, D.L. J. Am. Chem. Soc, 2002.124. 12903.
    [31] Zhao, C.Y. Wang, D. Phillips, D.L. J. Am. Chem. Soc. 2003.125.15200.
    [32] Fernando, B. Andrea, B. Gian, P.M. Organometallics. 2001. 20. 2751.
    [33] Julian, R.R. May, J.A. Stoltz, B.M. Beauchamp, J.L. J. Am. Chem. Soc. 2003. 125. 4478.
    [34] Fernando, B Andrea, .B. Gian, P.M. J. Am. Chem. Soc. 1997. 119. 12300.
    [35] Fraile, J.M. García, J.I. Martínez-Merino, V. J. Am. Chem. Soc. 2001. 123. 7616.
    [36] Wang, D. Phillips, D.L. Fang W.H. Organometallics. 2002. 21. 5901
    [37] Becke, A.D. J. Chem. Phys. 1993 .98. 5648.
    [38] Becke, A.D.Phys. Rev. A. 1988. 38. 3098.
    [39] Lee, C. Yang, W. Parr, R.G. Phys. Rev. B. 1988. 37. 785.
    [40] Glukhovtse, M.N. Pross,A. McGrath, M.P. Radom, L. J. Chem. Phys. 1995. 103. 1878.
    [41] onzalez, C. G. Schlegel, H.B. J. Chem. Phys. 1989. 90. 2154; J. Phys. Chem. 1990. 94. 5523.
    [42] Reed, A.E. Curtiss, L.A. Weinhold, F. Chem. Rev. 1988. 88. 899.
    [43] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.;Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.5; Gaussian, Inc.: Pittsburgh, PA, 1998.
    [44] (a) Geng, Z.Y. Yan, P.J. Yao, X.Q. Han, Y.X. J. Phys. Chem. A. 2007. 111. 9961
    (b) Fernando, B. Andrea, B. Gian, P.M. Organometallics. 2001. 20. 2751

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700