用户名: 密码: 验证码:
PPARα的激动可能与小檗碱的降脂作用有关
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     观察Ber对脂质代谢紊乱的防治作用,并探讨其降脂作用与PPARα之间的关系。
     方法:
     1.培养人肝癌细胞HepG2 ,给予不同浓度Ber(10~(-6)mol/l、3×10~(-6)mol/l、10~(-5)mol/l、3×10~(-5)mol/l、10~(-4)mol/l、3×10~(-4)mol/l),作用细胞24 h后应用RT-PCR观察对HepG2细胞PPARα及其调控基因CPTⅠA mRNA表达水平的影响,确定Ber作用的最佳浓度。然后用Ber最佳浓度作用HepG2细胞6 h、12 h、24 h、48 h和72 h后,应用RT-PCR观察对HepG2 CPTⅠA mRNA表达水平的影响,确定Ber最佳作用时间。
     2.培养人肝癌细胞HepG2,给予Ber(3×10~(-5)mol/l) +或不+ MK886 (10~(-5)mol/l)和FF(2×10~(-5)mol/l)+或不+ MK886 (10~(-5)mol/l)分别作用24 h后,采用RT-PCR检测各用药组细胞CPTⅠA mRNA表达水平。
     3.采用蛋白质免疫印迹法(Western blot)检测各用药组细胞CPTⅠA蛋白表达水平。
     4.采用高脂加高胆固醇饲料,建立大鼠高脂模型。实验分5组:(1)对照组(普通饲料);(2)模型组(高脂加高胆固醇饲料);(3)Ber低剂量组(高脂加高胆固醇饲料+Ber 60 mg/kg);(4)Ber高剂量组(高脂加高胆固醇饲料+ Ber 300 mg/kg );(5)洛伐他汀组(高脂加高胆固醇饲料+70 mg/kg)。每组各8只大鼠。20周后尾部采血,用全自动生化分析仪测定血清胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL),确定高脂模型建立,观察各组药物对大鼠血脂变化的影响。
     5.采用RT-PCR检测各组动物肝脏PPARα和CPTⅠA mRNA表达水平。
     6.采用Western blot检测各组动物CPTⅠA蛋白表达水平。
     结果:
     1. Ber显著呈浓度和时间依赖性促进CPTⅠA mRNA的表达,但是对PPARαmRNA表达没有显著影响。
     2. Ber(3×10~(-5) mol/l)对CPTⅠA mRNA和蛋白表达有明显促进作用(P<0.01);PPARα特异激动剂FF(2×10~(-5) mol/l)也明显促进CPTⅠA mRNA和蛋白表达(P<0.01);PPARα特异拮抗剂MK-886预处理细胞后阻断了FF和Ber上述作用。
     3. Ber 60 mg/kg和300 mg/kg每天给予明显降低高脂大鼠血浆TC、TG和LDL-C水平;其作用与洛伐他汀无显著差异。
     4. Ber高、低剂量组明显促进HepG2 CPTⅠA mRNA和蛋白表达;但并不明显影响PPARαmRNA和蛋白表达;洛伐他汀对HepG2的PPARα和CPTⅠA mRNA和蛋白表达无明显影响。
     结论:
     Ber能显著降低高脂血症大鼠血浆TC和LDL水平;其作用原理可能与激动PPARα,由此促进以CPTⅠA为代表的,受PPARα调控的,涉及脂质代谢的基因表达有关。
Objective:
     Investigate the effects of Ber on lipid metabolism disorder and its mechanism involving in PPARα.
     Methods:
     1. Human hepatoma cell line HepG2 was treated by Ber with various concentrations (10~(-6)mol/l,3×10~(-6)mol/l,10~(-5)mol/l,3×10~(-5)mol/l,10~(-4)mol/l,3×10~(-4)mol/l) for 24 h,the mRNA expressions of PPARαand its regulatory gene CPTⅠA in the cultured HepG2 cells were assayed by RT-PCR and 3×10~(-5)mol/l was ascertained as the optimal concentration. Then HepG2 cells was treated by Ber in optimal concentration for 6 h,12 h,24 h,48 h,and 72 h, respectively, the mRNA expressions of CPTⅠA was assayed by RT-PCR, and 24 h was ascertained as the optimal time.
     2. HepG2 cells were treated by either Ber (3×10~(-5)mol/l) with or without MK886 (10~(-5)mol/l) or fenofibrate (2×10~(-5)mol/l) with or without MK886 (10~(-5)mol/l) for 24 h. RT-PCR and western-blot were used to evaluate the mRNA and protein expressions of CPTⅠA in HepG2 cells.
     3. Hyperlipidemic rat model was induced by High fat and high cholesterol diet. All rats were randomly divided into 5 groups:(1)control group: Normal diet; (2)model group: High fat and high cholesterol diet;(3)Ber low dose group: High fat and high cholesterol diet +Ber 60 mg/kg(;4)Ber high dose group: High fat and high cholesterol diet +Ber 300 mg/kg; (5)lovastatin group: High fat and high cholesterol diet +lovastatin 70 mg/kg. The serum levels of cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), and high density lipoprotein (HDL) were assayed by automatic biochemistry analyzer, and hyperlipidemic model and the effects of different drugs on rat lipid levels were identified.
     4.RT-PCR were used to evaluate the mRNA expressions of PPARαand CPTⅠA in Rat Liver cells.
     5.Western blot were used to evaluate the protein expression of CPTⅠA in Rat Liver cells.
     Results:
     1. Ber siginificantly promoted CPTⅠA mRNA expression of HepG2 cells in a concentration- and time-dependent manners(P<0.05,P<0.01), but had no effect on the expression of PPARαmRNA.
     2. It was shown that Ber(3×10~(-5)mol/l) significantly promoted CPTⅠA mRNA and protein expressions(P<0.01);and a PPARαagonist, FF(2×10~(-5 )mol/l) also significantly promoted CPTⅠA mRNA and expressions (P<0.01); Specific PPARαantagonist MK886 could block the roles of FF and Ber mentioned above.
     3. 20 weeks after Ber with either 60 mg/kg or 300 mg/kg was given to rats the TC, TG, and LDL-C levels of rat serum were significantly decreased with elevation of HDL-C, compared with model rats. Similar results were observed in lovastatin group.
     4. The mRNA and protein expressions of CPTⅠA of both Ber 60 mg/kg and 300 mg/kg groups were higher than that of model group, and lower than that of control group(P<0.01), but no significant differences of the mRNA expressions of PPARαwere observed between Ber-treated groups and model group. The mRNA and protein expressions of CPTⅠA of lovastatin group hadn’t significant difference, compared with model group.
     Conclusion:
     Ber can significantly decrease the TC and LDL levels of serum from hyperlipidemic rats, the mechanism of which may be related to the expressions of genes (including CPTⅠA ) involved in the lipid metabolism and modulated by PPARα.
引文
[1] Willson TM, Brown PJ, Sternbach DD, et al. The PPARs: From orphan receptors to drug discovery[J]. J Med Chem. 2000,43(4):528~550
    [2] Latruffe N, Vamecq J. Peroxisome proliferators and peroxisome proliferator- activated receptors (PPARs) as regulators of lipid metabolism[J]. Biochimie. 1997,79:81~94
    [3] Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: A nuclear receptor signaling pathway in lipid physiology[J]. Annu Rev Cell Dev Biol.1996,12: 335~363
    [4] Mandard S, Müller M, Kersten S. Peroxisome proliferator-activated receptor α target genes[J]. Cell Mol Life Sci. 2004,61:393~416
    [5] Kuo CL, Chi CW, Liu TY. The anti-inflammatory potential of berberine in vitro and in vivo[J]. Cancer Lett. 2004,203(2):127~137
    [6] Lee DU, Kang YJ, Park MK, et al. Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-alpha, iNOS, and IL-12 production in LPS-stimulated macrophages[J]. Life Sci. 2003,73(11): 1401~1412
    [7] Kong W J, Wei J, Alidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins [J]. Nat Med. 2004,10(12):1344~1351
    [8] Wang CB, Lu FE, Leng SH, et al. Effects of berberine on the activity of glucokinase and the gene expression in cultured hepG2 cells [J]. Chin pharm bull. 2007,23(9):1145~1147
    [9] Ko BS, Choi SB, Park SK, et al. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma [J]. Biol Pharm Bull. 2005,28(8):1431~1437
    [10] Yin J, Gao Z, Liu D, et al. Berberine Improves Glucose Metabolism through Induction of Glycolysis[J]. Am J Physiol Endocrinol Metab. 2008,294: 148~156
    [11] Zhang T, Yang GZ, Yuan Y, et al. Construction of high efficient eukaryotic expression vector carrying human PPARα gene and its significance[J]. Chin pharm bull. 2007,23(3): 413~417
    [12] Duez H, Lefebvre B, Poulain P, et a1. Regulation of human apoA-Ⅰ by gemfibrozil and fenofibrate through selective peroxisome proliferatorsactivated receptor α modulation [J]. Arterioscler Thromb Vascbiol. 2005, 25(3):585~591
    [13] Sohultze AE,Alborn WE,Newton RK, Konrad RJ. Administration of a PPARα agonist increases serum apolipoprotein A-V levels and the apolipoprotein A- V apolipoprotein C-Ⅲ ratio [J]. J lipid Res. 2005,46(8):1591~1595
    [14] Mandard S, Muller M, Kersten S. Peroxisome proliferator activated receptor α target genes [J]. Cell Mol Life Sci. 2004,61(4):393~416
    [15] Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein [J]. Metabolism Circulation. 1998,98(19):2088~2093
    [16] 娄宁, 陈瑗, 周玫, 等. 云芝多糖对实验性动脉粥样硬化家兔的治疗作用[J]. 第一军医大学学报, 1995, 15(3):185~187
    [17] Li H, Wang YJ, Chai KF, et al. Experimental Study on Curative Effect of Curcumin in Preventing and Treating Renal Injury Caused by Hyperlipemia[J]. Chin Arch Tradit Chin Med. 2007, 9(25):1878~1880
    [18] Qiang WG, Wu YZ, Zhou HF, et al. The Efects of Pollen Typhea on Vascular Endothelial Cells of Spontaneously Hypertensive Rats[J]. Chin Med Res. Clin. 2004, 2(10):1~4
    [19] He MK,Lu FE,Wang KF, et al. Effect and mechanisms of berberine on hyperlipidemic and insulin resistant rats. Chin Hosp Pharm J. 2004,24(7): 389~391
    [20] Abidi P, Zhou Y, Jiang JD, et a1. Extracellular signa1-regulated kinase- dependent stabilization of hepatic low-density lipoprotein receptor mRNA by herbal medicine berberine[J]. Arterioscler Thromb Vase Biol, 2005, 25(10):2170~2176
    [21] Brusq J M, Amcellin N, Grondin P, et a1. Inhibition of lipid synthesis through activation of AMP-kinase:An additional mechanism for the hypolipidemic effects of Berberine [J]. J Lipid Res. 2006,47(6):1281~1288
    [22] Mascaró C, Acosta E, Ortiz J A. Control of Human Muscle-type Carnitine Palmitoyltransferase I Gene Transcription by Peroxisome Proliferator-activated Receptor [J]. J Biol Chem. 1998,273(15):8560~8563
    [23] Brandt JM, Djouadi F, Kelly DP. Fatty Acids Activate Transcription of the Muscle Carnitine Palmitoyltransferase I Gene in Cardiac Myocytes via the Peroxisome Proliferator-activated Receptor alpha [J]. ibid. 1998,273(37):23786~23792
    [24] Hayashida K, Kume N, Minami M, et al. Peroxisome proliferator-activated receptor alpha ligands activate transcription of lectin-like oxidized low density lipoprotein receptor-1 gene through GC box motif. Biochem. Biophys. Res. Commun. 2004;323:1116~1123
    [25] Kehrer JP, Biswal SS, La E, et al. Inhibition of peroxisome proliferators activated receptor (PPAR) α by MK886[J]. Biochem J. (2001) 356, 899~906
    [26] Collino M, Aragno M, Mastrocola R, et al. Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: Effects of the PPAR-α agonist WY14643[J]. Free Radic Biol. Med. 2006,41:579~589
    [27] Louet JF, Chatelain F, Decaux JF, et al. Long-chain fatty acids regulate liver carnitine palmitoyltransferaseⅠ (L-CPTⅠ) expression through a peroxisome proliferators activated receptor alpha (PPARalpha)-independent pathway[J]. Biochem J,2001,354(6):189~197
    [28] Liu L, Jiao XY, Liu WF, et al. Establishment of atherosclerotic rat model usmg large amount vitamin and atherogenicdiet. J Shanxi Med Univ.2005,36(6): 681~692
    [29] Cristina Mascaró, Elena Acosta, José A. Ortiz. Control of Human Muscle-type Carnitine Palmitoyltransferase Ⅰ Gene Transcription by Peroxisome Proliferator-activated Receptor. J Biol Chem.1998; 273:8560~8563
    [30] Stefanovic RM, Perdomo G, Mantell BS, et al. A moderate increase in carnitine palmitoyltransferase-1a activitys is sufficient to substantially reduce hepatic triglyceride levels. Am J Physiol Endocrinol Metab. 2008, in press
    [31] Hammond LE, Gallagher PA, Wsng S, et al. Mitochondrial glycerol-3- phosphate acyltransferase-deficient mice have reduced weight and liver triacylglycerol content and altered glycerolipid fatty acid composition[J]. Mol Cell Biol,2002,22(23):8204~8214
    [32] Huang R, Merrilees MJ, Braun K, et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis[J]. Nat Med. 2006,12(9):1075~1080
    [33] Wiecha J, Schlager B, Viosard R, et al. Ca2+-activated K+ channls in human smooth muscle cells of coronary atherosclerotic plaques and coronary medial segments[J]. Basic Res Cardiol, 1997,92(4):233~239
    [1] Issemann I, Green S. Activation of a number of the steroid receptor superfamily by peroxisome proliferators[J]. Nature.1990,347:645~650
    [2] LinQ, Ruuska S E, ShawN S, et al. Ligand selectivity of the pemxisome prolifemtor activated receptor alpha[J]. Biochemistry.1999,38:185~190
    [3] Duez HI efebvre B, Poulain P, et al. Regulation of human ApoA I by gemfibrozil and fenofibrate through selective peroxisome proliferator activated receptor alpha modulation[J]. Arterioscler Thromb Vasc Biol.2005,25:585~591
    [4] Osumi T, Osada S, Tsukamoto T. Analysis of peroxisome proliferator-responsive enhancer of the rat acyl-CoA oxidase gene. Ann N Y Acad Sci.1996,804: 202~213.
    [5] Ferre P. The biology of peroxisome proliferators-activated receptors: relationship with lipid metabolism and insulin sensitivity[J]. Diabetes.2004,53:43~50
    [6] Zandbergen F, Mandard S, Escher P. The G0/G1 switch gene 2 is a novel PPAR target gene[J]. Biochem J,2005,392:313-324.
    [7] Wang Q, Li H, Liu S, et a1. Cloning and tissue expression of chicken heart fatty acid-binding protein and intestine fatty acid-binding protein genes[J]. Anita Biolchemical.2005,16(2):191~201
    [8] Nagasawa M, Akasaka Y, Ide T, et al. Highly sensitive upregulation of apolipoprotein A- Ⅳ by peroxisome proliferator-activated receptor alpha (PPARalpha) agonist in human hepatoma cells. Biochem Pharmacol.2007,74(12): 1738-1746
    [9] Fu J, Oveisi F, Gaetani S, et al. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats[J]. Neuropharmacology. 2005,48(8):1147-1153
    [10] Dilip DP, Brian LK, Anne KS, et al. The effect of peroxisome proliferator activated receptor α on the activity of the cholesterol 7α-hydroxylase gene[J]. Biochem J.2000,351:747~753
    [11] Mary CH, Yi ZY, G?sta E, et al. The Peroxisome Proliferator-activated Receptorα (PPARα) Regulates Bile Acid Biosynthesis[J]. J Biol Chem. 2000, 275(37):28947~28953
    [12] Chitluri S, Fan'ell GC. Etiopathogenesis of non-alcoholic steatohepatitis[J]. Semin Liver Dis.2001,21:27~41
    [13] Duez H, Lefebvre B, Poulain P, et a1. Regulation of human apoA-Ⅰ by gemfibrozil and fenofibrate through selective peroxisome proliferators-activated receptor α modulation [J]. Arterioscler Thromb Vascbiol.2005,25(3):585~591
    [14] Sohultze AE,Alborn WE,Newton RK, Konrad RJ. Administration of a PPARα agonist increases serum apolipoprotein A-V levels and the apolipoprotein A-V/apolipoprotein C-Ⅲ ratio [J]. J lipid Res.2005,46(8):1591~1595
    [15] Mittra S, Sangle G, Tandon R, et al. Increase in weight induced by muraglitazar, a dual PPARalpha/gamma agonist, in db/db mice: adipogenesis/or oedema?[J]. Br J Pharmacol. 2007,150(4):480~487
    [16] Ringseis R, Gutgesell A, Dathe C, et al. Feeding oxidized fat during pregnancy up-regulates expression of PPARalpha-responsive genes in the liver of rat fetuses[J]. Lipids Health Dis.2007,6:6
    [17] SugdenMC, BulmerK, GibbonsGF, et a1. Peroxisome-proliferator-activated receptor-alpha (PPARalpha) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin[J]. Biochem J.2002,364: 361~368.
    [18] Everett L, Galli A, Crabb D. The role of hepatic peroxisome proliferator-activated receptors (PPARs) in health and disease[J]. Liver,2000,20: 191~199
    [19] Reddy JK. Nonalcoholic steatosis and steatohepatitis. Peroxisomal beta-oxidation, PPAR alpha and steatohepatitis[J]. Am J Physiol Gastrointest Liver Physiol 2001,281:1333~1339
    [20] Lee SS, Chan WY, Lo CK, et a1. Requirement of PPAR alpha in maintaining phospholipid and triacylglycerol homeostasis during energy deprivation[J]. J Lipid Res.2004,45:2025~2037
    [21] Rao MS, Reddy JK. Peroxisomal beta-oxidation and steatohepatitis[J]. Semin Liver Dis.2001,21(1):43~55
    [22] Chitturi S, Farrell GC. Etiopathogenesis of nonalcoholic steatohepatitis. Semin Liver Dis.2001,21:27~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700