用户名: 密码: 验证码:
ABA诱导的OsDMI3基因的表达分析与亚细胞定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱落酸(abscisic acid, ABA)是一种重要的植物激素,不仅在植物的生长发育中而且还在植物对各种环境胁迫反应中起重要作用。已有研究表明ABA的作用模式与植物细胞中氧化胁迫有关,ABA能够诱导NADPH氧化酶引起活性氧产生及抗氧化基因的表达,从而提高植物抗氧化防护能力。Ca2+/CaM依赖性蛋白激酶(CBK)是一种Ser/Thr类蛋白激酶,在动物中,Ca2+/CaM依赖性蛋白激酶(CaMK)已经被很好的研究,迄今人们已在多种植物中分离出大量CBK家族成员,但大多数植物CBK的功能没有被阐明,已有的研究提示这一激酶可能参与盐、低温、干旱与氧化胁迫的信号转导。因此,鉴定ABA诱导的氧化胁迫信号途径与植物CBK基因的关系,对于揭示ABA信号的细胞和分子机理具有重要的意义。
     本实验以水稻为研究对象,利用生物信息学和分子生物学相结合的方法,以半定量RT-PCR为主要研究手段对水稻中一条OsCBK基因OsDMI3与ABA和H202的关系进行了研究,并通过构建原生质体瞬时表达载体对其进行亚细胞定位,主要结果如下:
     1.用100μmol·L-1 ABA处理4h的时间进程结果显示,OsDMI3基因在水稻叶片和根中的转录水平和对照相比,分别表现为30 min和60 min产生上调表达高峰之后逐渐降低至接近对照水平。用ABA合成抑制剂fluridon(FLU)预处理水稻,研究结果表明:干旱胁迫下,水稻叶片和根中ABA合成受抑制的(FLU处理)与不受抑制的相比,OsDMI3基因的表达均受到了明显的抑制,外源施加ABA恢复后,基本上清除了这种抑制作用。这些结果初步说明ABA可以上调OsDMI3的表达。
     2.10mmol·L-1 H2O2处理后,水稻叶片和根中OsDMI3基因的转录水平和对照相比,在4h处理时间均产生两个上调表达高峰;为了确定H202是否参与了ABA诱导的OsDMI3基因在水稻中的转录,本研究应用H202清除剂DMTU和NADPH氧化酶抑制剂DPI浓度分别为100μmol·L-1和10mmol·L-1预处理后的样品较对照样品,结果显示,当ABA处理60min时清除剂和抑制剂预处理对OsDMI3基因的表达并没有明显的抑制。而当ABA处理至60min至90min时,OsDMI3基因在水稻叶片和根中的转录均受到明显抑制。证明了ABA诱导水稻OsDMI3基因表达增强是通过ABA诱导产生的内源H202来起作用的。这些结果初步阐明了在ABA信号途径中ABA、H2O2与植物CBK三者之间的关系,从而为ABA诱导植物细胞抗氧化防护系统的信号转导途径提供了新的证据。
     3.通过设计含有酶切位点的引物和PCR方法,从本实验室已保存的水稻OsDMI3基因的模板上扩增完整的基因编码区,并利用DNA重组技术将OsDMI3基因连到含有35S启动子的植物瞬间表达载体pXZP008上,构建了全长基因瞬时表达载体35S-pXZOsDMI3。将表达载体用PEG方法转化玉米原生质体,以黄色荧光蛋白YFP为报告基因,通过激光共聚焦显微镜观察。结果表明OsDMI3主要定位在玉米的细胞质中。为进一步研究ABA诱导的OsDMI3基因表达与ABA诱导的抗氧化防护基因如:Sod4, Cat1及Apx1等表达的关系做准备,为深入了解和丰富ABA信号转导途径网络关系图奠定基础。
Abscisic acid (ABA), one of the most important phytohormones, play an important roles not only to regulate many important aspects of plant-growth and development, but also to regulate plant adaptive responses to various adverse environmental conditions. Previous studies showed that one model of ABA action are related to plant oxidative stress signaling. ABA could cause the generation of hydrogen peroxide (H2O2) and enhance the capacity of antioxidant defense systems. Ca2+/CaM-dependent protein kinase(CBK) is Ser/Thr protein kinase. Ca2+/CaM- dependent protein kinases(CaMK) have been well researched in animals. Until now, many Ca2+/CaM-dependent protein kinases have been isolated from different plants. But the functions of most of CBKs in plants have not been clarified.Previous studies showed that CBK is likely to take part in the signal transduction of salt, cold, drought and Oxidative stress. Therefore, it is important to identify the relationship between ABA-induced oxidative stress signaling pathways and CBK gene to reveal the cellular and molecular mechanism of ABA signal transduction.
     In this study, we did something about that by using rice as model material and bioinformatics methods combine with molecular biology methods. An effort was made to elucidate the relationship between CBK genes(OsDMI3) and ABA, H2O2 in semi-quantitative PCR. Then we use the constructs (35S-pXZOsDMI3) and transient expression system to determine potential subcellular locations of OsDMI3. The results are as follows:
     1.100μmol·L-1 ABA treatment in the time-course of 4h showed that the transcript level of OsDMI3 in rice leves and roots reached maximum values in 30 min and 60min, then renduced to the control level. Through the treatment of ABA systhesis inhibitor fluridon(FLU), the results are that the transcript level of OsDMI3 in rice leves and roots was inhibited more significantly in the rice which were treated by ABA systhesis inhibitor fluridon(FLU) compared to the other rice which were not treated. However, the treatment of ABA largely removed this inhibition. These suggested that ABA can make the transcript level of OsDMI3 increasing.
     2.10 mmol·L-1 H2O2 treatment resulted in an analogical enhancement in the transcript level of OsDMI3 gene analyzed by RT-PCR. The time-course analysis of OsDMI3 gene expressions showed that the transcript level reached two maximum values in 4h of H2O2 treatment. To make sure that H2O2 took part in ABA signal transduction, pretreatments with H2O2 scavenger and inhibitor DMTU and DPI did not suppressed the increases of gene expression within 60min of ABA treatment. But the increases of gene expression within 90min of ABA treatment was significantly suppressed. These suggested that H2O2 is required for the ABA-induced up-regulation expressions of OsDMI3 gene in rice. A new evidence was provided to ABA-induced signal transduction in plant cell antioxidant protection system.
     3. To determine the location of OsDMI3 and through designing the primers which include restriction enzyme cutting site, the open reading frames were amplified. The gene were inserted into the pXZP008, respectively, under control of the CaMV35S promoter that allows the transient expression of protein in C-terminal fusion with YFP. The constructs (35S-pXZOsDMI3) were delivered into maize protoplast by PEG method. Images of OsDMI3-YFP fusion were captured with a confocal laser scanning microscope. OsDMI3-YFP were located to cytoplasm. This research prepares for further study about the relationship between ABA-induced OsDMI3 gene expression and protective antioxidant genes such as:Sod4, Cat1 and Apx1. The reorganized protoplast transient expression vector laid the foundation for understanding and expounding the network of ABA signal transduction pathway.
引文
[1]胡学博,宋凤鸣,郑重。(2005)高等植物中蛋白磷酸酶2C的结构与功能[J]。细胞生物学杂志,27,29-34。
    [2]J.萨姆布鲁克,D.W.拉塞尔。(2002)分子克隆实验指南[M],3版。北京:北京科学出版社。
    [3]沙新平。(2003)报告基因系统的研究进展[J]。国外医学临床生物化学与检验学分册,24,26-28。
    [4]王华忠,陈雅平,陈佩度。(2007)植物瞬间表达系统与功能基因组学研究[J]。生物工程学报,23,367.374。
    [5]Allen R D. Dissection of Oxidative Stress Tolerance Using Transgenic Plants[J]. Plant Physiology, 1995,107:1049-1054
    [6]Anderson M D, Prasad T K, Martin B A, Stewart C R. Differential Gene-Expression in Chilling-Acclimated Maize Seedlings and Evidence for the Involvement of Abscisic-Acid in Chilling Tolerance[J]. Plant Physiology,1994,105:331-339
    [7]Bellaire B.A., Carmody J., Braud J., Gossett D.R., Banks S.W.(2000). Lucas MC, Fowler TE. Involvement of abscisic acid-dependent and -independent pathways in the up-regulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Radical Research,33, 551-545
    [8]Asada K and Takahashi M. Production and scavenging of active oxygen in photosynthesis. In Photoinhibition, eds. DJ Kyle, CB Osborne, CJ Arntzen, Amsterdam:Elsevier,1987,227-287.
    [9]Bohnert HJ. and Sheveleva E. Plant stress adaptations, making metabolism move. Current Opinion in Plant Biology,1998,1:267-274.
    [10]Bouche N, Yellin A, Snedden W A, Fromm H. Plant-specific calmodulin-binding proteins[J]. Annual Review of Plant Biology,2005,56:435-466
    [11]Bowler C, Vanmontagu M, Inze D. Superoxide-Dismutase and Stress Tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83-116
    [12]Bray E A. Plant responses to water deficit[J]. Trends in Plant Science,1997,2:48-54
    [13]Bueno P, Piqueras A, Kurepa J, et al. Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures[J]. Plant Science,1998,138:27-34
    [14]Chen C, Gao M, Liu J, Zhu H. Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/calmodulin-dependent protein kinase[J]. Plant Physiology,2007, 145:1619-1628
    [15]Chen Y L, Huang R, Xiao Y M, et al. Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2[J]. Plant Physiology,2004,136:4096-4103
    [16]Cheng S H, Willmann M R, Chen H C, Sheen J. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family[J]. Plant Physiology,2002,129:469-485
    [17]Choi H I, Park H J, Park J H, et al. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity[J]. Plant Physiology,2005,139:1750-1761
    [18]Cutler A J, Krochko J E. Formation and breakdown of ABA[J]. Trends in Plant Science,1999, 4:472-478
    [19]Dat JF, Van Breusegem F, Vandenabeele S, Vranova E, Van Montagu M, Inze D. Dual action of the active oxygen species during plant stress reponses. Cellular and Molecular Life Sciences,2000, 57:779-795.
    [20]Desikan R, Neill SJ, Hancock JT. Hydrogen peroxide-induced gene expression in Arabidopsis thaliana. Free Radical Biology and Medicine,2000,28:773-778.
    [21]Dornelas M C, van Lammeren A A M, Kreis M. Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development[J]. Plant Journal,2000, 21:419-429.
    [22]Finkelstein R R, Gampala S S L, Rock C D. Abscisic acid signaling in seeds and seedlings[J]. Plant Cell,2002,14:S15-S45
    [23]Gilroy S, Trewavas T. A Decade of Plant Signals[J]. Bioessays,1994,16:677-682
    [24]Godfrey O, Debelle F, Timmers T, Rosenberg C. A rice calcium- and calmodulin-dependent protein kinase restores nodulation to a legume mutant[J]. Molecular Plant-Microbe Interactions,2006, 19:495-501
    [25]Gong M, Li Y J, Chen S Z. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems[J]. Journal of Plant Physiology,1998, 153:488-496
    [26]Guan L Q, Scandalios J G. Effects of the plant growth regulator abscisic acid and high osmoticum on the developmental expression of the maize catalase genes[J]. Physiologia Plantarum,1998b, 104:413-422
    [27]Guan L Q, Scandalios J G. Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum[J]. Plant Physiology, 1998a,117:217-224
    [28]Guan L Q M, Zhao J, Scandalios J G. Cis-elements and trans-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic stress:H2O2 is the likely intermediary signaling molecule for the response[J]. Plant Journal,2000,22:87-95
    [29]Hallouin M, Ghelis T, Brault M, et al. Plasmalemma abscisic acid perception leads to RAB18 expression via phospholipase D activation in Arabidopsis suspension cells[J]. Plant Physiology, 2002,130:265-272
    [30]Hammond-Kosack KE and Jones JDCx. Resistance gene-dependent plant defense responses. The Plant Cell,1996,8:1773-1791.
    [31]Harmon A C, Gribskov M, Gubrium E, Harper J F. The CDPK superfamily of protein kinases[J]. New Phytologist,2001,151:175-183
    [32]Harper J E, Breton G, Harmon A. Decoding Ca2+ signals through plant protein kinases[J]. Annual Review of Plant Biology,2004,55:263-288
    [33]Hasegawa PM, Bressan RA, Zhu JK and Bohnert HJ. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463-499.
    [34]He C J, Erdodi G, Kennedy J P. Individual and simultaneous swelling of amphiphilic conetworks in water and n-heptane[J]. Journal of Polymer Science Part B-Polymer Physics,2006,44:1474-1481
    [35]He C L, Sun J R, Zhao T, et al. Formation of a unique crystal morphology for the poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymer[J]. Biomacromolecules,2006,7:252-258
    [36]He L H, Zhang Y H, Ren L X, et al. Double-hydrophilic polymer brushes:Synthesis and application for crystallization modification of calcium carbonate[J]. Macromolecular Chemistry and Physics, 2006,207:684-693
    [37]Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals:keys to the function of the versatile plant hormone ABA[J]. Trends in Plant Science,2007,12:343-351
    [38]Hua W, Li R J, Wang L, Lu Y T. A tobacco calmodulin-binding protein kinase (NtCBK2) induced by high-salt/GA treatment and its expression during floral development and embryogenesisfJ]. Plant Science,2004,166:1253-1259
    [39]Hua W, Liang S P, Lu Y T. A tobacco (Nicotiana tabaccum) calmodulin-binding protein kinase, NtCBK2, is regulated differentially by calmodulin isoforms[J]. Biochemical Journal,2003, 376:291-302
    [40]Hunt L, Mills LN, Pical C, Leckie CP, Aitken FL, Kopka J, Mueller-Roeber B, Mcainsh MR, Hetherington AM, Gray JE. Phospholipase C is required for the control of stomatal aperture by ABA. The Plant Journal,2003,34:47-55.
    [41]Ingram J, Bartels D. The Molecular Basis of Dehydration Tolerance in Plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:377-403
    [42]Jiang M Y, Zhang J H. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings[J]. Plant and Cell Physiology,2001, 42:1265-1273
    [43]Jiang M Y, Zhang J H. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings[J]. Planta,2002b, 215:1022-1030
    [44]Jiang M Y, Zhang J H. Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings[J]. Free Radical Research,2002c,36:1001-1015
    [45]Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves[J]. Journal of Experimental Botany,2002a,53:2401-2410
    [46]Kaminaka H, Morita S, Tokumoto M, et al. Molecular cloning and characterization of a cDNA for an iron-superoxide dismutase in rice (Oryza sativa L.)[J]. Bioscience Biotechnology and Biochemistry,1999,63:302-308
    [47]Kocsy G, Galiba G, Brunold C. Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants[J]. Physiologia Plantarum,2001,113:158-164
    [48]Konings H. Gravitropism of Roots-an Evaluation of Progress during the Last 3 Decades[J]. Acta Botanica Neerlandica,1995,44:195-223
    [49]Koornneef M, Leon-Kloosterziel K M, Schwartz S H, Zeevaart J A D. The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis[J]. Plant Physiology and Biochemistry,1998,36:83-89
    [50]Kwak J M, Mori I C, Pei Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. Embo Journal,2003,22:2623-2633
    [51]Leung J, Giraudat J. Abscisic acid signal transduction[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:199-222
    [52]Li J X, Wang X Q, Watson M B, Assmann S M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase[J]. Science,2000,287:300-303
    [53]Liang S P, Wang X F, Lu Y T, Feldman L J. Mediation of flowering by a calmodulin-dependent protein kinase[J]. Science in China Series C-Life Sciences,2001,44:506-512
    [54]Lindzen E, Choi J H. A Carrot Cdna-Encoding an Atypical Protein-Kinase Homologous to Plant Calcium-Dependent Protein-Kinases[J]. Plant Molecular Biology,1995,28:785-797
    [55]Liotenberg S, North H, Marion-Poll A. Molecular biology and regulation of abscisic acid biosynthesis in plants[J]. Plant Physiology and Biochemistry,1999,37:341-350
    [56]Liu P F, Chang W C, Wang Y K, et al. Signaling pathways mediating the suppression of Arabidopsis thaliana Ku gene expression by abscisic acid[J]. Biochim Biophys Acta,2008,1779:164-174
    [57]Liu X G, Yue Y L, Li B, et al. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid[J]. Science,2007,315:1712-1716
    [58]Liu Z H, Xia M, Poovaiah B W. Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms[J]. Plant Molecular Biology,1998,38:889-897
    [59]Lu Y T, Hidaka H, Feldman L J. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism[J]. Planta,1996,199:18-24
    [60]Luan S, Kudla J, Rodriguez-Concepcion M, et al. Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants[J]. Plant Cell,2002,14:S389-S400
    [61]Ma L, Liang S P, Jones R L, Lu Y T. Characterization of a novel calcium/calmodulin-dependent protein kinase from tobacco[J]. Plant Physiology,2004,135:1280-1293
    [62]Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science,2002, 7:405-410
    [63]Mori I C, Murata Y, Yang Y Z, et al. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure[J]. Plos Biology,2006, 4:1749-1762
    [64]Mustilli A C, Bowler C. Tuning in to the signals controlling photoregulated gene expression in plants[J]. Embo Journal,1997,16:5801-5806
    [65]Noctor G, Arisi A C M, Jouanin L, et al. Glutathione:biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants[J]. Journal of Experimental Botany,1998, 49:623-647
    [66]Nuccio ML, Rhodes D, McNeil SD, and Hanson AD. Metabolic engineering of plants for osmotic stress resistance. Current Opinion in Plant Biology,1999,2:128-134.
    [67]Ober E S, Sharp R E. Proline Accumulation in Maize (Zea-Mays L) Primary Roots at Low Water Potentials.1. Requirement for Increased Levels of Abscisic-Acid[J]. Plant Physiology,1994, 105:981-987
    [68]Pandey S, Nelson D C, Assmann S M. Two Novel GPCR-Type G Proteins Are Abscisic Acid Receptors in Arabidopsis[J]. Cell,2009,136:136-148
    [69]Pandey S, Sopory S K. Biochemical evidence for a calmodulin-stimulated calcium-dependent protein kinase in maize[J]. European Journal of Biochemistry,1998,255:718-726
    [70]Pandey S, Sopory S K. Zea mays CCaMK:autophosphorylation-dependent substrate phosphorylation and down-regulation by red light[J]. Journal of Experimental Botany,2001, 52:691-700
    [71]Pandey S, Tiwari S B, Tyagi W, et al. A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter[J]. European Journal of Biochemistry,2002,269:3193-3204
    [72]Park S Y, Ryu S H, Jang I C, et al. Molecular cloning of a cytosolic ascorbate peroxidase cDNA from cell cultures of sweetpotato and its expression in response to stress[J]. Molecular Genetics and Genomics,2004,271:339-346
    [73]Patil S, Takezawa D, Poovaiah B W. Chimeric Plant Calcium/Calmodulin-Dependent Protein-Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain[J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92:4897-4901
    [74]Pei Z M, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature,2000,406:731-734
    [75]Polle A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis[J]. Plant Physiology, 2001,126:445-462
    [76]Poovaiah B W, Xia M, Liu Z H, et al. Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers[J]. Planta,1999,209:161-171
    [77]Prasad T K, Anderson M D, Martin B A, Stewart C R. Evidence for Chilling-Induced Oxidative Stress in Maize Seedlings and a Regulatory Role for Hydrogen-Peroxide[J]. Plant Cell,1994, 6:65-74
    [78]Price A H, Taylor A, Ripley S J, et al. Oxidative Signals in Tobacco Increase Cytosolic Calcium[J]. Plant Cell,1994,6:1301-1310
    [79]Ritchie SM, Swanson SJ, Gilroy S. From common signaling components to cell specific responses:insights from the cereal aleurone. Physiologia Plantarum,2002,115:342-351
    [80]Reddy A S N. Calcium:silver bullet in signaling[J]. Plant Science,2001,160:381-404
    [81]Rock C D. Pathways to abscisic acid-regulated gene expression[J]. New Phytologist,2000, 148:357-396
    [82]Rudd J J, Franklin-Tong V E. Unravelling response-specificity in Ca2+ signalling pathways in plant cells[J]. New Phytologist,2001,151:7-33
    [83]Sanchez-Margalet V, Gonzalez-Yanes C, Najib S. Pancreastatin, a chromogranin A-derived peptide, inhibits DNA and protein synthesis by producing nitric oxide in HTC rat hepatoma cells[J]. Journal of Hepatology,2001,35:80-85
    [84]Sanders D, Pelloux J. Calcium at the crossroads of signaling. Plant Cell 2002, 14(Suppl.):S401-S417
    [85]Schweighofer A, Hirt H, Meskiene L. Plant PP2C phosphatases:emerging functions in stress signaling[J]. Trends in Plant Science,2004,9:236-243
    [86]Shen Y Y, Wang X F, Wu F Q, et al. The Mg-chelatase H subunit is an abscisic acid receptor[J]. Nature,2006,443:823-826
    [87]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways [J]. Current Opinion in Plant Biology,2000,3:217-223
    [88]Snedden W A, Fromm H. Calmodulin as a versatile calcium signal transducer in plants[J]. New Phytologist,2001,151:35-66
    [89]Takezawa D, Ramachandiran S, Paranjape V, Poovaiah B W. Dual regulation of a chimeric plant serine threonine kinase by calcium and calcium calmodulin [J]. Journal of Biological Chemistry, 1996,271:8126-8132
    [90]Taylor I B, Burbidge A, Thompson A J. Control of abscisic acid synthesis[J]. Journal of Experimental Botany,2000,51:1563-1574
    [91]Watillon B, Kettmann R, Boxus P, Burny A. Structure of a Calmodulin-Binding Protein-Kinase Gene from Apple[J]. Plant Physiology,1995,108:847-848
    [92]Xiong L, Zhu J K. Molecular and genetic aspects of plant responses to osmotic stress[J]. Plant Cell and Environment,2002,25:131-139
    [93]Xiong L M, Ishitani M, Lee H, Zhu J K. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress-and osmotic stress-responsive gene expression[J]. Plant Cell,2001,13:2063-2083
    [94]Yanagisawa S, Sheen J. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression[J]. Plant Cell,1998,10:75-89
    [95]Yang T B, Chaudhuri S, Yang L H, et al. Calcium/calmodulin up-regulates a cytoplasmic receptor-like kinase in plants[J]. Journal of Biological Chemistry,2004,279:42552-42559
    [96]Yang T B, Du L Q, Poovaiah B W. Concept of redesigning proteins by manipulating calcium/calmodulin-binding domains to engineer plants with altered traits [J]. Functional Plant Biology,2007,34:343-352
    [97]Yang T B, Poovaiah B W. Calcium/calmodulin-mediated signal network in plants[J]. Trends in Plant Science,2003,8:505-512
    [98]Yoo B C, Harmon A C. Intramolecular binding contributes to the activation of CDPK, a protein kinase with a calmodulin-like domain[J]. Biochemistry,1996,35:12029-12037
    [99]Yoshida K, Igarashi E, Wakatsuki E, et al. Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii[J]. Plant Science,2004,167:1335-1341
    [100]Zhang L, Liu B F, Liang S P, et al. Molecular and biochemical characterization of a calcium/calmodulin-binding protein kinase from rice[J]. Biochemical Journal,2002,368:145-157
    [101]Zhang L, Lu Y T. Calmodulin-binding protein kinases in plants[J]. Trends in Plant Science,2003, 8:123-127
    [102]Zhang SQ, Klessig D F. MAPK cascades in plant defense signaling[J]. Trends in Plant Science, 2001,6:520-527
    [103]Zhao ZG, Chen GC, Zhang CL. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings[J]. Australian Journal of Plant Physiology,2001,28:1055-1061.
    [104]Zhu DH, Scandalios JG. Differential Accumulation of Manganese-Superoxide Dismutase Transcripts in Maize in Response to Abscisic-Acid and High Osmoticum[J]. Plant Physiology, 1994,106:173-178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700