用户名: 密码: 验证码:
四川盆地紫色水稻土腐殖质特征及其团聚体有机碳保护机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人口、经济、技术和社会压力而引起的土地利用变化加剧了全球气候变化的速度,寻求农业土壤增加和固定有机碳已经成为缓减大气CO_2浓度增加的有效途径之一。农业生态系统中的碳库不仅是全球碳库的一个重要组成部分,而且是其中最活跃的部分。农业生态系统中的物质循环,特别是C、N循环状况早已成为普遍关注的全球问题之一。稻田生态系统是农业生态系统的一个典型类型,其物质循环的状况和强度不仅强烈地影响该生态系统的生产力大小,而且对全球环境变化产生一定的影响,是近年来较活跃的研究领域。土壤腐殖质因在土壤有机质中不易被微生物分解或具有微生物抗性而成为稳定有机碳,这与其自身的化学组成和微结构密不可分。目前,对土壤腐殖质组成和结构的研究主要集中于森林生态系统以及不同生态系统之间的更替转换,相对而言,农田生态系统,尤其是长期免耕、轮作和秸秆覆盖还田等农业措施下稻田生态系统的碳素循环研究得到的规律性认识还较少。这样,深入了解典型稻田生态系统有机质的累积效应和稳定机制已成为全球变化研究的重要内容。
     因此,本文以四川盆地紫色水稻土垄作免耕长期定位试验为主要对象(涉及8个处理:常规平作(中稻-冬水)、冬水免耕(中稻-冬水)、油菜免耕(中稻-油菜)、厢作免耕(中稻-油菜)、绿肥免耕(中稻-绿肥)、油菜翻耕(中稻-油菜)、厢作翻耕(中稻-油菜)和水旱轮作(中稻-油菜),辅助室内稻草腐解培养实验,在全面了解长期保护性耕作下四川盆地紫色水稻土腐殖质特性的基础上,运用元素分析、同位素~(13)C天然丰度法、傅立叶变换红外光谱(FTIR)、固体核磁共振(solid-stateCP/MAS ~(13)C-NMR)等现代分析技术和方法表征了紫色水稻土胡敏酸和富里酸的化学组成,同时分析短期培养实验中稻草腐解对紫色土壤胡敏酸和富里酸组成和结构的影响。讨论紫色水稻土团聚体组成、稳定性及其与有机碳关系,估算了不同耕作方式下紫色水稻土的碳储量,主要结果如下:
     1)、耕作方式显著影响紫色水稻土耕作层和犁底层土壤胡敏酸和富里酸的数量和光学性质(E_4/E_6、色调系数(⊿log K)和相对色度(RF))。耕作层用NaOH+Na_4P_2O_7可提取的土壤腐殖酸碳含量占土壤有机碳含量的37%-40%。与常规平作比较,垄作免耕和厢作免耕土壤腐殖酸碳含量分别增加39.29%和8.70%,水旱轮作降低23.52%。垄作免耕和厢作免耕犁底层土壤腐殖酸碳含量分别比常规平作高54.97%和66.38%,说明保护性耕作有利于紫色水稻土耕作层和犁底层腐殖酸碳含量的增加。土壤胡敏酸碳含量为腐殖酸和土壤有机质碳含量的38%-65%和12%-29%,16年垄作免耕和厢作免耕耕作层土壤胡敏酸碳含量分别增加41.62%和10.52%。除厢作免耕增加外,垄作免耕和水旱轮作犁底层土壤胡敏酸碳含量分别为1990年的81.91%和70.82%,垄作免耕和厢作免耕与常规平作差异显著。紫色水稻土耕作层和犁底层土壤富里酸碳含量分别为土壤碳含量12%-22%和11%-25%,垄作免耕和厢作免耕耕作层土壤富里酸碳含量比1990年分别增加23.08%和77.69%,比同期常规平作高25.49%和20.45%,与常规平作和水旱轮作差异不显著。垄作免耕和厢作免耕犁底层土壤富里酸碳含量比1990年分别增加61.00%和10.91%,分别比常规平作增加43.79%和50.69%,因此,保护性耕作有利于增加紫色水稻土耕作层和犁底层富里酸碳含量。
     紫色水稻土胡敏酸的E_4/E_6比值介于4.65-5.89之间,长期种植水稻使得紫色水稻土胡敏酸的E_4/E_6值增加。同时,土壤胡敏酸的E_4值变化说明免耕、轮作和秸秆覆盖表层土壤胡敏酸的分子结构趋于简单化,其犁底层土壤胡敏酸的芳构化程度增强,而传统耕作土壤胡敏酸的变化正好相反。用NaOH+Na_4P_2O_7提取的耕作层土壤胡敏酸的色调系数为0.75-0.80,低于NaOH提取相应土壤胡敏酸的⊿log K(0.94-1.02)。与常规平作比较,垄作免耕、厢作免耕和水旱轮作耕作层用NaOH+Na_4P_2O_7提取的土壤胡敏酸的⊿log K降低,RF增加,其土壤胡敏酸中与金属和粘土矿物络合的有机化合物中羧基、羰基和酚羟基的含量增加,而甲氧基和醇羟基的含量降低,土壤胡敏酸的氧化程度和芳构化程度增强。常规平作和垄作免耕犁底层土壤胡敏酸的⊿logK降低相对色度(RF)增加,土壤胡敏酸的氧化程度和芳构化程度增强。厢作免耕和水旱轮作土壤胡敏酸的⊿log K增加,RF降低,则其氧化程度和芳构化程度降低。与土壤胡敏酸比较,土壤富里酸的⊿log K增加,RF降低,用0.1 mol L~(-1)NaOH提取耕作层土壤富里酸的⊿log K为1.05-1.27,RF为14-24。用0.1 mol L~(-1)NaOH+Na_4P_2O_7提取耕作层和犁底层土壤富里酸的RF分别大于用0.1 mol L~(-1)NaOH提取的相应土壤富里酸的RF(40-43和39-59),垄作免耕、厢作免耕和水旱轮作耕作层土壤富里酸的RF依次增加,其氧化程度和芳构化程度增加。垄作免耕和厢作免耕犁底层土壤富里酸的⊿log K降低,RF明显高于常规平作。因此,随着深度的增加,免耕有利于土壤富里酸中羧基、羰基和酚羟基的含量增加,而甲氧基和醇羟基的含量降低,土壤富里酸的氧化程度和芳构化程度增强。
     长期水稻种植有利于增加土壤有机碳含量,同时耕作方式显著影响有机碳、氮、C/N比率和有机质碳δ~(13)C值在耕作层和犁底层中的分布格局。土壤有机碳含量顺序为:厢作免耕>垄作免耕>水旱轮作,不同土层有机碳含量降低幅度不同。土壤有机质的δ~(13)C值介于-27.85‰~-25.56‰,其中厢作免耕和垄作免耕土壤有机质δ~(13)C值在-27‰左右,水旱轮作土壤有机质的碳同位素δ~(13)C值随着深度的增加而增加,20-40 cm和0-5 cm土壤有机质δ~(13)C值之差达到1.92‰。不同耕作方式下土壤有机质δ~(13)C值均高于油菜和水稻的秸秆和根系的δ~(13)C值。土壤胡敏酸δ~(13)C值介于-28‰~-30‰之间,低于土壤有机质的δ~(13)C值1‰~2‰,而更接近于油菜和水稻秸秆和根系的δ~(13)C值,因此,胡敏酸中含有较多的脂类。除常规平作土壤胡敏酸的δ~(13)C值随着深度的增加而略有降低外,垄作免耕、厢作免耕和水旱轮作土壤胡敏酸的δ~(13)C值均随着深度的增加而略有增加。不同耕作方式下有机组分的δ~(13)C值顺序为:土壤富里酸>土壤有机质>土壤胡敏酸。土壤富里酸与土壤有机质δ~(13)C值之差为2‰左右,而与土壤胡敏酸之差约为4‰左右,均显著高于油菜和水稻秸秆与根系的δ~(13)C值,土壤富里酸中含有较多的碳水化合物,而胡敏酸中可能含有较多的木质素和脂类。随着深度的增加,常规平作和厢作免耕土壤富里酸δ~(13)C值降低,而水旱轮作和垄作免耕土壤富里酸δ~(13)C值分别增加1‰。耕作层和犁底层土壤胡敏素碳同位素δ~(13)C值分别介于-23.68‰~-24.85‰和-22.59‰~-24.21‰。随着深度的增加,常规平作、垄作免耕、厢作免耕和水旱轮作分别增加1.86‰、0.14‰、0.64‰和1.51‰。各组分δ~(13)C值递减顺序为:胡敏素>富里酸>土壤有机质>稻草(油菜)残体>胡敏酸。植被类型、土层深度、土壤颗粒组成和保护性耕作是影响紫色水稻土有机质和腐殖质组分碳同位素δ~(13)C值的主要因素。
     2)、采用元素自动分析仪、FTIR和固体-CPMAS ~(13)C-NMR和有机化学结构分析方法剖析了长期免耕、轮作和秸秆覆盖下紫色水稻土腐殖质的化学组成。紫色水稻土胡敏酸的元素重量百分比以C为主(50%-53%),其次为O(30%-36%),H为5%-6%,S为4%-7%,N为4%-6%。与1990年比较,垄作免耕土壤胡敏酸的总酸度、羧基和酚羟基含量降低,羰基含量约增加1倍。与常规平作耕作层土壤胡敏酸比较,厢作免耕土壤胡敏酸的总酸度、羰基和酚羟基含量增加,羧基含量降低。水早轮作土壤胡敏酸的总酸度、羧基和酚羟基含量降低,而羰基含量显著增加。犁底层常规平作土壤胡敏酸的含氧官能团均增加,水旱轮作土壤胡敏酸的总酸度和酚羟基降低,羧基和羰基含量增加。厢作免耕土壤胡敏酸的总酸度和羧基含量与常规平作相近,而羰基含量显著增加。红外光谱分析结果说明,紫色水稻土胡敏酸的含氧官能团主要有羧基、羟基和羰基,只是不同耕作方式下含氧官能团的数量有所不同而已。紫色水稻土胡敏酸以脂肪族(烷基碳和烷氧碳)为主,为50%-86%,其次为羰基碳(18%-31%),芳香碳最低(9%-24%),芳香度为8%-33%。脂肪族以烷氧碳为主(27%-43%),烷基碳为20%-29%。耕作层土壤胡敏酸脂族性以常规平作(70.91%)、厢作免耕(60.21%)和水旱轮作(52.80%)顺序递减,犁底层土壤胡敏酸以厢作免耕(50.80%)、常规平作(59.13%)和水旱轮作(85.75%)顺序递增。随着深度增加,常规平作和厢作免耕胡敏酸脂族性降低,芳香性增强;水旱轮作为脂族性增强,芳香性急剧减弱。不同耕作方式下胡敏酸碳类型差异主要来源于含氧官能团含量在深度上的变化,说明垄(厢)作免耕、轮作和秸秆覆盖还田结合影响了土壤胡敏酸的化学组成。
     不同耕作方式下紫色水稻土富里酸的元素重量百分比以O含量最高,为71%-81%,其次为S和C,分别为6%-10%和7%-18%,H和N含量分别为2%左右和1%左右。与土壤胡敏酸的红外光谱比较,土壤富里酸的红外光谱出现的吸收峰少,主要含氧官能团包括羧基、羰基和羟基,不同耕作方式下功能团含量存在一定差异。土壤富里酸以脂肪族(烷基碳和烷氧碳)为主,为50%-68%,其次为羧基碳(19%-50%),芳香碳最低(7%-28%),芳香度为12%-35%。脂肪族以烷氧碳为主(25%-43%),烷基碳为24%-31%。耕作层土壤富里酸的脂族特性以下列顺序递增:常规平作(49.34%)、厢作免耕(52.57%)、垄作免耕(59.37%)和水旱轮作(67.27%)。水旱轮作、厢作免耕、垄作免耕和常规平作犁底层土壤富里酸的脂肪族比例分别为52.45%、61.22%、66.31%和67.52%。因此,土壤富里酸化学组成中碳水化合物和糖类对深度的变化最敏感,变化最大,芳香度随着深度的增加而降低(水旱轮作除外)。
     3)、通过短期室内培养实验,采用元素自动分析仪、FTIR和固体-CPMAS ~(13)C-NMR和有机化学结构分析法研究了稻草腐解进程中土壤胡敏酸和富里酸化学组成的变化。添加稻草显著提高土壤有机碳含量,45 d、90 d和135 d土壤有机碳含量分别比相应对照增加64.00%、55.59%和31.38%。70℃和100℃时0.1 mol L~(-1)NaOH+Na_4P_2O_7提取添加稻草土壤腐殖酸碳含量分别为土壤有机碳含量的24%-32%和47%-53%,土壤胡敏酸碳含量在土壤腐殖酸碳含量中所占的比例(PQ)分别为57%-67%和46%-52%。70℃和100℃时0.1 mol L~(-1)NaOH提取添加稻草土壤腐殖酸碳含量分别为土壤有机碳含量的22%-26%和40%左右,PQ分别为22%-26%和50%-54%。添加稻草进而显著影响土壤胡敏酸的⊿logK和RF,土壤胡敏酸的类型以Rp型为主。添加稻草和对照土壤胡敏酸的元素重量百分比均以C为主(52%左右),其次O含量27%-31%,H和S含量相近,N含量最低为4.0%-4.5%。同期添加稻草和对照土壤HA的元素含量没有显著差异。随着培养时间的延长,对照土壤胡敏酸的总酸度和酚羟基增加,羧基和羰基保持稳定。添加稻草对土壤胡敏酸的总酸度、酚羟基和羰基含量增加,羧基含量在90 d时达到最大,随后降低。添加稻草土壤胡敏酸的主要含氧官能团有羧基、羟基和羰基。土壤胡敏酸的有机组分以脂肪族化合物为主,为57%-60%(其中70%左右为碳水化合物或多聚糖),芳香碳21%-24%,羰基碳含量最低,为18%-19%,芳香度30%-33%,添加稻草后土壤胡敏酸的脂族特性增强。
     土壤富里酸的元素组成以O和S含量为主(83.32%-93.078%)。用0.1 mol L~(-1)NaOH在70℃提取添加稻草土壤富里酸的⊿log K随着培养时间增加而降低,RF变化趋势正好相反。用0.1 mol L~(-1)NaOH在100℃提取的土壤富里酸的⊿log K低于在70℃时的同期水平,RF高于70℃时同期水平,但均在90 d时出现一个转折点。用0.1 mol L~(-1)NaOH+Na_4P_2O_7在100℃时提取添加稻草土壤富里酸的⊿log K随着培养时间增加而增加,RF则是降低,但其绝对数值高于用0.1 mol L~(-1)NaOH提取的土壤富里酸的数值,分异程度不如同期土壤胡敏酸的变化。土壤富里酸含有羟基、烷基、羧基和苯环。添加稻草和对照土壤富里酸的化学组成以脂肪族化合物为主,分别为42%-53%和58%-72%。对照土壤富里酸烷氧碳含量最高,添加稻草土壤富里酸羧基碳最高,对照和添加稻草土壤富里酸的芳香度分别为8%-17%和15%-21%。
     4)、运用国际通用分级方法分析水稻土微团聚体组成及其有机碳分配,继而探讨水稻土大团聚体组成和稳定性及其与有机碳的关系,结合定位试验长期田间观测数据估算了紫色水稻土碳储量,阐明团聚体对有机碳的物理保护作用。油菜免耕、厢作免耕、绿肥免耕、垄作翻耕和厢作翻耕0-10 cm大团聚体分别比对照(12%)增加23%、69%、9%、36%和28%,而10-20 cm大团聚体比对照低9%-38%。冬水免耕、油菜免耕和绿肥免耕0-10 cm大团聚体中有机碳含量分别比对照增加13%、31%和32%,而10-20 cm各处理有机碳浓度低于对照28%-54%,10-20 cm大团聚体和微团聚体中碳浓度差异低于0-10 cm。不同耕作方式下0-10 cm土壤总有机碳储量比对照增加8%-28%,而10-20 cm有机碳储量低于对照4%-22%。传统耕作转变为保护性耕作13年后0-10 cm和10-20 cm土壤有机碳固定率分别为53 gm~(-2)y~(-1)和25 gm~(-2)y~(-1),传统耕作有机碳固定率分别为26 gm~(-2)y~(-1)和33 gm~(-2)y~(-1)。保护性耕作有利于紫色水稻土表层大团聚体形成和土壤总有机碳储量提高。长期保护性耕作后稻田有机碳含量增加,可能提高土壤团聚体稳定性,进而增强有机碳的物理保护能力。糊化作用和湿润作用后紫色水稻土团聚体稳定性差异不明显,而保护性耕作显著影响团聚体的稳定性。糊化作用后团聚体水稳性强弱顺序为:垄作免耕>厢作免耕>冬水免耕>水旱轮作,湿润作用后团聚体水稳性强弱顺序为:厢作免耕>垄作免耕>冬水免耕>水旱轮作。糊化作用下团聚体稳定性与有机碳含量相关性不显著(r=0.432),湿润作用下团聚体稳定性与有机碳含量呈极显著正相关(r=0.626~(**))。因此,保护性耕作显著影响耕层团聚体组成,提高了大团聚体有机碳含量,增强了大团聚体的稳定性,进而提高土壤有机碳储量。
     因此,四川盆地紫色水稻土有机碳主要以胡敏素的形式得以稳定存在,其次是胡敏酸。土壤胡敏酸和富里酸均以脂肪族化合物为主,其中烷基碳基本保持稳定,烷氧碳、芳香碳和羧基碳深受耕作方式的影响。长期保护性耕作增加大团聚体有机碳含量,增强其稳定性,进而提高大团聚体的比例,提高土壤有机碳储量。本文从土壤和团聚体尺度研究四川盆地紫色水稻土腐殖质特征及其物理保护机制,获得了比较详实的基础信息,能够为区域稻田生态系统物质循环和能量流动规律的认识提供一手资料。今后应进一步从团聚体层面深入研究土壤腐殖质在土壤碳库稳定、积累和转化过程中的重要作用。
The close relationship betwween the stability,enhancement or release of soil organic carbon pool and the concentration of CO_2 in atmosphere has become one of hotspot in international science.Whether SOC pool continued to increase or stability subjected to the important theoretic baisis that terristral ecosystem was a sink for absortion and sequestration CO_2 in atomsphere,Which has been one of the key issue of the study on the soil and global change.Since the last 1980s',the increase of SOC storage in paddy soil of China indicated that paddy soil may be a sink for CO_2 in atomsphere.However,it was uncertain about the capacity of SOC sequestration and its stability mechanisms among different soil types.The dynamics of the stable fractions of soil organic matter(SOM),the humus substances,has been rarely studied in purple paddy soil of Sichuan basin.It is imperative to determine the characteristic of humus substances and the organic carbon protection mechanism in aggregates in paddy soil.In this paper,we evaluated extraction yields,elemental composition,isotopicδ~(13)C abundance,Fourier transform infrared spectroscopy (FTIR)and solid-stae cross-polarization magic angle spinning technique(CPMAS)~(13)C nuclear magnetic resonance(NMR)spectra of humic substances isolated from purple paddy soil in Sichuan basin in order to asses the influence of conservation tillage such as no-tillage,crop rotation and rice stalk mulch on the composition of soil humic acids(HA)and flumic acids(FA)and the physical protection mechanisms of SOM in aggregates under a long-term field experiment,including conventional tillage(rice(Oryza sativa L.)-fallow)(CT),no tillage and ridge culture(rice-fallow)(NT-R),no tillage and ridge culture (rice-rape)(NT-RR),no tillage and plain culture(NP-RR),no tillage and ridge culture(rice-rape/green manure)(NT-RR)conventional tillage and ridge culture(rice-rape)(CT-RR),convention tillage and plain culture(rice-rape)(CT-PR)and water-upland rotation(rice-rape)(PU-RR),which located in Southwest university experimental farm.
     1)The significant differences of organic carbon and humic acid carbon were observed between conservation tillage and conventional tillage.Conservation tillage made the extractable humus carbon increased in plow layer and plow pan.Extractable humus carbon accounted for 37%-40%of soil organic carbon in cultivated layer.Compared with the CT,it was reduced about 23.52%under PU-RR and increased about 39.29%and 8.70%under NR-RR and NP-RR,respectively.In soil of plow pan,the extractable humus carbon under NR-RR and NP-RR increased about 54.97%and 66.38%compared with those under CT,respectively.Humic acid carbon content accounted for the content of hurhic acid and organic carbon about 38%-65%and 12%-29%,respectively.The humic acid carbon content in plow layer of purple paddy soil increased under long-term conservation tillage.Compared with the original soil(in 1990 yr),it had increased 41.62%and 10.52%under NR-RR and NP-RR,respectively.In 20-40 cm soil layer,the humic acid carbon content only increased under NP-RR and about 81.91%and 70.82%of original soil(1990 yr)under NR-RR and PU-RR,respectively.It was found that the difference between NR-RR/NP-RR and CT was very significant.
     Soil FA carbon content was about 12%-22%and 11%-25%of soil organic carbon content in plow layer and plow pan of purple paddy soil,respectively.Compared the original soil(1990 yr),it increased 23.08% and 77.69%in surface layer under NR-RR and NP-RR,which was 25.49%and 20.45%higher than that in CT,respectively.There was no significant difference between CT and PU-RR.Compared with the original soil(in 1990 yr),the FA carbon content increased 61.00%and 10.91%in plow pan of under NR-RR and NP-RR,which was 43.79%and 50.69%higher than CT,respectively.It indicated that the conservation tillage contributed to increasing FA carbon content of purple paddy soil.
     The ratio of E_4/E_6 of HA was increased under long-term paddy planting with the value range from 4.65 to 5.89.The change of E4 of HA indicated that the molecular structure of HA tended to be more simplified whereas the aromatization degree of HA in plow pan was reinforced under conservation tillage.Thus the change of E_4 of HA maybe can better reflect the complicated degree of humic acid in purple paddy soil. The⊿log K of the NaOH+Na_4P_2O_7-extractable HA was at the range from 0.75 to 0.80 which was lower than that by NaOH(0.94-1.02)and the RF was at the range from 164 to 205 which was higher than that by NaOH(52-93).Compared with CT,⊿log K of HA was decreased and RF was increased under NR-RR.The contents of Carboxyl content,carbonyl content and phenol-hydroxy content of HA in cultivated horizon were increased whereas the contents of methoy and alcoholic hydroxyl reduced.The oxidation degree and aromatic components reinforced.
     The RF of soil FA(extracted by 0.1 mol L~(-1)NaOH+Na_4P_2O_7)was higher than that by 0.1 mol L~(-1) NaOH in plow layer and plowpan(in the range of 40-43 and 39-59,respectively).The increasing order sorting of The RF,oxidation degree and aromatization degree of FA in cultivated horizon were NR-RR, NP-RR and PU-RR.In cultivated layer under NR-RR and NP-RR,the⊿log K of FA was decreased and the RF of FA was significantly higher than the control treatment(CT).Therefore with the increase of soil depths, the content of carboxyl,carbonyl and phenol-hydroxy of FA increased,and the contents of methys and alcoholic hydroxylof FA reduced.The oxidation degree and aromaticity of FA were more significant.
     The distribution of SOM under long-term conservation tillage was studied by isotopesδ~(13)C abundance.The results showed that soil organic carbon content increased after long-term paddy planting, and organic carbon content,nitrogen content,ratio of C/N andδ~(13)C values were all significantly affected by tillage systems in plow layer and plow pan.The decreasing order soring of organic carbon contents in different tillage systems was NP-RR>NR-RR>PU-RR and the reduced range was not the same for different soil layer.Theδ~(13)C values of whole soil organic matter were between - 27.85‰and - 25.56‰, and theδ~(13)C values under NP-RR and NR-RR were about - 27‰.The increase of stable carbon isotope values with depths was was about 1.92‰under PU-RR and the dispersion between 20-40 cm and 0-5 cm soil layers.Theδ~(13)C values of soil under different tillage systems were higher than those of stalks and roots of rape and paddy.Theδ~(13)C values of HA were at range from -28‰to -30‰,which were lower than those of SOM(about 1‰-2‰)but closer to these of stalks and roots of rape and paddy.It indicated that more fatty matters could be stored in HA.
     Except that under CT,theδ~(13)C values of soil HA were a bit increased with the increasing of soil depth under the other treatments.The decreasing order sorting of theδ~(13)C values was FA>SOM>HA.The margin value of theδ~(13)C values was about 2‰between soil HAs and SOM,and about 4‰difference between soil HAs and humin.It indicated that there were more carbohydrate components of soil HAs.With the increase of soil depths,theδ~(13)C values of soil HAs were decreasing under CT and NP-RR and about 1‰increased under PU-RR and NR-RR.Theδ~(13)C values of soil humin in plowlayer and plowpan were at the range of - 23.68‰~24.85‰and - 22.59‰~24.21‰,respectively.With the increase of soil depths,theδ~(13)C values of soil humic acid increasing 1.86‰,0.14‰,0.64‰and 1.51‰under CT,NR-RR,NP-RR and PU-RR,respectively.The decreasing order of theδ~(13)C values in each fraction was humin>FAs>SOM>rice(rape)residues>HAs.The main factors that affected theδ~(13)C values of SOM and humus substance were vegetable types,soil depths,patrticulate composition,and conservation tillage.
     2)The carbon was the main contents(50%-53%),followed by oxygen(30%-36%),hydrogen(5%-6%), sulfur(4%-7%)and nitrogen(4%-6%)of the soil HAs in purple paddy soil.Compared with the original soil(1990yr),the total acidity,carboxyl and phenolic hydroxyl content of the soil HAs decreased and the carbonyl content increased about 1 times under NR-RR.Compared with the HA in plow layer under CT, the total acidity,carbonyl and phenol-hydroxyl contents increased and the carboxyl groups reduced under NP-RR,and the total acidity,carboxyl and phenolic-hydroxyl content of the soil HAs decreased and the carbonyls content increased under PU-RR.The total acidity and carboxyl groups content of the soil HAs were nearly same between NP-RR and CT.The carbonyls content was significantly increased under NP-RR. By means of infrared spectrum analysis,it was found that the major oxygen-containing functional groups of the soil HAs in purple paddy soil were carboxyl groups,hydroxyls and carbonyls,and their contents were different under each tillage system.
     The carbon of aliphatic components(including alkyl-C and carbohydrate-C)accounted for the largest part(50%-86%)of humic acids in purple paddy soil,followed by carbonyl C(18%-31%)and aroma carbon (9%-24%).Carbohydrate components were the major part in aliphatic components,and then was the alkyl-C.In plow layer the decreasing order sorting of aliphatic components of HA was CT(70.91%)>NP-RR(60.21%)>PU-RR(52.80%)and in plough pan,the increasing order sorting of the aliphatic characteristics of HA was(50.80%)>CT(59.13%)>PU-RR(85.75%).The aliphatic characteristics of the soil HAs decreased and the aromaticity of HA increased under CT and NP-RR.The aliphatic characteristics of HA increased and the aromaticity of HA decreased rapidly under PU-RR.The differences of soil HAs carbon types among treatments mainly resulted from the changes of oxygen-containing functional groups with soil depths.It indicated that the chemical compositions of soil HA were affected by agriculture management practices such as no-tillage,crop rotation and stalk mulch.
     The oxygen was the largest composition(71%-81%)in FA constitution of purple paddy soil,followed by sulfur(6%-10%),carbon(7%-18%),hydrogen(about 2%)and nitrogen(about 1%).Compared with the infrared spectra characteristics of HA,the absorption peaks in infrared spectra characteristics of soil FAs were not so many.The major oxygen-containing functional groups included carboxyl,carbonyl and hydroxyl groups.Differences among these different functional groups were found.The aliphatics carbon was the largest composition of FA(50%-68%),followed by carboxyl carbon(19%-50%),and the aroma carbon was the lowest part.The aliphatics carbon was composed of carbohydrate-C(25%-43%),alkyl-C (24%-31%)and some others.In cultivated layer,the aliphatic characteristics of FA could be ranked as CT (49.34%)<NP-RR(52.57%)<NR-RR(59.37%)<PU-RR(67.27%)and among tillage systems the decreasing order was CT(67.52%)>NR-RR(66.31%)>NP-RR(61.22%)>PU-RR(52.45%).So,the carbohydrate and saccharide were more sensitive to the soil depths change and the aromaativity was decreased with the increasing soil of depths(except under PU-RR).
     3)Reclaiming of the straw mulch has been taken as an important method to improve soil in many areas of China.In order to evaulate the mechanism of straw mulch improving soil,the effects of straw mulch on the soil humus substances(humic acids and fluvic acids)were studied by elemental composition,FTIR and solid-stae CP/MAS ~(13)C NMR spectra in purple paddy soil with incubation experiment.SOC contents were significantly increased in the application of rice stalk.Compared weith those of CK,the SOC contents of the application of rice stalk were about 1.64,1.56 and 1.31 times in the incubation time of 45d,90d and 135d,respectively.The HS under the application of rice stalk extracted by 0.1 mol L~(-1)NaOH+Na_4P_2O_7 at 70℃and 100℃was about 24%-32%and 47%-53%of soil carbon content and the PQ was about 57%-67%and 46%-52%,while about 22%-26%and 40%of soil carbon content and,the PQ was about 22-26%and 50%-54%by 0.1 mol L~(-1)NaOH at 70℃and 100℃,respectively,Which would significantly affected⊿log K and RF of HA whatever adding rice stalks or not.The Rp type was the main sort of the extracted HA.
     For both the application of rice stalks and CK,the carbon was the largest composition(about 52%)in HA constitution,followed by oxygen(27%-31%),hydrogen and sulfur,and nitrogen was the smallest part (about 4%-6%).No obvious differences were found between the application of rice stalks and CK.With incubation time increase,the total acid and phenolhydroxyl content of soil HA increased and the carboxyl and carbonyl content of soil HA maitained stable under CK.The total acid,phenolhydroxyl and carbonyl content increased during the incubation time and the peak of the carboxyl content changes appeared at the 90th day under application of rice stalks.The results of FTIR Showed that the aliphatic characteristics of the soil HAs increased and the mainly oxygen-containing functional groups were carboxyl,hydroxyl and carbonyl in the application of rice stalks.The alphiatic components,about 70%of which was carbohydrate or saccharide,was the main part of the soil HAs(57%-60%),and then the aromatic components (21%-24%),the carbonyl carbon content was the lowest(18%-19%).
     Except the O and S content of soil FA among treatments were much higher than those of main soil types of China,other elements are all lower than those of China.⊿log K of FA extracted by 0.1 mol L~(-1)NaOH at 70℃decreased with the incubation time,and the trend of RF was the on the opposite.At the same incubation time,the⊿log K of FA extracted at 100℃was lower than that extracted at 70℃,and one turning point was observed at 90 d.the⊿log K of FA under the application of rice stalks extracted by 0.1 mol L~(-1)NaOH+Na_4P_2O_7 at 100℃was increased and the RF decreased with the incubation time,and their values were higher than those extracted by 0.1 mol L~(-1)NaOH.The change degree of FA was not as severe as that of HA at the same incubation time.The results of FTIR showed that soil FA contained these functional groups such as hydroxyl,alkyl and carbonyl and benzene.With the incubation time increasing, the aliphatic compounds was the main part of soil FA chemical composition in both treatments with and without rice stalks addition,which was about 42%-53%and 58%-72%,respectively.The aromaticity was about 8%-17%and 15%-21%in CK and the application of rice stalks,respectively.The main component of FA was alkyl-C in CK and carboxyl-C was the major part in the application of rice stalks.
     4)A 13 years long-term experiment in purple paddy soil of Sichuan Basin was used to evaluate effects of conservational tillage systems on aggregates composition and carbon storages.The results showed that aggregates composition and soil carbon storages were significantly controlled by conservational tillage systems.In the 0-10 cm layer,the amount of macroaggregates under conservational tillage systems: no-tillage and ridge culture(rice-rape)(NT-RR),no-tillage and plain culture(rice-rape)(NP-RR),no-tillage and ridge culture(rice-green manure)(NT-RGM),tillage and ridge culture(rice-rape)(TR-RR),tillage and plain culture(rice-rape)(TP-RR)were 23%,69%,9%,36%and 28%higher compared with conventional tillage(CT)(12%),respectively.In the 10-20 cm layer,the macroaggregates proportion was 9%-38%lower than that of CT.The organic carbon concentration in macroaggregates at 0-10 cm depths under no-tillage and ridge culture(rice-fallow)(NR-RF),NR-RR and NR-RGM were 13%,31%and 32%higher than that of CT,while 28%-54%lower at 10-20 cm depths,respectively.The differences of organic carbon concentration between macroaggregates and microaggregates in the 10-20 cm layer were lower than those in the 0-10 cm layer.The organic carbon storages among conservational tillage systems in the 0-10 cm layer were 8%-28%higher than that of CT,while lower 4%-22%in the 0-10 cm layer.The ratio of mean organic carbon sequestration on the conversion from CT to conservational tillage at 0-10 cm and 10-20 cm depths since 1990,were 53 g m~(-2)y~(-1)and 25g m~(-2),y~(-1),while under CT were 26 g m~(-2)y~(-1)and 33 g m~(-2)y~(-1), respectively.The conservational tillage systems favorably led to the formation of macroaggregates and the enhancement of soil organic carbon storages.Long-term conservation tillage is an effective agricultural management to improve soil structure in severely destroyed paddy soil by increase of soil organic carbon (SOC),more work is still needed to understand the impacts of conservation tillage on the mechanisms of aggregates stability.Soil samples in 0-20 cm layer were adopted from the long-term experiment:(1), paddy-upland rotation and plain culture(rice-rape)(PU-RR),(2)no-tillage and ridge culture (rice-fallow)(NT-RF),(3)no-tillage and ridge culture(rice-rape)(NT-RR)and(4)no-tillage and plain culture (rice-rape)(NT-PR).Different pretreatment,such as slaking in fast wetting,wetting and subsequent slaking, were applied to simulate the breakdown mechanisms of aggregate in paddy soil.The results showed that there was no significant difference of aggregate stability between slaking in fast wetting and wetting,but significant difference of aggregate stability exited between conservation tillage and conventional tillage. The aggregate stability in slaking pretreatment ranked in the order of NT-RR>NT-PR>NT-RF>PU-RR. The aggregate stability order under wetting was NT-PR>NT-RR>NT-RF>PU-RR.The organic carbon content in aggregates was significantly positive related to the aggregate stability under wetting(r=0.626~* *),while low correlation under slaking treatment(r=0.432).The results suggest that long-term conservation tillage favorably led to the increase of SOC in aggregates,and the enhancement of aggregates.
     As above all,the main SOC was observed in soil humin,followed by soil humic acids and soil fluvic acids in purple paddy soil of the Sichuan basin.The humic acids and fluvic acids mainly comprise of alphiatic components,and alkyl-c maitained stability,land use practices have greatly effects on the multitude of carbohydrate-C,aromatic C and carboxyl-C.The evnidences surggested that conservation tillage favorably led to the increase of OC content in mcroaggregate,enhancement of mcroaggregates stability,increase of the mcroaggregates propertion and SOC storage.In this paper,characteristics of humus substances and organic carbon physical protection mechanisms in aggregates were investgated,and achieved basis information about HS composition,which could surpported the firstly reference for the study on the recognization of substances cycle and energy transformation in paddy field system.In the future,more ephersis should be played on the important role of humus substances in the processes of SOC pool stability,acumulation,and its transformation.
引文
Griffith S.M.,Schnitzer M.,Analytical characteristics of humic and fulvic acids extracted from tropical volcanic soila.Soil Sci.Soc.Amer.Proc.1975,39:861-867
    Stevenson F.J.,Humus chemistry:Genesis,composition,Reactions.New York:John Wiley & Sons.1994:123-239
    Shukla M.K.,Lal R.,Ebinger M.,Determining soil quality indicators by factor analysis.Soil & Tillase Research,2006,87:194-204
    Schlaurman M.A.,Morgan J.J.,Effects of aqueous chemistry on the binding of polycyclic aromatichydrocarbons bydissolved humic materials.Environmental Science and Technology,1993,27:961-969
    Murphy E.M.,Zachara J.M.,The role of sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater.Geoderma,1995,67:103-124
    Ferrara G.,Lofredo E.,Senesi N.,Aquatic humie substances inhibitelastogenie events in germinating seeds of herbacenus plants.Journal of Agricultural and Food chemistry,2001,49:1 652-1 657
    Clapp C.E.,Chen Y.,Hayes M.H.B.,et al.,Plant growth promoting activity of humic substances.In:Swirl R S,Sparks KM.eds.Understanding an d Man aging Organic Matter in Soils,Sediments,and Water-,.St.Paul,MS:International Humic Substances Society,2001:243-255
    Varanini Z.,Pinton R.,Direct versus indirect effects of soil humic substances on plant growth an d nutrition,In:PintonR,Varanini Z.Nan nipieri P.eds.The Rhizos'phere.Marcel Dekker,2001,141-158
    Nardi S.,Pizzeghello D.,Muscolo A.,et al.,Physiological effects of humic substances on higher plants.Soil Biology and Biochemistry,2002,34:1 527-1 536
    De Marco A.,De Simone C.,Raglione M.,et al.,Influence ofsoil charaeteristies on the elastogenie activity of maleie hydrazide in root tips of Vicia faba Mutation Research,1995,344:5-12
    潘根兴,周萍,李恋卿 等.固碳土壤学的核心科学问题与研究进展.土壤学报,2007,44(2):327-337
    Kogel-Knabner.,Forest soil organic matter:structure and formation.Bayreuther Bodenkundliche Berichte,1992.24:1-103Preston et al.,Soil Sci Soc Am J,1984,48:305
    Wilson M.A.,Barron P.F.,Gob K.M.,Cross polarization ~(13)C NMR spectroscopy of some genetically related New Zealand soils.Journal of Soil Sciences,1981,32:419-425
    卓苏能,文启孝.核磁共振技术在土壤有机质研究中应用的新进展(上).土壤学进展,1994,22(5):46-52
    刘湛,成应向,向仁军.腐殖质类物质的形态、结构及功能研究进展.科技咨询,2006,22:27
    Schnitzor M.,Khan S.U.,Humic Substances in the Environment.Marcel Dekker,New York,1972
    蒋平,荣湘民,张富强 等.不同秸秆还土方式对旱地土壤培肥和玉米产量的影响.土壤肥料,2004(3):7-9
    孙伟亚,何广平,吴宏海,高嵩.珠江河口水体沉积物中腐殖酸的提取与表征.应用化工,2006,35(1):63-66
    Kumada K.,Chemistry of Soil Organic Matter,241 pp.,Elsevier,Amsterdam,1987
    Hooker B.A.,Morris T.F.,Peters R.,et al.,Long-term effects of tillage and eOlTi stalk return on soil carbon dynamics.Soil Sci Soc.Am.J.2005,69:188-196
    吴景贵,席时权,姜岩 等.玉米植株残体还田后土壤胡敏酸理化性质变化的动态研究.中国农业科学,1999,32(1): 63-68
    Tan K.H.,Variation in soil humic compounds as related to regional and analytical differences.Soil Sci.1978,125:351-358
    Hatcher P.G.,Spiker E.C.,Selective degradation of plant biomolecules.In humic substances and their role in the environment.Frimel F.H.and Christman R.F.eds.,John Wiley,New York,1988:59-74
    Ingo Schoning,Ingrid Kogel-Knabner.Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests.Soil Biology and Biochemistry,2006,38:2411-2424
    Helfrich M.,Ludwig B.,Buurman P.,Flessa H.,Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state ~(13)C NMR spectroscopy.Geoderma,2006,136:331-341
    Krosshavn M.,Southon T.E.,Steinnes E.,The influence of vegetational origin and degree of huminfication of organic soils on their chemical composition,determined by solid-state ~(13)C NMR.J Soil Sci,1992,43:485-493
    Spaccini R.,Mbagwu J.S.C.,Conte P.,et al.,Change of humic substances characteristics from forested to cultivated soils in Ethioia.Geoderma,2006,132:9-19
    吴景贵,王明辉,姜亦梅 等.核磁共振波谱法研究玉米植株残体培肥对土壤胡敏酸的影响.农业环境科学学报,2005,24(5):892-898
    Grant D.,Nature,1977,270:709
    Newman R.H.,Tate K.B.,Barton P.F.,et al.,Towards a direct,non-destructive method of characterizing soil humic substances using ~(13)C NMR.J.Soil Sci.1980,31:623-631
    Skjemsted J.O.,et al.,Austr J.,Soil Res,1983,21:539
    Oades J.M.,Vassallo A.M.,Waters A.G.,et al.,Characterisation of organic matter in particle-size and density fractions from a red-brown earth by solid-state ~(13)C NMR.Aust.J.Soil Res.1987,25:71-82
    Orgner G.,et al.Geoderma,1977,19:237,56
    Wright J.R.,Schnitzer M.Functional groups in the organic matter of the Ao and Bh horizons of a Podzol.Trans.Int.Congr.Soil Sci.7~(th).Vol Ⅱ.1960:120-127
    Barton D.H.R.,Schnitzer M.,A new experimental approach to the humic acid problem.Nature,1963:217-218
    Neyroud J.A.,Schnizer M.,The chemistry of high molecular weight fulvic acid fractions.Canadian Journal of Chemistry,1972,52:4123-4132
    Filipe Pedra,Cesar Plaza,Juan Carlos Garcia-Gil,Alfredo Polo.Effects of municipal waste compost and sewage sludge on proton binding behavior of humic acids from Portuguese sandy and clay loam soils.Bioresource Technology 2008,99:2141-2147
    Gleixner G.,Bol R.,Balesdent J.,Molecular insight into soil carbon turnover rapid communications in mass spectrometry,1999,13:1278-1283
    Wilson W.A.,NMR techniques and applications in geochemistry and soil chemistry.Pergamon Press,New York.1987.
    Hatcher P.G.,Detection of tannins in modern and fossil barks andin plant residues by high-resolution solid-state nuclear magnetic resonance.Organic Geochemistry,1988,12:539-546
    Kogel-Knabner I.,~(13)C and ~(15)N NMR spectroscopy as a tool in soil organic matter studies.Geoderma,1997,80:243-270
    Kogel-Knabner I.,Analytical approaches for characterizing soil organic matter.Organic Geochemistry,2000,31:609-625
    Baldock J.A.,Oades J.M.,Nelson P.N.,et al.,.Assessing the extent of decomposition of natural organic materials using solidstate ~(13)C NMR spectroscopy.Australian Journal of Soil Research,1997,35:1061-1083
    Baldock J.A.,Oades J.M.,Waters A.G.,et al.,Aspects of the chemical structure of soil organic materials as revealed by solid-state ~(13)C NMR spectrometry.Biogeochemistry,1992,16:1-42
    Rumpel C.,Kogel-Knabner I.,Bruhn F.,Vertical distribution,age,and chemical composition of organic carbon in two forest soils of different pedogenesis.Organic Geochemistry,2002,33:1131-1142
    Hatcher P.G.,Dria K.J.,Kim S.,et al.,Modern analytical studies of humic substances.Soil Science,2001,166:770-794
    窦森,华式英.土壤胡敏酸的核磁共振现象.土壤通报,1989,20(6):263-266
    Saiz-Jimenez C.,Production of alkylbenzenes and alkylnaphthalenes upon pyrolysis of unsaturated fatty acids.Naturwissenschften,1994,81:451-453
    Gaffney J.S.,Marley N.A.,Clark S.B.,Humic and fulvic acids Isolation,structure,and environmental role.American chemical society,Washington,1996:42-56
    窦森,Lichtfouse E.,Mariotli A.,土壤有机质的δ~(13)C研究.沈阳:东北大学出版杜,1995:116-119
    Hatcher P.G.,Faulon T.M.,Clifford D.A.,et al.,In humic substances in global environment and implications on humanhealth.Senesi N.,Miano T.M.,Eds.Elservier,Amsterdam.1994:133-138
    Preston C.M.,Axelson D.E.,Levesque M.,et al.,Carbon-13 NMR andchemical characterization of particle-size separates of peats differing in degree of decomposition.Organic Geochemistry,1989,14:393-403
    Chesire M.V.,Nature and Origin of Carbohydrates.Academic Press,London.1979
    Cook L.,Langford C.H.,Structural characterization of a flumic acid and a humic acid using solid-state ramp-CP-MAS ~(13)C nuclear magnetic resonance.Environ.Sci.Technol,1998,32:719-725
    Rice J.A.,MacCarthy P.,Comments on the literature of the humin fraction of humus.Geoderma,1988,43(1):65-73
    Paola Campitelli,Silvia Ceppi,Effects of composting technologies on the chemical and Physicochemical properties of humic acids.Geoderma,2008,144:325-333
    窦森,肖彦春,张晋京.土壤胡敏素各组分数量及结构特征初步研究.土壤学报,2006,43(6):934-940
    张晋京,窦森,李翠兰 等.土壤腐殖质分组研究.土壤通报,2004,356:706-709
    粱重山,党志.土壤有机质提取方法的研究进展.矿物岩石地球化学通报,2001,20(1):58-61
    李云峰,徐建民,袁可能.土壤和沉积物胡敏素的研究现状.土壤通报,1999,30(1):17-20
    徐建民,李云峰,袁可能.土壤胡敏素的分级及其特性研究.中国学术期刊文摘(研究快报),1996,2(10):117
    Saiz-Jimenez C.,de Leeuw J.W.,Pyrolysis-gas chromatography-mass spectrometry of isolated,synthetic and degraded lignins.Organic Geochemistry,1984,6:417-422
    Abet J.D.,Driscoll C.T.,Effects of land use,climate variation and N deposition on N cycling and C storage in northern hardwood forests.Global Biogeo- chemical Cycles,1997,11:639-648
    Kelly R.H.,Patton W.J.,Crocker G.J.,et al.,Simulating trends in soil organic carbon in long-term experiments using the century model.Geoderma,1997,81:75-90
    de Leeuw J.W.,Largeau C.,A review of macromolecular organic compounds that comprise living organisms and their role in kerogen,coal,and petroleum formation.In Organic Geochemistry,Principles and Applications.Engel M.H.and Macko S.A.eds.,Plenum Press,New York,1993:23-72
    Wander M.M,Traina S.J.,Stinner B.R.,et al.,Organic and conventional management effects on biologically active soil organic matter pools.Soil Science Society of America Journal,1994,58:1130-1139
    Qualls R.G.,Haines B.L.,Swank W.T.,Fluxes of dissolved organic nutrients and humic substances in a deciduous forest.Ecology,1991,72:254-266
    Kandeler E.,Stemmer M.,Tillage change microbial biomass and enzyme activities in particle-size fraction of a Haplic Chemozern.Soil Biology and Biochemistry,1999,31:1253-1264
    Knicker H.,Quantitative ~(15)N- und ~(13)C- CPMAS- Festkorper-und ~(15)N-Flussigkeits.NMR-Spektroskopie an PflanzenKomposten and naturlichen Boden.PhD thesis,Regensburg University.1993
    Preston C.M.,Hempfling R.,Schulten H.R.,et al.,Characterization of organic-matter in a forest soil of coastal BritishColumbia by NMR and pyrolysis-field ionization mass-spectrometry.Plant and Soil,1994,158:69-82
    Zech W.,Senesi N.,Guggenberger G.,et al.,Factors controlling humification and mineralization of soil organic matter in the tropics.Geoderma,1997,79:117-161
    Wilson M.A.,Heng S.,Goh K.M.,et al.,Studies of litter and acid insoluble soil organic matter fractions using ~(13)C-cross polarization nuclear magnetic resonance spectroscopy with magic angle spinning.Journal of Soil Sciences,1983,34:83-97
    Zech W.,Johansson M.B.,Haumaier L,et al.,CPMAS ~(13)C NMR and IR spectra of spruce and pine litter and of the Klason lignin fraction at different stages of decomposition.Zeitschrift fur Pflanzenernahrung and Bodenkunde,1987,150:262-265
    Preston C.M.,Axelson D.E.,Levesque M.,et al.,Carbon-13 NMR and chemical characterization of particle-size separates of peats differing in degree of decomposition.Organic Geochemistry,1989,14:393-403
    Preston C.M.,Hempfling R.,Schulten H.R.,et al.,Characterization of organic-matter in a forest soil of coastal BritishColumbia by NMR and pyrolysis-field ionization mass-spectrometry.Plant and Soil,1994,58:69-82
    Nierop K.G.J.,Origin of aliphatic compounds in a forest soil.Organic Geochemistry,1998,29:1009-1016
    Hempfling R.,Ziegler F.,Zech W.,et al.,Litter decomposition and humification in acidic forest soils studied by chemical degradation,IR and NMR spectroscopy and pyrolysis field ionization massspectrometry.Zeitschrift fur Pflanzenernahrung and Bodenkunde,1987,150:179-186
    Bertoncini E.I.,D'Orazio V.,Senesi N.,Mattiazzo M.E.,Effects of sewage sludge amendment on the properties of two Brazilian oxisols and their humic acids.Bioresource Technology,2008,99:4972-4979
    Karl J.D.,carbon and nitrogen distribution and processes in forest and agricultural ecosystems:a study involving solid- and liquid-state NMR and pyrolysis GC/MS.2004.
    吴景贵,王明辉,万忠梅,姜亦梅,吴江.玉米秸秆腐解过程中形成胡敏酸的组成和结构研究.土壤学报,2006,43(3):443-451
    吴景贵,姜岩.玉米秸秆腐解过程的红外光谱研究.土壤学报,1999,36(1):91-100
    Inbar Y.,Chen Y.,Hadar Y.,Humic substances formed during the composting of organic matter.Soil Sci.Soc.Am.J.,1990:54(5):1 316-1 323
    Zibilske L.M.,Materon L.A.,Biochemical properties of decomposing cotton and corn stem and root residues.Soil Science Society of America and Journal,2005,69:378-386
    Chen J.S.,Chiu C.H.,Characteriztion of soil organic matter in different particle-size fraction in humid subalpine soils CP/MAS ~(13)C NMR.Geoderma,2003,117:129-141
    Boutton T.W.,Yamasaki S.I.,Mass Spectrometry of Soils.New York:Marcel Dekker,1996:47-81
    Wedin D.A.,Tieszen L.L.,Dewey B.,Carbon isotope dynamics during grass decomposition and soil organic matter fonmation.Ecology,1995,76:1353-1392
    Connin S.L.,Feng X.,Virginia R.A.,Isotopic discrimination during long-term decomposition in an arid land ecosystem.Soil Biology and Biochemistry,2001,33:41-51
    Ehleringer J.R.,Buchmann N.,Flanagan L.B.,Carbon isotope rations in below ground carbon cycle processes.Ecological Applications,2000,10:412-422
    Bernoux M.,Cerri C.C.,Neill C.,The use of stable carbon isotopes for estimating soil organic matter turnover rates.Geoderma,1998,82:43-58
    Qian J.H.,Doran J.W.,Available carbon released from crop roots during growth as determined by carbon-13 natural abundant.Soil Science Society of American Journal,1996,60:828-831
    Robinson D.,Scrimgeour C.M.,The contribution of plant C to soil CO_2 measured using δ~(13)C.Soil Biology and Biochemistry,1995,27:1653-1656
    Balesdent J.,Balabane M.,Major contribution of roots to soil carbon storage inferred from maize cultivated soils.Soil Biology and Biochemistry,1996,28:1261-1263
    Schweizer M.,Fear J.,Cadisch G.,Isotopic(C)fractionation during plant residue decomposition and its implications for soil organic matter studies.Rapid Communications in Mass Spectrometry,1999,13:1284-1290
    Golchin A.,Oades J.M.,Skjemstad J.O.,Structural and dynamic properties of soil organic ma tter as reflected by ~(13)C natural abundance,pyrolysis mass spectrometry and solid-state ~(13)C NMR spectroscopy indensity fractions of an Oxisol under forest and pasture.Australian Journal of Soil Science,1995,33:59-76
    Gregorich E.G.,Drury C.F.,Ellert B.H.,et al.,Fertilization effects on protected light fraction organic matter.Soil Science Society American Journal,1997,61:482-484
    Roscoe R.,Buurman P.,Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol.Soil and Tillage Research,2003,70:107-119
    Ostle N.,Ineson P.,Benham D.,et al.Carbon assimilation and turnover in grassland vegetation using an in situ ~(13)CO_2 pulse labeling system.Rapid Communications in Mass Spectrometry,2000,14:1345-1350
    Fitter A.H.,Graves J.D.,Watkins N.K.,et al.,Carbon transfer between plants and its control in networks of arbuscular mycorrhizas.Functional Ecology,1998,12:406-412
    Benner R.,Fogel M.L.,Sprague K.,et al.,DepLetion of ~(13)C in lignin and its implications for stable carbon isotope studics.Nature,1987,329:708-710
    Nissenbaum A.,Shallinger K.M.,Chemical and isotope evidence for the in situ origin of marine humic substance.Limnology and Oceanography.1972,17:570-580
    Balesdent J.,Mariotti A.,Guillet B.,Natural ~(13)C abundance as a tracer for studies of soil organic matter dynamics.Soil Biology and Biochemistry,1987,19:25-30
    Skjemstad J.O.,Catchpoole V.R.,Le Feuvre R.P.,Carbon dynamics in Vertisols under severval crops as assessed by natural abundance~(13)C.Australian Journal Soil Research,1994,32:311-321
    郭景恒,朴河春,刘启明.碳水化合物在土壤中的分布特征及其环境意义.地质地球化学,2000,28:59-64
    Piao H.C.,Hong Y.T.,Yuan Z.Y.,Seasonal changes of microbial biomass carbon related to factors in soils from karst areas of southwest China.Biol.Fertil.Soils,2000,30:294-297
    王清奎,王思龙,高洪,刘艳,于小军.土地利用方式对土壤有机质的影响.生态学杂志,2005,24(4):360-363
    Rumpel C.,Seraphin A.,Dignac M.F.,et al.,Effect of base hydrolysis on the chaemical composition of organic matter of an acid forest soil.Organic Geochemistry,2005,36:239-249
    Jenkinson D.S.,Rayner J.H.,The turnover of soil organic matter in some of the Rothamsted classical experiments.Soil Sd.,1977,123:298-305
    Gressel N.,Inber Y.,Arich S.,et al.,Soil Biol.Bioche.,1995,27(1):23
    Sun J.Y.,Sagar Thakali,Herbert E.A.,Characteristics of soil organic matter(SOM)extracted using base with subsequent pH lowering and sequential pH extraction.Environment International 2006,32:101-105
    Lal R.,Kimble J.,Follet R.,et al.,The potential of US cropland to sequester carbon and mitigate the greenhouse effect.Ann Arbor Press,Chelsea,MI 1998
    Gale W.J.,Cambardella C.A.,Carbon dynamics of surface residueand root-derived organic matter under simulated no-till.Soil Sd.Soc.Am.J.2000,64:190-195
    Lal R.,Soil carbon dynamics in cropland and rangeland.Environ.Fallut.2002,116:353-362
    Skidmore E.L.,Layton J.B.,Armbrust D.V.,et al.,Soil physical properties as influenced by cropping and residue management.5Oi/Sd.Soc.Am.J.1986,50:415-19
    Dai J.Y.,Ran W.,Xing B.H.,et al.,Characterization of fulvic acid fractions obtained by sequential extractions with pH buffers,water,and ethanol from paddy soils.Geoderma,2006,135:284-295
    Six J.,Paustian K.,Elliott E.T.,et al.,Soil structure and organic matter.I.Distribution of aggregate-size classes and aggregate associated Carbon.Soil Sd.Soc.Am.J.2000,64:681-689
    Six J.,Elliott E.T.,Paustian K.,Aggregate and soil organic matter dynamics under conventional and no-tillage systems.Soil Sd.Soc.Am.J.1999a.63:1350-1358
    McConkey B.G.,Liang B.C.,Campbell C.A.,et al.,Crop rotation and tillage impact on carbon sequestration in Canadian prairie soils.Soil Tillage Res.2003,74:81-90
    Six J.,Elliott E.T.,Paustian K.,Soil structure and soil organic matter:Ⅱ.A normalized stability index and the effect of mineralogy.Soil Sci.Soc.Am.J.2000,64:1042-1049
    Bossuyt H.,Six J.,Hendrix P.F.,Aggregate-protected carbon in no-tillage and conventional tillage agroecosystems using carbon-14 labeled plant residue,Soil Sd.Soc.Am.J.2002,66:1965-1973
    Puget P.,Chenu C.,Balesdent J.,Total and young organic matter distributions in aggregates of silty cultivated soils.Ear.J.Soil Sci.1995,6:449-459
    Denef K.,Six J.,Bossuyt H.,et al.,Influence of dry-wet cycle on the interrelationship between aggregate,particulate organic matter,and microbial community dynamics.Soil Biol.Biochem.2001,3:1599-1611
    Yang X.M.,Kay B.D.,Rotation and tillage effects on soil organic carbon sequestration in a typic Hapludalf in Southern Ontario.Soil and Tillage Research,2001,59(3-4):107-114
    Beare M.H.,Hendrix P.F.,Coleman D.C.,Water-stable aggregates and organic matter fractions in conventional- and no-tillage soils.Soil Sci.Soc.Am.J.1994,58:777-786
    Tisdall J.M.,Oades J.M.,Organic matter and water stable aggregates in soils.J.Soil Sd.,1982,33:141-163
    Six J.,Elliott E.T.,Paustian K.,Soil microaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture.Soil Biol.Biochem.,1999b,32:2099-2103
    黄国勤,熊云明,钱海燕 等.稻田轮作系统的生态学分析.土壤学报,2006,43(1):69-78
    Chan K.Y.,Heenan D.P.,Microbial-induced soil aggregate stability under different crop rotations.Biol.,1999b
    West T.O.,Post W.M.,Soil organic carbon sequestration rates by tillage and crop rotation:a global data analysis.Soil Sd.Soc.Am.J.2002,66:1930-1946
    Lal R.,Kimble J.,Follett R.,Soil quality management for carbon sequestration.In:Soil Properties and Their Management for Carbon Sequestration,pp.1-8,Lal,R.,Kimble,J.,and Follet,R.,Eds.,USDA-NRCS,National Soil Survey Center,Lincoln,NE.1997
    Julien Sebastia,Jerome Labanowski,Isabelle Lamy.Changes in soil organic matter chemical properties after organic amendments.Chemosphere,2007,68:1245-1253
    Jarecki M.K.,Lal R.,Crop management for soil carbon sequestration.Crit.Rev.Plant Sci.2003,22:471-502
    Aoyama M.,Angers D.A.,N'dayegamiye A.,Bissonnette N.,Protected organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications.Can.J.Soil.Sd.1999,79:419-125
    Hernanz J.L.,Lopez R.,Navarrete L.,Sanchez-Giron V.,Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain.Soil Tillage Res.2002,66:129-141
    Plaza C.,Senesi N.,Brunetti G.,Mondelli D.,Evolution of the fulvic acid fractions during co-composting of olive oil mill wastewater sludge and tree cuttings.Bioresource Technology,2007,98:1964-1971
    Filho C.C.,Lourenco A.,Guimaraes M.D.F.,Fonseca I.C.B.,Aggregate stability under different soil management systems in a red Latosol in the state of Parana,Brazil.Soil Tillage Res.2002,65:45-51
    Whalen J.K.,Hu Q.C.,Liu A.G.,Compost applications increase water-stable aggregates in conventional and no-tillage systems.Soil Sd.Soc.Am.J.,2003,50:1842-1847
    Wright A.L.,Hons F.M.,Soil aggregation and carbon and nitrogen storage under soybean cropping sequences.Soil Sd.Soc.Am.J.2004,68:507-513
    潘根兴,李恋卿,张旭辉 等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2003,18(4):609-619
    彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展.土壤学报,2004,41(4):618-623
    Puget P.,Chenu C.,Balesdent J.,Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates.European Journal of Soil Science,2000,51:595-605
    Ding G.W.,Liu X.B.,Herbert S.,et al.,Effect of cover crop management on soil organic matter.Geoderma,2006,130:229-239
    Kimble L.R.,Stewart B.A.,World soils as a source or sink for radioactive gases.In:Soil Management and Greenhouse Effect,pp.1-7,Lal,R.,Kimble,J.,Lcvine,E.,and Steward,B.A.,Eds.CRC Press,Boca Raton,FL.1995
    Lal R.,Kimble J.,Follet R.,et al.The potential of US cropland to sequester carbon and mitigate the greenhouse effect.Ann Arbor Press,Chelsea,MI.1998
    Elizabeth A.W.,Henry P S.,Paul F.H.,Detection of ancient maize in lowland Maya soils using stable carbon isotopes:evidence from Caracol,Belize.Journal of Archaeological Science,2004,31:1039-1052
    Scheme D.S.,Terrestrial ecosystems and the carbon cycle.Global Change Biol,1995,1:77-91
    Kern J.S,Johnson M.G,Conservation tillage impacts on national soil and atmospheric carbon levels.Soil Science Society of America Journal,1993,57:200-210
    Paustian K.,Andren O.,Janzen H.R.,et al.,Agricultural soil as a C sink to offset CO_2 emissions.Soil Use Manage,1997a,13:230-244
    Collins H.P.,Elliott E.T.,Paustian L.,et al.,Soil carbon pools and fluxes in long-term corn belt agroeco -systems.Soil Biol.Biochem,2000,32:157-168
    Jastrow J.D.,Soil aggregates formation and the accrual of particulate and mineral-associated organic matter.Soil Biology and Biochemistry,1996,28:656-676
    Six L,Feller C,Denef K,et al.,Soil organic matter,biology and aggregation in temperate and tropical soil:Effect of no-tillage.Agronomie,2002,22:755-775
    Pinheiro E.F.,Pereira M.G.,Anjos L.H.,Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a red Latosol from Brazil.Soil tillage Research,2004,77:79-84
    Xiong Y.,Cheng J.F.,Soil colloid(No.2)Methods of soil colloid.Beijing:Science Press(In Chinese),1985
    Institute of Soil Science,Chinese Academy of Sciences.1978.Soil Physical Analysis(In Chinese).Shanghai:Shanghai Science and Technology Press
    李恋卿,潘根兴,龚伟 等.太湖地区几种水稻土的有机碳储存及其分布特性.科技通报,2000,16(6):421-427
    Beare M.H.,Cabrera M.L.,Hendrix P.F.,et al.,Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soils.Soil Science Society American Journal,1994,58:787-795
    高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究.中国农业科学,1994,27(6):41-49
    Castro Filho C.,Lourenco A.,Guimaraes M.F.,et al.,Aggregate stability under different soil management systems in a red latosol in the state of Parna,Brazil.Soil and Tillage Research,2002,65:45-51
    杨景成,韩兴国,黄建辉 等.土地利用变化对陆地生态系统碳储量的影响.应用生态学报,2003,14(8):1385-1390
    Kogel-Knabner I.,Lutzow M.V.,Guggenberger G.,Flessa H.,Marschner B.,Matzner E.,Ekschmitt K.,(Eds.),Mechanisms and regulation of organic matter stabilization in soils(Editorial),Geoderma,2005,128:1-2
    Havlin R.A.,Hackler J.L.,Claassen L.D.,et al.,Crop rotation and tillage effects on soil organic carbon and nitrogen.Soil Science Society American Journal,1990,5:448-452
    Huang H.L.,Zeng G.M.,Tang L.,et al.,Effect of biodelignification of rice straw on humificatiun and humus quality by Phanerochaete chrysosporium and Streptomyces badius.International Biodeterioration & Biodegradation,2008.in press.
    Puget P.,Lal R.,Izaurralde C.,et al.,Stock and distribution o total and corn-derived soil organic carbon in aggregate and primary particle fractions for different land use and soil management practices.Soil Science,2005,170(4):256-279
    Paustian K.,Collins H.P.,Paul E.A.,1997.Management controls on soil carbon.In Paul EA,Elliott ET,Paustian K,ColeCV.(Eds)"Soil Organic Matter in Temperate Agroccosystems:Long-Term Experiments in North America"CRC Press,Boca Raton,FL:15-50
    Lal R.,Follett R.F.,Kimble J.M.,et al.,Managing U.S.cropland to sequester carbon in soil.Soil Water Conser,1999,54:374-381
    Post W.M.,Kwon K.C.,Soil carbon sequestration and land-use change:processes and potential.Global Change Biology,2000,6:317-327
    Franzluebbers A.J.,Soil organic matter stratificationratio as an indicator of soil quality,Soil Tillage Research,2002,66:95-106
    Isabel Mirallesa,Raul Ortegab,Manuel Sanchez-Maranon.et al.,Assessment of biogeochemical trends in soil organic matter sequestration in Mediterranean calcimorphic mountain soils(Almeri'a,Southern Spain).Soil Biology and Biochemistry,2007,39:2459-2470
    潘根兴,李恋卿,张旭辉.土壤有机碳苦于全球变化研究的若干前沿问题--兼开展中国水稻土有机碳固定研究的建议.南京农业大学学报,2002,25(3):100-109
    Joseph L.,Pikul J.R.,Lynne C.B.,et al.,Crop yield and soil condition under ridge and chisel-plow tillage in the northernCorn Belt,USA.Soil and Tillage Research,2001,60:21-33
    Madari Beata,Pedro LOA Machado,Eleno Tones,et al.,No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil.Soil and Tillage Research,2005,80:185-200
    Alan L.W.,Frank M.H.,Soil carbon and nitrogen storage in aggregates from different tillage and crop regimes.Soil Science Society American Journal,2005,169:141-148
    高明,周保同,魏朝富 等.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究.应用生态报,2004,15(7):1177-1181
    王铁宇,颜丽,关连珠 等.长期定位监测黑土有机物质的变化.农业环境科学学报,2004,23(1):76-79
    U rey H.C.,The thermodynamic properties of isotopic substances.J Chem Soc,1947:562-581
    蔡德陵,张淑芳,张经.稳定碳、氮同位素在生态系统研究中的应用.青岛海洋大学学报,2002,32(2):287-295
    Park R.,Ep stein S.,Carbon iso toope fractionation during pho to synthesis.Geoch im Co smoch im Acta,1960,2:110-126
    Park R.,Ep stein S.,M etabo lic fractionation of ~(13)C and ~(12)C in plants.Plant Physio l,1961,36:133-138
    A belson P.H.,Hoering T.C.,Carbon isotope fractionation in formation of amino acids by photo synthetic organisms.Proc N at A cad SciU.S,1961,47:623-632
    Silverman S.R.,Investigations of petroleum origin and evolution mechanisms by carbon isotope studies.//H.Craig,M iller S.L.,Wasserburg G.J.,eds.Isotopic and Cosmic Chemistry[M]Am sterdam:North-Holland Publ Co,1964
    Slepetiene A.,Slepetys J.,Stares of humus in soil under various long-term tillage systems.Geoderma 2005,(127):207-215
    Sacker W.M.,Nakaparksin S.,Dalrymple D.,Carbon Isotope Effects in Methane Production by Thermal Cracking.[C]Third Intern Meet OrgGeochem,London:[s.n.],1966
    Sackett W.M.,The depositional history and isotopic organic carbon composition of marine sediments.Mar Geol,1964,2:173-185
    Sackett W.M.,Eckelmann W.R.,Benden M.L.,et al.,Temperature dependence of carbon isotope composition in marine plankton and sediments.Science,1965,148:235-237
    Williams P.M.,Gordon L.I.,Carbon-13:carbon-12 ratios in dissolved and particulate organic matter in the sea.Deep-Sea Research,1970,17:19-27
    Eadie B.J.,Jeffery L.M.,Sacker W.M.,Some observations on the stable carbon isotope composition of dissolved and particulate organic carbon on the marine environment.Geochim Cosmochim A cta,1978,42:1265-1269
    Erlenkeuser H.,Stable carbon isotope characteristics of organic sedimentary sourcematerials entering the estuarine zone.//Biogeochemistry of Estuarine Sediments.[M]Melreux:Proc UN ESCOo SCOR Work shop,1976,199-206
    Spiker E.C.,Stable carbon isotopes as a source indicator of organic carbon in estuaries.Estuaries,1981,4(3):252
    Smith B.N.,Epstein S.,Two categories of ~(13)C/~(12)C ratios for higher plants.Plant Physiology,1971,47:380-384
    Meyers P.A.,Preservation of elmental and isotop ic source identification of sedimentary organic matter.Chemical Geology,1994,114:289-302
    朴河春,刘启明,余簦利 等.用天然~(13)C丰度法评估贵州茂兰喀斯特森林区玉米地土壤中有机碳的来源.生态学报,2001,21(3):434-439
    刘启明,王世杰,朴河春 等.稳定碳同位素示踪农林生态转换系统中土壤有机质的含量变化.环境科学,2002,23(3):75-78
    刘启明,王世杰,朴河春 等.稳定碳同位素示踪农林生态转换系统中土壤有机质的迁移和赋存规律.环境科学,2002,23(4):89-92
    张晋京,张大军,窦森 等.田间定位施肥对土壤腐殖质组分数量与特性的影响.土壤通报,2006,37(6):1243-1246
    窦森,张晋京,Lichtfouse E.,等.用δ~(13)C方法研究玉米秸秆分解期间土壤有机质数量动态变化.土壤学报,2003,40(3):328-334
    陈庆强,周菊珍,孟诩 等.长江口盐沼滩面演化的有机碳累积效应.生态学报,2007,17(5):614-623
    陈庆强,孟诩,周菊珍 等.长江口盐沼滩面发育对有机碳深度分布的制约.地理科学,2007,22(1):26-32
    陈庆强,周菊珍,孟诩 等.长江口盐沼土壤有机质更新特征的滩面趋势.地理学报,2007,62(1):72-80
    沈承德,易惟熙,孙彦敏 等.鼎湖山森林土壤~(14)C表观年龄及δ~(13)C分布特征.第四纪研究,2000,20(4):335-344
    Balesdent J,Girardin C,Mariotti A.Site-related δ~(13)C of tree leaves and soil organic matter in a temperate forest.Ecology,1993,74:1713-1721
    陈庆强,沈承德,孙彦敏 等.鼎湖山土壤有机质深度分布的剖面演化机制.土壤学报,2005,42(1):1-8
    朱书法,刘丛强,陶发祥 等.喀斯特地区土壤有机质的稳定碳同位素地球化学特征.地球与环境,2006,34(3):51-59
    Gerzabek M.H.,Haberhauer G.,Kirchmann H.,Soil organic matter pools and carbon- 13 natural abundances in particle- size fractions of a longterm agricultural field experiment receiving organic amendments.Soil Science Society American Journal,2001,65:352-358
    窦森,Lichtfouse E.,Mariotti A.,C_3和C_4植物条件下土壤HA的水解、热解河GC-MS、δ~(15)N研究.土壤通报,1995,26(6):271-273
    Doane T.A.,Devevre O.C.,Horwath W.R.,Short-term soil carbon dynamics of humic fractions in low-input and organic cropping systcms.Geoderma,2003,114:319-331
    张晋京,窦森,张大军.长期施肥对土壤有机质δ~(13)C值影响的初步研究.农业环境科学学报,2006,25(2):382-387
    朱书法,刘丛强,陶发祥.δ~(13)C方法在土壤有机质研究中的应用.土壤学报,2005,42(3):495-503
    Boutton T.W.,Atcher S.R.,Midwood A.J.,δ~(13)C values of soil organic carbon their use in documenting vegetation change in a subtropical savanna ecosystem.Genderma,1998,82:5-41
    李云峰.土壤和沉积物胡敏素的现状研究.土壤通报,1999,30(1):17-20
    Preston C.M.,Newmen R.H.,Demonstration of spatial heterogeneity in the organic matter of de-ashed humin samples by Solid-state ~(13)C CP-MAS NMR.Can.J soil Sci,1992,72:13-19
    Rice J.A.,Humin.Soil Science,2001,11:848-857
    Hatcher P.G.,VanderHart D.L.,Earl W.L.,Use of solid-state ~(13)C NMR in structural studies of humic acids and humin from Holocene sediments.Org.Geochem.1980,2:87-93
    青长乐,牟树森 编著 地球化学原理.北京:中国农业出版社,2001:191-214
    张晋京,窦森.土壤有机质研究中的δ~(13)℃方法.土壤通报,1999,30(5):235-238
    Bird M.I.,Kracht O.,Derrien D.,et al.,The effect of soil texture and roots on the carbon isotope composition of soil organic carbon.Australian Journal of Soil Research,2003,41:77-94
    Chen Q.Q.,Shen C.D.,Sun Y.M.,et al.,Spatial and temporal distribution of carbon isotopes in soil organic matter at the Dinghushan Biosphere Reserve,South China.Plant and Soil,2005,273:115-128
    陈庆强,沈承德,彭少麟 等.华南亚热带山地土壤有机质更新特征及其影响因子.生态学报,2002,22(9):1446-1454
    Balesdent J.,Girardin C.,Mariotti A.,Site-related ~(13)C of tree leaves and soil organic ma tter in a temperate forest.Ecology,1993,74:1713-1721
    金维续.有机肥料研究四十年.土壤肥料,1989,5:35-40
    俞仁培.农牧结合,培育肥土--黄淮海平原农业持续发展的基础.土壤通报,1998,29(3):97-98
    熊田恭一(李庆荣,孙铁男,等译).土壤有机质化学.北京:科学出版社,1984:2-5
    Zibilske L.M.,Materon L.A.,Biochemical properties of decomposing cotton and corn stem and root residues.Soil Science Society of America and Journal,2005,69:378-386
    Ferra G.,Loffredo E.,Senesi N.,Anticlastogenic,antitoxic and sorption effects of humic substances on the mutagen maleic hydrazide tested in leguminous plants.European Journal of Soil Science,2004,55:449-458
    吴景贵,王明辉,姜亦梅,吴江.施用玉米植株残体对土壤富里酸组成、结构及其变化的影响.土壤学报,2006,43(1):133-141
    刘建新,王鑫,杨建霞.覆草对果园土壤腐殖质组成和生物学特性的影响.水土保持学报,2005,19(4):93-95
    高春丽,刘小虎,韩晓日 等.长期定位不同施肥处理的棕壤腐殖酸性质的研究.土壤通报,2006,37(1):73-75
    曹志洪,林先贵,杨林章 等.论“稻田圈”在保护城乡生态环境中的功能Ⅱ.稻田土壤氮素养分的累积、迁移及其生态环境意义.土壤学报,2006,43(2):256-260
    Shao J.A.,Huang X.X.,Gao M.,et al.,Response of CH_4 emission of paddy field to land Management practices at microcosmic cultivation scale in China.Journal of Environmental Sciences,2005,17(4):691-698
    Huang X.X.,Gao M.,Wei C.F,et al.,Tillage effect on organic carbon in a purple paddy soil.Pedosphere,2006,16(5):660-667
    Wei C.F.,Gao M.,Shao J.A.,et al.,Soil aggregate and its response to land management practices.China Particuology,2006,4(5):211-219
    高明,张磊,魏朝富,谢德体.稻田长期垄作免耕对水稻产量及土壤肥力的影响研究.植物营养与肥料学报,2004:343-348
    Kuwatsuka S.,Comparision of two methods of preparation of hulic and fulvic acids.IHSS method and NAGOYA method.Soil Sci.Plant Nutri.1992,38(1):23-30
    Schnitzer M.,Organic matter characterization.In:Pages A L.R H.Miller& D R.Keeney eds.Methods of soil analysis.Part 2.Chemical andmicrobiologicalproperties.Agronomy.No.9,2nd.Wisconson:Madision.1982:581-593
    Kumada K.,Sato O.,Obsumi Y.,et al.,Humus composition of mountain soils in central Japan with special reference to the distribution of P type humic acid.Soil Sci.Plant Nutri.,1967,13(5):151-158
    Marta Fuentes,Roberto Baigorri,Gustavo Gonzalez-Gaitano,et al.,The complementary use of ~1H NMR,~(13)C NMR,FTIR and size exclusion chromatography to investigate the principal structural changes associated with composting of organic materials with diverse origin.Organic Geochemistry,2007,(38):2012-2023.
    严昶升.土壤肥力研究方法.北京:农业出版社,1988
    于淑芬,杨力,张玉兰 等.长期施肥对土壤腐殖质组成的影响.土壤通报,2002,33(3):165-167
    赖庆旺,黄庆海,李茶苟 等.无机肥连施对红壤性水稻土有机质消长的影响.土壤肥料,1991,1:4-8
    窦森,华土英.使用有机肥料对胡敏素的影响.土壤学报,1997,34(3):225-230
    刘育红,裴海昆.高寒草甸土壤腐殖质组成及性质的研究.青海畜牧兽医杂志,2000,30(3):12-13
    熊毅,李庆逵.中国土壤.科学出版社,1987:394-397
    Orlov D.S.,Debatable problems of modern soil chemistry.Eurasian Soil Science,2001,34:336-341
    窦森,陈恩凤,须湘成,张继宏.施用有机肥料对土壤胡敏酸结构特征的影响-胡敏酸的光学性质.土壤学报,1995,(1):41-49
    彭福泉.我国几种土壤中腐殖质性质的研究.土壤学报,1985,22(1):64-74
    Kukkonen J.Effects of lignin and chlorolignin in pulp mill effluents on the binding and bioavailability of hydrophoic organic pollutions.Water Research,1992,26:1523-1532
    Chen Y.,Sensi N.,Schnitzer M.,Information prodvided on humic substances by E_4/E_6 ratios.Soil Science Society of America Jounal,1977,41:352-358
    吴景贵,席时权,姜岩.红外光谱在土壤有机质研究中的应用.光谱学与光谱分析,1998,18(1):52-57
    蔡燕飞,章家恩,张杨珠 等.稻作制度对红壤性水稻土有机质特征的影响.土壤,2006,38(4):396-399
    谢德体,陈绍兰 著.水田自然免耕的理论与技术.重庆:重庆出版社,2002:65-168
    Watanable A.,Kuwatsuka S.,Soil Sci.Plant Nutr.,1992,38(1):31
    吴景贵,姜岩.水田土壤有机培肥研究的现状及问题探讨.土壤通报,1998,29(1):17-20
    吴景贵,吕岩,王明辉,姜亦梅.有机肥腐解过程的红外光谱研究.植物营养与肥料学报,2004,10(3):259-266
    张夫道.长期施肥条件下土壤养分的动态和平衡:Ⅰ对土壤腐殖质积累及其品质.植物营养与肥料学报,1995,1(3):10-21
    张晋京,窦森.玉米秸秆分解期间胡敏酸、富里酸动态变化的研究.土壤通报,2005,36(1):134-136
    窦森,Mari E L.土壤胡敏酸的水解和分组方法.土壤通报,1998,29(5):206-208
    来航线,程丽娟,王忠科.几种微生物对土壤腐殖质形成的作用.西北农业大学学报,1997,25(6):79-82
    Schnitzer M.,Schuppli P.,Can.J.Soil Sci.,1989,69:253
    Tans P.P.,Fung I.Y.,Takahashi T.,Observational constraints on the global atmospheric budget.Science,1990,247:1431-1438
    Jenkinson D.S.,A dams D.E.,Wild A.,Model estimates of CO_2 emissions from so il in response to global warming.Nature,1991,351:304-306
    刘维屏.季瑾.农药在土壤-水环境中归宿的主要支配因素-吸附和脱附.中国环境科学,1996,16(1):25-30
    党志,黄伟林,肖保华.环境有机地球化学:有机污染物-土壤/沉积物吸附作用研究的回顾.岩石矿物地球化学通报,1999,18(3):194-200
    Alvarez-Puebla R.A.,Valenzuela-Calahorro C.,Garrido J.J.,Theoretical study on fulvic acid structure,conformation and aggregation A molecular modelling approach.Science of the Total Environment,2006,3(58):243-254
    肖彦春,李凯,窦森.黑土底土加入大比例玉米秸秆后胡敏素组分的变化.水土保持学报,2007,21(3):61-64,76
    吴景贵,王明辉,姜亦梅,徐岩.玉米秸秆还田后土壤胡敏酸变化的谱学研究.中国农业科学,2005,38(7):1394-1400
    梁重山,党志,刘丛强.胡敏酸的结构特征及其吸附行为.分析化学,2006,34(3):288-292
    唐晓红,邵景安,黄学夏,魏朝富,谢德体,潘根兴.垄作免耕下紫色水稻土有机碳的分布特征.土壤学报,2007,(2):235-243
    Schnitzer M.,Gupta U.C.,Determination of acidity in soil organic matter.Soil Sci.Soc.Amer.Proc.1965,29:274-277
    Fritz J.S.,Yamamura S.S.,Broacford E.C.,Determination of carbonyl compounds.Anal.Chem.1959,31:260-263
    Grathwohl P.,Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons:implications on Koc correlations.Environ.Sci.Technol.1990,24:1687-1693
    王旭东,耿会立,李立敏,关文玲.有机物料腐解过程胡敏酸与Fe~(2+)的络合特征.土壤通报,2003,34(2):90-92
    Kile D.E.,Wershaw R.L.,Chiou C.T.,Correlation of soil and sedimentorganic matter polarity to aqueous sorption of nonionic compounds.Environ.Sci.Technol.1999,33:2053-2056
    Singhal R.M.,Soni S.,Proc.Indian Natn.Sci.Acad.,1988,54A(2):320
    于天仁 等主编.土壤化学分析.北京:科学出版社,1988,56
    Singhal R.M.,Sharma S.D.J.,Indian Soc.Soil.Sci.,1982,31:182
    Ellerbrock R.H.,Hohn A.,Gerke H.H.,Characterization of soil organic matter from a sandy soil in relation to management practice using FT-IR spectroscopy.Plant and Soil,1999,213:55-61
    Gerasimowicz W.V.,Byler D.M.,Soil Sci.,1985,139:270
    Schnizer M.,Schuppli P.,Soil Sci.Soc,Am.J.,1989,53:1418-1424
    Schnizer M.,Preston C.M.,Analysis of humic acids by solution and solid-state carbon-13 nuclear magnetic resonance.Soil Sci.SOC.AM.J.,1986,50:326-331
    Inber Y.,Chen Y.,Hadar Y.,Humic substances formed during the composting of organic matter.Soil Science Scienty of America Journal,1990,54:1316-1323
    Wershaw R.L.,1985.Application of nuclear magnetic resonance spectroscopy for determination functionality in humic substances,In:Aiken G.R.,McKnight D.M.,Wershaw R.L.,MacCarthy P.(Eds.),Humic Substances in Soil,Sediment,and Water.Wiley,New York,pp.561-582
    梁重山,党志,刘丛强.胡敏酸的结构特征及其吸附行为.分析化学研究报告,2006,34(3):288-292
    窦森,华士英.土壤胡敏酸的~(13)C核磁共振研究.高等学校化学学报,1990,11(7):768-770
    梁重山,党志.核磁共振波谱法在腐殖质研究中的应用.农业环境保护,2001,20(4):277-279
    Schnitzer M.,Preston C.M.,Analysis of humic acids by solution and solid-state carbon-13 nuclear magnetic resonance.Soil Sci.SOC.A.M.J.,1986,50:326-331
    Fernandes E.C.M.,Motavalli P.P.,Castilla C.,Management control of soil organic matter dynamics in tropical land-use systems.Geoderma,1997,79:49-67
    Jenkinson D.S.,Soil organic matter and its dynamics.In:Wild,A.ed.Russe's soil conditions and plant growth.London:Longman Scientific and Techniical.1998:564-607
    Gressel N.,McColl J.G,Powers R.F.,McGrath A.E.,Spectroscopy of aquous extracts of forest litter.Ⅱ.Effects of management pracices.Soil Science Scienty of America Journal,1995b,59:1723-1731
    方肇伦 主编.仪器分析在土壤学和生物学中的应用:红外光谱在土壤学中的应用.科学出版社,1983:99-108
    Wang Z:D.,Pant B.C.,Langford C.H.,Anal.Chimica Acta.,1990,232:43-49
    Inbar Y.,Chen Y.,Hadar Y.,Soil Sci.,1991,(4):272-281
    吴景贵,江岩.玉米叶片残体腐解过程的傅立叶变换红外光谱研究.分析化学,1997,25(12):1395-1400
    吴景贵,王明辉,姜亦梅 等.施用玉米植株残体对土壤富里酸组成、结构及其变化的影响.土壤学报,2005,43(1):133-140
    Marquez C.O.,Garcia V.J.,Cambardella C.A.,et al.,Aggregate-size Stability Distribution and soil Stability.Soil Science Society of America Journal,2004,68(3):725-736
    Li X.G.,Li F.M.,Zed R.,et al.,Cultivation effects on temporal changes of organic carbon and aggregate stability in desert soil of Hexi Corridor region in China.Soil and Tillage Research,2006,91:22-29
    Diego C.,Claire C.,Yves L.B.,Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil.Soil Biology and Biochemistry,2006,38:2053-2062
    Patra A.K.,Le Roux X.,Grayston S.J.,et al.,Unraveling the effects of management regime and plant species on soil organic carbon and microbial phospholipids fatty acid profiles in grassland soils.Bioresource Technology,2008,99:3545-3551
    李江涛,张斌,彭新华 等.施肥对红壤性水稻土颗粒有机物形成与团聚体稳定性的影响.土壤学报,2004,41(6):912-917
    彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响.生态学报,2003,23(10):2177-2183
    魏朝富,谢德体,陈世正.紫色水稻土有机无机复合与土粒团聚的关系.土壤学报,1996,33(1):70-77
    Six J.,Elliott E.T,Paustian K.,Doran J.,Aggregation and soil organic matter accumulation in cultivated and native grassland soils.Soil Science Society of America Journal,1998,62:1367-1377
    Cambardella C.A.,Elliott E.T.,Particulate soil organic matter changes across a grassland cultivation sequence.Soil Sci.Soc.Am.J.,1992,56:777-783
    Caron J.,Espindola C.R.,Angers D.A.,Soil structural stability during rapid wetting:Influence of land use on some aggregate properties.Soil Sci.Soc.Am.J.,1996,60:901-908
    Horn R.,Taubner H.,Wuttke M.,et al.,Soil physical properties related to soil structure.Soil Till.Res.,1994,30:187-216
    Wallis M.G.,Home D.J.,Soil water repellency.Adv.Soil Sci.,1992:92-146
    Capriel P.,Beck T.,Halter P.,Relationship between soil aliphatic fractions extracted with supercritical hexane,soil microbial biomass and soil aggregate stability.Soil Sci.Soc.Am.J.,1990,54:415-420
    Hallett P.D.,Young I.M.,Changes to water repellence of soil aggregates caused by Substrate-induced microbial activity.Euro.J.Soil Sci.,1999,50:35-40
    杨林章,徐琪 主编.土壤生态系统.科学出版社,2005:25-73
    黄雪夏.紫色水稻土有机碳固定及碳汇效应.重庆:西南大学.2005:50-79
    史吉平,张夫道,林葆.长期定位施肥对土壤腐殖质理化性质的影响.中国农业科学,2002,35(2):174-180
    Plaza C.,Senesi N.,Polo A.,Brunetti G.,Garcia-Gil J.C.,D'Orazio V.,Soil fulvic acid properties as a means to assess the use of pig slurry amendment.Soil & Tillage Research 2003(74):179-190
    Kumada K.,Sato O.,Ohsumi Y.,et al.,Humus composition of maintain soil in central Japan with special reference to the distribution of P type humic acid.Soil Science and Plant Nutrition,1967,13:151-158
    张晋京,窦森.灼烧土中玉米秸秆分解期间胡敏酸、富里酸动态变化的研究.吉林农业大学学报,2002,24(3):60-64
    窦森,姜岩.土壤施用有机物料后重组有机质变化规律的探讨Ⅱ.腐殖质组成和胡敏酸光学性质研究.土壤学报,1988,25(3):252-261
    窦森,于水强,张晋京.不同CO_2浓度对玉米秸秆分解期间土壤腐殖质形成的影响.土壤学报,2007,44(3):458-466
    张夫道,Fokin A.D.,作物秸秆碳在土壤中分解和转化规律的研究.植物营养与肥料学报,1994(1):27-38
    窦森.土壤有机质.见:李学垣 主编.土壤化学.北京:高等教育出版社,2001:1-56
    Stevenson F.J.,Humus Chemistry:Genesis,Composition,Reactions.New York:John Wiley and Sons,1982
    Yonebayashi K.,Pechaypisit J.,Vijarnson P.,et al.,Soil Sci.Plant Nutr.,1994,40(3):435
    吴景贵,景凤英,汪冬梅 等.玉米秸秆堆腐过程中形成富里酸的结构分析.分析化学,1999,27(8):933-937
    Bellamy L.J.,1975.The Infrared Spectra of Complex Molecules.Chapman & Hall,London;MacCarthy P,Rice J A.1985.
    Spectroscopic methods(other than NMR)for determining functionality in humic substances.In:Aiken,J.R.,McKnight,D.M.,Wershaw,R.L.,MacCarthy,P.(Eds.),Humic Substances in Soil,Sedimentand Water.Geochemistry,Isolation,and Characterization.Wiley/Interscience,New York,pp.527-559
    张晋京,窦森.灼烧土中玉米秸秆分解期间胡敏酸、富里酸动态变化的研究.吉林农业大学学报,2002,24(3):60-64
    Kim J,J.,Shin YO.,Han'Guk T' yang Piryo Hakhoechi,1987,20:251
    Burdon J.,Are the traditional concepts of the structures of humic substances realistic? Soil Science,2001,166(11):752-769
    Flaig W.,Bentelspecher H.,Rietz E.I.N.,Gieseking E.ed.Soil Components,Vol.1,New York:Springer,1975:1-212
    Chen Z.,Pawluk S.,Geoderma,1995,650-4):173
    Waddell J.T.,Weil R.R.,Effects of fertilizer placement on solute leaching under ridge tillage and no tillage.Soil & Tillage Research,2006,90:194-204
    Martin D.,Srivastava P.C.,Ghosh D.,et al.,Characteristics of humic substances in cultivated and natural forest soils of Sikkim.Geoderma,1998,84:345-362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700