用户名: 密码: 验证码:
中亚热带丘陵红壤区主要园林植物叶片结构与营养特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶属性,如叶重比和C、N、P含量及化学计量比直接关系到植物的C同化、养分利用和能量平衡等各种生态生理功能,与植物的生态适应关系密切,对于指导城市园林的植物选择、群落配置和生态管理具有重要的意义。本研究以位于南昌市郊中亚热带丘陵红壤区的南昌大学前湖校区16种主要园林植物为研究对象,动态监测土壤养分供应能力、叶面积、叶质量、叶C、N、P含量,凋落叶养分含量,并换算出叶重比、植物养分再吸收效率等指标,分别以植物种类、植物功能群、群落结构类型、校园功能区等为划分标准,进行数据统计和对比研究。主要结论如下:
     (1)不同植物种类和不同植物功能群的土壤有机C、全N、全P含量差异均不显著,说明本研究选取植物的土壤养分含量的基本状况比较一致。而土壤铵态N、硝态N和矿质N既有明显的季节波动规律,还受植物种类、植物功能群、群落结构类型、校园功能区的影响,土壤供N能力是土壤与植物相互作用的结果。
     (2)不同植物种类、植物功能群和群落结构类型之间叶重比差异显著(P<0.05,以下同),具体表现为:桂花≥广玉兰≥香樟=含笑≥紫荆=杜鹃=桃树=柳树=鹅掌楸;常绿阔叶乔木>灌木=落叶阔叶乔木;乔草型≥灌草型=乔灌型≥纯灌型=纯乔型;而位于校园不同功能区植物的平均叶重比差异不显著。
     (3)不同植物种类和植物功能群叶全N含量的年均值差异显著,而不同群落结构类型和校园功能区植物叶全N含量的年均值差异不显著;不同植物种类、植物功能群和群落结构类型叶全P含量的年均值差异均显著,而不同校园功能区叶全P含量的年均值差异不显著;叶C/N表现为不同植物种类、植物功能群、群落结构类型和校园功能区均存在显著差异,而叶N/P仅表现为不同植物种类和不同植物功能群之间的差异,而不同群落结构类型和不同校园功能区之间显著均不差异。推断叶养分受多重因子,如植物遗传性状、土壤养分供应、外界环境因子等的调控,且影响叶N和P含量的主导因子有别。
     (4)养分再吸收力主要受植物种类、植物功能群、群落结构类型的影响,而与校园功能区无关;养分再吸收效率主要受植物种类和植物功能群的影响,而与群落结构类型和校园功能区无关。可见,养分再吸收主要受植物本身的属性决定。
     (5)植物叶重比与春、夏、秋、冬叶全N含量及年均值、N再吸收力之间均呈负相关,与N再吸收效率不相关;与春、夏季叶全P含量及年均值、P再吸收效率之间均负相关,与秋、冬季叶全P含量、P再吸收力不相关。这表明N限制植物的生长要强于P,且植物对P的限制性具有较强的适应能力。
     综合来看,叶结构和营养特性主要是由植物本身的遗传性状所决定的,且叶重比、叶N、P营养特性的生态适应机制表现为不同步性。继续深入地开展相关的基础研究,可以为园林植物的选择、群落配置、生态管理提供可靠的依据。
Leaf traits including leaf mass per area (LMA), C, N, P concentrations and their ratios are directly related with many ecological and physical functions, such as plant' C assimilation, nutrient use and energy balance. Additionally, leaf traits are closely related with plant ecological adaption, which is very useful to plant selection, community allocation, and ecological management in urban garden. We selected 16 garden plants to study their soil nutrients, leaf area, leaf mass, leaf C, N, and P concentrations, litterfall nutrient concentrations in Qianhu campus of Nanchang university, which located at suburban of Nanchang city, mid-subtropical hilly red soil region. Therefore, we compared the differences in LMA, leaf nutrient concentrations, plant nutrient resorption among different groups based on plant species, functional grouping, community structure type and campus functional area. Major conclusions as follows:
     (1) Soil organic C, total N and total P were not significant differences among either among 16 species or among six functional groupings, which showed similar soil nutrient status for all selected plants. However, the concentration of soil NH4+-N, NO3--N, mineral N were influcenced by season, plant species, functional grouping, community type and campus functional area. Thus, soil N supply was interacted by soil and plant.
     (2) Significant differences in LMA (P<0.05) were found among nine species (Osmanthus fragrans≥Magnolia grandiflora≥Cinnamomum camphora=Michelia figo≥Cercis chinensis= Rhododendron simsii= Prunus persica= Salix babylonica= Liriodendron chinese), three functional grouping (Evergreen broadleaved trees> Shrubs= Hardwoods) and five community types (Tree+herb> Shrub+herb= Tree+shrub> Shrub=Tree), while there was not significant differences among five campus functional areas.
     (3) The average concentrations of leaf N were significant differences among 16 species and six functional groupings, while no significant differences among five community structure types and five campus functional areas. The average concentrations of leaf P were significant differences among 16 species, six functional groupings and five community types, while no significant differences among five campus functional areas. The average values of leaf C/N were significant differences among 16 species, six functional groupings, five community structure types and five campus functional areas. The average values of leaf N/P were significant differences among 16 species and six functional groupings, while no significant differences among five community types and five campus functional areas. Therefore, leaf nutrient traits were influenced by multiple factors, such as plant genetic characteristics, soil nutrient conditions and ecological factors. Additionally, leaf N and P concentrations would be controlled by different limiting factors.
     (4) Nutrient resorption proficiencies were influenced by plant species, functional grouping, community structure type, and not related with campus functional area. Nutrient resporption efficiencies were influenced by plant species, functional grouping and campus functional area, and not related with community structure type. Thus, nutrient resorption depended on plant traits themselves.
     (5) LMA was negative related with leaf N concentrations in spring, summer, autumn, winter and average values, plant N resorption proficiency, leaf p concentrations in spring, summer and average values across four season, plant resorption efficiency, while not related with plant N resorption efficiency, leaf P concentrations in autumn and winter, plant P resorption proficiency. Therefore, we deduced that N was more important limiting factor to plant growth than P, and plants were stronger adaption ability to P than to N.
     In conclusion, leaf structure and nutrient traits depended on plant genetic characteristics, and the plant mechanisms in ecological adaption to LMA, N and P traits would be asynchronous across their evolution history. We suggested that further basic research focused on leaf traits would provide reliable theories for plant selection, community allocation and ecological management in urban garden construction.
引文
[1]王竞红.园林植物景观评价体系的研究[D].东北林业大学学位论文,2008.
    [2]余明泉.城乡梯度森林土壤氮素转化与供应的变异性[D].江西农业大学学位论文,2009.
    [3]汪冬梅.中国城市化问题研究[D].山东农业大学学位论文,2003.
    [4]罗鹏辉.建设生态型园林营造人工植物群落[J].福建热作科技,2008,33(2):32-34
    [5]刘振威,孙丽,马杰,等.校园内不同绿化树种片林生态效应研究[J].安徽农业科学,2005,33(5):822-823.
    [6]陈杰,檀满枝,陈晶中,等.严重威胁可持续发展的土壤退化问题[J].地球科学进展,2002,17(5):721-728.
    [7]宋永昌.城市森林研究中的几个问题[J].中国城市林业,2004,2(1):4-9.
    [8]张庆费.城市绿地系统生物多样性保护的策略探讨[J].城市环境与城市生态,1999,12(3):36-38.
    [9]王浙浦.生态园林—二十一世纪城市园林的理论基础[J].中国园林,1999,3:35-36.
    [10]杨苛.人工湿地植物的筛选及试验研究[D].广西大学学位论文,2007.
    [11]金卫红,付融冰,顾国维.人工湿地中植物生长特性及其对TN和TP的吸收[J].环境科学研究,2007,20(3):75-80.
    [12]王蕾,王志,刘连友,等.城市园林植物生态功能及其评价与优化研究进展[J]环境污染与防治,2006,28(1):51-54.
    [13]宋晓蕾,杨红玉,曾黎琼,等.植物遮荫效应的研究进展[J].北方园艺,2009,5:129-133.
    [14]邱乾栋,吕晓贞,臧德奎,等.植物抗寒生理研究进展[J].山东农业科学,2009,8:53-57.
    [15]胡田田,康绍忠.植物淹水胁迫响应的研究进展[J].福建农林大学学报,2005,34(1):18-24.
    [16]赵彦坤,张文胜,王幼宁,等.高pH对植物生长发育的影响及其分子生物学研究进展[J].中国生态农业学报,2008,16(3):783-787.
    [17]教忠意,王保松,隋德宗,等.分子标记在园林植物选择育种中的应用与展望[J].北华大学学报,2008,9(2):165-169.
    [18]季孔庶.园林植物高新技术育种研究综述和展望[J].分子植物育种,2004,2(2):295-300.
    [19]邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述[J].应用生态学报,2000,11(5):785-790.
    [20]陈伏生,胡小飞,葛刚.城市地被植物麦冬叶氮磷化学计量比[J].草业学报,2007,16(4):47-54.
    [21]赵琼,曾德慧.林木生长氮磷限制的诊断方法研究进展[J].生态学杂志,2009,28(1):122-128.
    [22]李菊梅,王朝辉,李生秀.有机质,全氮和可矿化氮在反映土壤供氮能力方面的意义[J].土壤学报,2003,40(2):232-238.
    [23]王凯博,陈美玲,秦娟,等.子午岭植被自然演替中植物多样性变化及其与土壤理化性质的关系[J].西北植物学报,2007,27(10):2089-2096.
    [24]彭彬霞,韩锡君,陈军,等.七种林分凋落物的养分季节性变化研究[J].广东农业科学,2009,10:97-99.
    [25]王希华,黄建军,闫恩荣.天童国家森林公园若干树种叶水平上养分利用效率的研究[J].生态学杂志,2004,23(4):13-16.
    [26]刘金环,曾德慧.科尔沁沙地东南部地区主要植物叶性状及其相互关系[J].生态学杂志,2006,25(8):921-925.
    [27]严昌荣,韩兴国,陈灵芝.北京山区落叶阔叶林优势种叶特点及其生理生态特性[J].生态学报,2000,20(1):53-60.
    [28]程栋梁,林娜.福州市常见植物比叶面积研究[J].安徽农业科学,2009,37(31):15131-15133,15136.
    [29]宝乐,刘艳红.东灵山地区不同森林群落叶功能性状比较[J].生态学报,2009,29(7):3692-3703.
    [30]祁建,马克明,张育新.北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较[J].生态学报,2008,28(1):122-128.
    [31]宝乐.东灵山地区主要森林群落及其优势种叶功能性状比较与分析[D].北京林业大学学位论文,2009.
    [32]孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能[J].植物生态学报,2007,31(1):150-165.
    [33]Gamier E, Shipley B, Roumet C, Laurent G. A standardized protocol for the determination of specific leaf area and leaf dry matter content[J]. Functional Ecology,2001,15:688-695.
    [34]李玉霖,崔建垣,苏永中.不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J].生态学报,2005,25(2):304-311.
    [35]韦兰英,上官周平.黄土高原不同退耕年限坡地植物比叶面积与养分含量的关系[J].生态学报,2008,28(6):2526-2535.
    [36]吴晓成,张秋良,臧润国.额尔齐斯河天然杨树林叶面积指数及比叶面积的研究[J].西北林学院学报,2009,24(4):10-15.
    [37]程栋梁,林娜.福州市常见植物比叶面积研究[J].安徽农业科学,2009,37(31):15131-15133,15136.
    [38]Cornelissen JHC, Lavorel S, Gamier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003,51:335-380.
    [39]Dijkstra P, Lambers H. Plant analysis of specific leaf area and photosynthesis of two inbred lines of Plantago major differing in relative growth rate[J]. New phytologist,1989,113: 283-290.
    [40]Ellsworth DS, Reich PB. Canopy structure and vertical patterns of photosynthesis and related leaf rtaits in a deciduous forest[J]. Oecologia,1993,96:169-178.
    [41]Wright J, Westoby M, Ackerly DD, et al. The worldwide leaf economics spectrum[J]. Nature,2004,428:821-827.
    [42]任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶氮和磷的化学计量学特征研究[J].环境科学,2007.28(12):2665-2672.
    [43]杨成,刘丛强,宋照亮,等.贵州喀斯特山区植物营养元素含量特征[J].生态环境,2007,16(2):503-508.
    [44]Koerselman W, Meuleman AFM. The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology,1996,33:1441-1450.
    [45]McGroddy ME, Daufresne T, Hedin LO. Scaling of C:N:P stoichiometry in forests worldwide:implications of terrestrial Redfield-type ratios[J]. Ecology,2004,85: 2390-2401.
    [46]Tessier JT, Raynal DJ. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Application Ecology,2003,40:523-534.
    [47]李俊清,周晓峰.东北山区主要造林树种适生立地条件研究[J].东北林业大学学报,1991,S1:5-12.
    [48]黄建军,王希华.浙江天童32种常绿阔叶树叶的营养及结构特征[J].华东师范大学学报(自然科学版),2003,1:92-97.
    .[49] Hessen DO, Agren GI, Anderson TR, et al. Carbon sequestration in ecosystems:the role of stoichiometry[J]. Ecology,2004,85:1179-1192.
    [50]Aerts R, Chapin III FS. The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns[J]. Advances in Ecological Research 2000,30:1-67.
    [51]Kazda M, Salzer J, Schmid I, et al. Importance of mineral nutrition for photosynthesis and growth of Quercus petraea, Fagus sylvatica and Acer pseudoplatanus planted under Norway spruce canopy[J]. Plant and Soil,2004,264:25-34.
    [52]Poorter H, Bergkotte M. Chemical composition of 24 wild species differing in relative growth rate[J]. Plant, Cell, Environment,1992,15:221-229.
    [53]Peterson AG, et al. Reconciling the apparent difference between mass-and area-based expressions of the photosynthesis-nitrogen relationship[J]. Oecologia,1999,118:144-150.
    [54]Thompson WA, et al. Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rainforest trees. Ⅱ. Leaf gas exchange and component processes of photosynthesis[J]. Australian Journal of Plant Physiology,1992,19:19-42.
    [55]Leigh RA and Storey R. Differential distribution of nutrients between the epidermis and mesophyll of barley leaves:an X-ray microanalytical study[J]. Journal of experimental botany,1991,42:24-25.
    [56]Vitousek PM, Farrington H. Nutrient limitation and soil development:experimental test of a biogeochemical theory[J]. Biogeochemistry,1997,37:63-75.
    [57]赵琼.科尔沁沙地东南部固沙林土壤磷素研究[D].中国科学院沈阳应用生态研究所学位论文,2007.
    [58]陈伏生,曾德慧,何兴元.森林土壤氮素转化与循环[J].生态学杂志,2004,23(5):126-133.
    [59]陈伏生.半干旱地区固沙林土壤氮素转化及其有效性研究[D].中国科学院沈阳应用生态研究所学位论文,2005.
    [60]Raab TK, Lip son DA, Monson PK. Soil amino acid utilization among the Cyperaceae: Plant and soil p rocesses[J]. Ecology,1999,80:2408-2419.
    [61]Jones DL, Healey JR, Willett VB, et al. Dissolved organic nitrogen uptake by plants-an important N uptake pathway[J]? Soil Biology & Biochemistry,2005,37:413-423.
    [62]Hobbie JE, Hobbie EA. 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra[J]. Ecology,2006,87:816-822.
    [63]Vitousek PM, Howarth RW. Nitrogen limitation on land and in the sea:how can it occur[J]. Biogeochemistry,1991,13:87-115.
    [64]Reich PB, Grigal DF, Aber JD, et al. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils[J]. Ecology,1997,78:335-347.
    [65]Binkley D, Hart SC. The components of nitrogen availability assessments in forest soils[J]. Advances in Soil Science,1989,10:57-111.
    [66]Fisher RF, Binkley D. Ecology and Management of Forest Soils[M]. New York:John Wiley & Sons,2000.
    [67]Walbridge R. Phosphorus biogeochemistry[J]. Ecology,2000,81:1474-1475.
    [68]刘颖,韩士杰,林鹿.长白山四种森林类型凋落物动态特征[J].生态学杂志,2009,28(1):7-11.
    [69]Chapin III FS. The mineral nutrition of wild plants[J]. Annual Review of Ecology Systematics,1980,11:233-260.
    [70]Eckstein RL and Karlsson PS. Above ground growth and nutrient use by plants in a subarctic environment:effects of habitat, lifeform and species[J]. Oikos,1997,79:311-324.
    [71]Chapin III FS and Moilanen L. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves[J]. Ecology,1991,72:709-715.
    [72]Elser JJ, Dobberfuhl DR, MacKay NA, et al. Organism size, life history, and N:P stoichiometry:towards a unified view of cellular and ecosystem processes[J]. BioScience 1996,46:674-684.
    [73]Hessen DO. Stoichiometry in food webs:Lotka revisited[J]. Oikos,1997,79:195-200.
    [74]Schade JD, Espeleta JF, Klausmeier CA, et al. A conceptual framework for ecosystem stoichiometry:balancing resource supply and demand[J]. Oikos,2005,109:40-51.
    [75]程滨,赵永军,张文广,等.生态化学计量学研究进展[J].生态学报,2010,30(6):1628-1637.
    [76]曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报,2005,29(6):1007-1019.
    [77]Andersen T, Hessen DO. Carbon, nitrogen, and phosphorus content of freshwater zooplankton[J]. Limnology and Oceanography,1991,36:807-814.
    [78]Gusewell S. N:P ratios in terrestrial plants:variation and functional significance[J]. New Phytologist,2004,164:243-266.
    [79]Agren GI. The C:N:P stoichiometry of autotrophs-theory and observations[J]. Ecology Letters,2004,7:185-191.
    [80]Wassen MJ, Olde Venterink HGM, de Swart EOAM. Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems[J]. Journal of Vegetation Science,1995,6:5-16.
    [81]Chen GS, Zeng DH, Chen FS. Concentrations of foliar and surface soil in nutrients Pinus spp. plantations in relation to species and stand age in Zhanggutai sandy land, northeast 'China[J]. Journal of Forestry Research,2004,15:11-18.
    [82]Zhang LX, Bai YF, Han XG. Application of N:P stoichiometry to ecology studies[J]. Acta Botanica Sinica,2003,45:1009-1018.
    [83]吴丁丁.南昌市城市绿化现状分析[J].江西林业科技,2001,1:25-27.
    [84]邹淑珍.南昌城市园林绿化植物的调查研究[J].江西科技师范学院学报,2005,12(6):124-128.
    [85]甘露.中亚热带丘陵红壤区森林演替典型阶段土壤氮矿化及其有效性[D].南昌大学学位论文,2007.
    [86]王道吉,樊三宝.南昌城市林业的理论与实践[M].北京:中国林业出版社,2002,23-24.
    [87]鲁如坤.土壤农业化学分析方法[M].北京:中国农技科学出版社,2000:228-233.
    [88]Schimel D, Stillwell MA, Woodmanse RG. Biogeochemistry of C, N, and P in a soil catena of the shortgrass steppe[J]. Ecology,1985,66:276-282.
    [89]Rashid GH, Scheafer R. Seasonal variation in the nitrogen mineralization and mineral nitrogen accumulation in two temperate forest soils[J]. Pedobiologia,1988,31:391-390.
    [90]张凯.合肥市主要园林树木养分动态及其养分利用效率的研究[D].安徽农业大学学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700