用户名: 密码: 验证码:
ZnO材料中的缺陷和掺杂的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO为直接带隙的宽禁带半导体,室温下禁带宽度为3.37 eV;特别的,其激子束缚能高达60 meV。因此,ZnO在室温或更高温度下的紫外发光器件的应用中有极大的前景。但是,这首先要求有高质量的n型和p型ZnO。然而,尽管实验上很容易获得高质量的n型ZnO,但p型ZnO却很难被制备出来。近年来,人们从理论和实验上对如何在ZnO中进行有效的p型掺杂进行了大量的探索,取得了丰硕的成果,同时也提出了很多问题。本论文就ZnO中的本征缺陷性质、受主杂质与H的复合体的性质以及p型ZnO的导电性质进行了深入研究。本论文共分为五章。
     在第一章,我们总结了近年来关于ZnO的本征缺陷、ZnO中H元素的性质和ZnO中p型掺杂的研究。
     在第二章,我们介绍了理论计算中广泛使用的密度泛函理论,并且介绍了计算原子最佳迁移路径及其迁移势垒的方法。
     第三章讨论了ZnO中本征缺陷的电子结构、I族杂质缺陷的电子结构以及几种重要的本征缺陷的光吸收和振动性质。通过B3LYP方法对缺陷能级的准确计算,我们发现空位缺陷(V_O和V_(Zn))和八面体填隙缺陷(O_(i,o)和Zn_(i,o))都可能是实验观测到的绿光峰的来源。因此以前的研究仅仅把绿光峰归因于某一种缺陷是不对的。另外,O_(i,o)和Zn_(i,o)可能分别对黄光和红光有贡献。对I族杂质缺陷的B3LYP计算表明,实验上在掺Li和Na的ZnO中观测到的发光峰可能来自相关的复合缺陷。在ZnO中掺Ag会导致很多缺陷能级,其中一部分可能对实验观测到的3.17 eV的发光峰有贡献。我们研究了几种最重要的本征缺陷(V_O、H_O和V_(Zn))的光吸收和振动性质,找到了每种缺陷的特征光吸收峰和振动模式,这些发现可用于指认这些缺陷。
     在第四章中,我们研究了ZnO中的几种重要的杂质(N、Li和Cu)与H的复合体的性质。我们首先研究了N_O-H、Li_(Zn)-H和Cu_(Zn)-H复合体的形成和离解。通过计算H原子从不同方向到达基态构型的最低能量路径,得到了H原子在迁移过程中所需克服的能量势垒。我们发现,这三种复合体都可以在200 K以下的低温形成,并在室温下稳定存在。N_O-H、Li_(Zn)-H和Cu_(Zn)-H复合体的离解所需要的激活能分别为1.25-1.48、1.10-1.35和1.42-1.63 eV,对应的激活温度约分别为480-570、420-520和540-620 K。另外,我们对这些复合体的电子结构、缺陷能级、振动性质以及光学性质进行了研究,深入讨论了H原子在这些复合体中所起的作用。
     在第五章中,我们对p型掺杂ZnO导电性质的不稳定性和低效率的问题进行了研究。通过分析掺N的ZnO中的几种主要缺陷,我们提出了一种全新的微观模型,很好地解释了光照诱导的N掺杂ZnO导电性质转变的现象。我们发现,H_O(即被V_O捕获的H原子)在这种现象中扮演了重要的角色。由此,我们推测如果能控制V_O的浓度,使其很低,则会避免H_O量存在,从而能增强掺N的ZnO的p型导电性的稳定性。另一方面我们基于对在N掺杂的p型ZnO中观测到的实验现象的分析,提出了受主缺陷不完全离化的观点,成功地解释了相关实验现象。通过分析电子结构和自旋密度在空间上的分布,我们发现非局域的缺陷态波函数是上述现象的物理根源。我们将这一观点应用于掺P和As的ZnO中,也解释了相关实验现象。另外,我们还预测,掺Ag的ZnO中,受主能级也将介于0.1-0.2 eV之间,Ag_(Zn)为浅受主。
ZnO is a wide-band-gap semiconductor, with band gap of 3.37 eV at room temperature (RT). Particularly, its exciton binding energy is as large as 60 meV, which promises its applications at RT or even higher temperature in ultraviolet optoelectronic devices. However, its applications depend on high-quality n-type and p-type ZnO. Although high-quality n-type ZnO can be obtained easily, p-type ZnO is difficult to be produced. Recent years, many researches have been conducted to explore the dopability of p-type ZnO in both theoretical and experimental studies, which give many valuable results and simultaneously bring up many questions. In this dissertation, we investigate properties of native defects and acceptor-H complexes, as well as the conductivity of p-type ZnO. This dissertation consists of five chapters.
     In the first chapter, we review the researches on native defects and H as well as p-type doping in ZnO.
     In the second chapter, we introduce density functional theory which is widely used in theoretical studies, and then describe CI-NEB method which is usually used to compute the economical diffusion paths and the related energy barrier for the diffusion of an atom in bulk material.
     In the third chapter, we present our results on electronic structures of native defects and group-I impurities in ZnO, and optical and vibrational properties of some important native defects. By using B3LYP calculations, the energy levels arising from native defects of ZnO are accurately determined, from which we conclude that vacancies (V_P and V_(Zn)) and octahedral interstitials (O_(i,o) and Zn_(i,o)) may contribute to green photoluminescence (PL) observed in experimental investigations, which implies that it is improper to attribute the observed green PL to a single type of native defects as done in previous reports. Furthermore, we find O_(i,o) and Zn_(i,o) may contribute to yellow and red PL. For the group-I impurities, we find that the PL in Lior Na-doped ZnO may derive from defect complexes; while for Ag-doped ZnO, there are many defect energy levels induced by the doped Ag atom, most of which may contribute to the PL at 3.17 eV observed in experiments. We studied optical and vibrational properties of some important native defects (V_O,H_O and V_(Zn),and find some typical optical absorption peaks and vibrational modes, which can be used to identify these defects.
     In the fourth chapter, we report the properties of N_O-H,Li_(Zn)-H and Cu_(Zn)-H complexes in ZnO. We firstly calculated the formation and dissociation of these complexes in ZnO. By computing the minimum energy paths of H diffusion, we predicted the energy barrier of the diffusions. We find that, these complexes can form below 200 K and be stable under RT. However, the dissociations of these complexes require activation energies of 1.25-1.48, 1.10-1.35 and 1.42-1.63 eV,respectively, which correspond to activation temperatures of 480-570, 420-520 and 540-620 K. Moreover, we investigated the electronic structures, defect energy levels, vibrational and optical properties of these complexes, which give further understandings of these defects in ZnO.
     In the fifth chapter, we investigate the instability and low efficiency of the conductivity in p-type ZnO. From analysis of possible defects in N-doped ZnO, we propose a new microscopic model to interpret the mechanism of the conductivity conversion induced by Blue/UV photo irradiation in N-doped ZnO. We find that, H_O (H is captured by V_O) plays an important role in this phenomenon. Accordingly, we predict that, if the concentration of V_O can be reduced so that the concentration of H_O will be sufficiently low, the stability of the conductivity of N-doped ZnO will beenhanced. On the other hand, we analyze some phenomena observed in N-doped ZnO from experimental studies, and speculate that the shallow acceptor levels are derived from incomplete ionization of the acceptors (N_O) in this material. From analysis of electronic structures and distributions of spin densities in N-doped ZnO, we find that the delocalized wavefunctions of defect states are the origin of incomplete ionization. Furthermore, we find that in P- and As-doped ZnO, the shallow acceptor levels are derived from incomplete ionization too. In addition, based on the proposed concept of incomplete ionization, we predicted that in Ag-doped ZnO, the acceptor levels are also shallow, being within 0.1-0.2 eV.
引文
Ahn BD,Kang HS,Kim JH,et al.2006,Synthesis and analysis of Ag-doped ZnO [J],J.Appl.Phys.100,093701.
    Allenic A,Guo W,Chen Y,et al.2007,Amphoteric Phosphorus Doping for Stable p-Type ZnO [J],Adv.Mater.19,3333-3337.
    Bagnall DM,Chen YF,Zhu Z,et al.1997,Optically pumped Iasing of ZnO at room temperature [J],Appl.Phys.Lett.70,2230-2232.
    Bang J and Chang KJ 2008,Diffusion and thermal stability of hydrogen in ZnO [J],Appl.Phys.Lett.92,132109.
    Bang KH,Hwang DK,Park MC,et al.2003,Formation of p-type ZnO film on InP substrate by phosphor doping [J],Appl.Sur.Sci.210,177-182.
    Barnes TM,Olson K,Wolden CA 2005,On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide [J],Appl.Phys.Lett.86,112112.
    Bian JM,Li XM,Zhang CY,et al.2004,p-type ZnO films by monodoping of N and ZnO based p-n homojunctions [J],Appl.Phys.Lett.85,4070-4072.
    Bian JM,Li XM,Gao XD,et al.2004,Deposition and electrical properties of N-ln codoped p-type ZnO films by ultrasonic spray pyrolysis [J],Appl.Phys.Lett.84,541-543.
    B鴕seth TM,Svensson BG,Kuznetsov AY 2006,Identification of oxygen and zinc vacancy optical signals in ZnO [J],Appl.Phys.Lett.89,262112.
    Bylander EG 1977,Surface effects on the low-energy cathodoluminescence of zinc oxide [J],J.Appl.Phys.49,1188-1195.
    Chen LL,He HP,Ye ZZ,et al.2006,Inuence of post-annealing temperature on properties of ZnO:Li thin films [J],Chem.Phys.Lett.420,358-361.
    Claflin B,Look DC,Park SJ,et al.2006,Persistent n-type photoconductivity in p-type ZnO [J],J.Cryst.Growth 287,16-22.
    Cox SFJ,Davis EA,Cottrell SP,et al.2001,Experimental Confirmation of the Predicted Shallow Donor Hydrogen State in Zinc Oxide [J],Phys.Rev.Lett.86,2601-2604.
    Erhart P,Klein A,Albe K 2005,First-principles study of the structure and stability of oxygen defects in znic oxide [J],Phys.Rev.B 72,085213.
    Erhart P,Klein A,Albe K 2006,First-principles study of intrinsic point defects in ZnO:Role of band structure,volume relaxation,and finite-size effects [J],Phys.Rev.B 73,205203.
    Erhart P and Klein A 2006,First-principles study of migration mechanisms and diffusion of oxygen in zinc oxide [J], Phys. Rev. B 73,115207.
    Erhart P and Klein A 2006, Diffusion of zinc vacancies and interstitials in zinc oxide [J], Appl.Phys. Lett. 88,201918.
    Fukumura T, Toyosaki H, Yamada Y 2005, Magnetic oxide semiconductors, Semicond. Sci.Technol.20,s103-s111.
    Garces NY, Giles NC, Halliburton LE, et al.2002, Production of nitrogen acceptors in ZnO by thermal annealing [J], Appl. Phys. Lett. 80, 1334-1336.
    Gorelkinskii YV and Watkins GD 2004, Defects produced in ZnO by 2.5-MeV electron irradiation at 4.2 K: Study by optical detection of electron paramagnetic resonance [J], Phys. Rev. B 60,115212.
    Guo W, Allenic A, Chen YB, et al. 2007, Microstructure and properties of epitaxial antimony doped p-type ZnO films fabricated by pulsed laser deposition [J], Appl. Phys. Lett. 90,242108.
    Halliburton LE, Giles NC, Garces NY, et al. 2005, Production of native donors in ZnO by annealing at high temperature in Zn vapor [J],Appl. Phys. Lett. 87, 172108.
    Hamby DW, Lucca DA, Klopfstein MJ 2005, Photoluminescence of mechanically polished ZnO [J],J. Appl. Phys. 97, 043504.
    Heo YW, Park SJ, Ip K, et al. 2003, Transport properties of phosphorus-doped ZnO thin films [J],Appl. Phys. Lett. 83, 1128-1130.
    Heo YW, Norton DP, Pearton SJ 2005, Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy [J], J. Appl. Phys. 98,073502.
    Hofinann DM, Hofstaetter A, Leiter F, et al. 2002, Hydrogen: A Relevant Shallow Donor in Zinc Oxide [J], Phys. Rev. Lett. 88,045505.
    Hu GX, Gong H, Chor EF, et al. 2006, Properties of p-type and n-type ZnO influenced by P concentration [J], Appl. Phys. Lett. 89,251102.
    Huang MH, Mao S, Feick H, et al. 2001,Room-Temperature Ultraviolet Nanowire Nanolasers [J],Science, 292, 1897-1899.
    Huang MH, Mao S, Oh MS, et al. Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO [J], Appl. Phys. Lett. 90, 021106.
    Huang MH, Oh MS, Choi YS, et al. 2008, Effect of pressure on the properties of phosphorus doped p-type ZnO thin films grown by radio frequency-magnetron sputtering [J], Appl. Phys.Lett. 92, 161109.
    Hur TB, Jeen GS, Hwang YH, et al. 2003, Photoluminescence of polycrystalline ZnO under different annealing conditions [J], J. Appl. Phys. 94, 5787-5790.
    Hwang DK, Kim HS, Lim JH, et al. 2005, Study of the photoluminescence of phosphorus-doped p-type ZnO thin films [J],Appl.Phys.Lett.86,151917.
    Hwang DK,Oh MS,Lim JH,et al.2007,Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO [J],Appl.Phys.Lett.90,021106.
    Jang S,Chen JJ,Kang BS,et al.2005,Formation of p-n homojunctions in n-ZnO bulk single crystals by diffusion from a Zn_3P_2 source [J],Appl.Phys.Lett.87,222113.
    Janotti A and Van de Walle CG 2005,Oxygen vacancies in ZnO [J],Appl.Phys.Lett.87,122102.
    Janotti A and Van de Walle CG 2007,Native point defects in ZnO [J],Phys.Rev.B 76,165202.
    Janotti A and Van de Walle CG 2007,Hydrogen multicentre bonds [J],Nat.Mater.6,44.
    Joseph M,Tabata H,Saeki H,et al.2001,Fabrication of the low-resistive p-type ZnO by codoping method [J],Physica B 302/303,140-148.
    Kang HS,Kang JS,Kim JW,et al.2004,Annealing effect on the property of ultraviolet and green emissions of ZnO thin films [J],J.Appl.Phys.95,1246-1250.
    Kang HS,Ahn BD,Kim JH,et al.2006,Structural,electrical,and optical properties of p-type ZnO thin films with Ag dopant [J],Appl.Phys.Lett.88,202108.
    Kang HS,Kim GH,Kim DL,et al.2006,Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film [J],Appl.Phys.Lett 89,181103.
    Kasai PH 1963,Electron Spin Resonance Studied of Donors and Acceptors in ZnO [J],Phys.Rev.130,989-995.
    Kim KK,Kim HS,Hwang DK,et al.2003,Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant [J],Appl.Phys.Lett.83,63-65.
    Kim YS and Park CH 2009,Rich Variety of Defects in ZnO via an Attractive Interaction between O Vacancies and Zn Interstitials:Origin of n-Type Doping [J],Phys.Rev.Lett.102,086403.
    Kohan AF,Ceder G,Morgan D,et al.2000,First-principles study of native point defects in ZnO [J],Phys.Rev.B 61,15019-15027.
    Kr鳂er FA and Vink HJ 1954,The Origin of the Fluorescence in Self-Activated ZnS,CdS,and ZnO [J],J.Chem.Phys,22,250-252.
    Kuriyama K,Ooi M,Matsumoto K,et al.2006,Thermally stimulated current studies on deep levels in hydrothermally grown single crystal ZnO bulk [J],Appl.Phys.Lett.89,242113.
    Lany S and Zunger A 2007,Dopability,Intrinsic Conductivity,and Nonstoichiometry of Transparent Conducting Oxides [J],Phys.Rev.Lett.98,045501.
    Lee EC,Kim YS,Jin YG,et al.2001,Compensation mechanism for N acceptors in ZnO [J],Phys.Rev.B 64,085120.
    Lee EC and Chang KJ 2004,Possible p-type doping with group-I elements in ZnO [J],Phys.Rev.B 70,115210.
    Lee J, Ha J, Hong J, et al.2008, Growth of nitrogen doped ZnO films through a nitrogen diffusion process from WN films formed by a cosputtering technique [J], J. Vac. Sci. Technol. B, 26,1696-1699.
    Lee WJ, Kang J, Chang KJ, et al. 2006, Defect properties and p-type doping efficiency in phosphorus-doped ZnO [J], Phys. Rev. B 73, 024117.
    Li X, Yan Y, Gessert TA, et al. 2003, Chemical vapor deposition-formed p-type ZnO thin films [J], J. Vac. Sci. Technol. A 21, 1342-1346.
    Li XN, Keyes B, Asher S, et al. 2005, Hydrogen passivation effect in nitrogen-doped ZnO thin fllm [J],Appl.Phys. Lett. 86, 122107.
    Limpijumnong S, Zhang SB, Wei SH, et al. 2004, Doping by Large-Size-Mismatched Impurities:The Microscopic Origin of Arsenic- or Antimony-Doped p-Type Zinc Oxide [J], Phys. Rev. Lett.92, 155504.
    Limpijumnong S, Li XN, Wei SH, et al. (2006), Probing deactivations in Nitrogen doped ZnO by vibrational signatures: A first principles study [J], Physica B 376-377, 686-689.
    Limpijumnong S, Simth MF, Zhang SB, 2006, Characterization of As-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy: Theory [J], Appl. Phys. Lett. 89, 222113.
    Lin BX, Fu ZX, Jia YB 2001,Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J], Appl. Phys. Lett. 79, 943-945.
    Liu M, Kitai AH, Mascher P 1992, Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese [J], J. Lumin,54,35-42.
    Liu W, Gu SL, Ye JD, et al. 2008, High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO [J], J. Cryst. Growth 310,3448-3452.
    Look DC, Reynolds DC, Sizelove JR,et al.1997, Electrical properties of bulk ZnO [J],Solid State Commun.105,399-401.
    Look DC, Hemsky JW, Sizelove JR,1999, Residual Native Shallow Donor in ZnO [J], Phys. Rev.Lett. 82,2552-2555.
    Look DC, Reynolds, DC, Litton CW, et al. 2002, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J], Appl. Phys. Lett. 81,1830-1832.
    Look DC, Claflin B, Alivov Y, et al. (2004), The future of ZnO light emitters [J], Phys. Stat. Sol.(A)201,2203-2212.
    Look DC, Renlund GM, Burgener Ⅱ RH, et al. 2004, As-doped p-type ZnO produced by an evaporation sputtering process [J], Appl. Phys. Lett. 85, 5269-5271.
    Lopatiuk-Tirpak O,Chernyak L, Osinsky A, et al. 2005, Lithium-related states as deep electron traps in ZnO [J], Appl. Phys. Lett. 87,214110.
    Lopatiuk-Tirpak O,Schoenfeld WV,Chernyak L,et al.2006,Carrier concentration dependence of acceptor activation energy in p-type ZnO [J],Appl.Phys.Lett.88,203110.
    Lu JG,Ye ZZ,Zhuge F,et al.2004,p-type conduction in N-Al co-doped ZnO thin films [J],Appl.Phys.Lett.85,3134-3136.
    Lu JG,Zhang YZ,Ye ZZ,et al.2006,Control of p-and n-type conductivities in Li-doped ZnO thin films [J],Appl.Phys.Lett.89,112113.
    Lu JG,Liang QN,Zhang YZ,et al.2007,Improved p-type conductivity and acceptor states in N-doped ZnO thin films [J],J.Phys.D:Appl.Phys.40,3177-3181.
    Matsui H,Seaki H,Kawai T,et al.(2004),N doping using N20 and NO sources:From the viewpoint of ZnO [J],J,Appl.Phys.95,5882-5888.
    Meyer BK,Alves H,Hofinann DM,et al.2004,Bound exciton and donor-acceptor pair recombinations in ZnO [J],Phys.Stat.Sol.(B)241,231-260.
    Meyer BK,Sann J,Zeuner A 2005,Lithium and sodium acceptors in ZnO [J],Superlattices and Microstructures 38,344-348.
    Morkoc H,Suite S,Gao GB,et al.1994,Large-band-gap SiC,Ⅲ-Ⅴ nitride,and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies [J],J.Appl.Phys.76,1363-1398.
    Nakamura S 1996,Proceedings of the International Symposium on blue laser and light emitting diodes,Chiba Univ.119.
    Nurmikko AV,Gunshor RL 1996,Proceedings of the International Symposium on blue laser and light emitting diodes,Chiba Univ.3.
    Oba F,Togo A,Tanaka I,et al.2008,Defect energetics in ZnO:A hybrid Hartree-Fock density functional study [J],Phys.Rev.B 77,245202.
    Orlinskii SB,Schmidt J,Baranov PG,et al.2 004,Probing the Wave Function of Shallow Li and Na Donors in ZnO Nanoparticles [J],Phys.Rev.Lett.92,047603.
    謟g黵? Alivov YI,Liu C,et al.2005,A comprehensive review of ZnO materials and devices [J],J.Appl.Phys.98,041301.
    Pan XH,Jiang J,Zeng YJ,et al.2008,Electrical and optical properties of phosphorus doped p-type ZnO films grown by metalorganic chemical vapor deposition [J],J.Appl.Phys.103,023708.
    Pearton,SJ,Norton DP,Ip K,et al.2004,Recent advances in processing of ZnO [J],J.Vac.Sci.Technol.B 22,932-948.
    Pearton,SJ,Norton DP,Ip K,et al.2005,Recent progress in processing and properties of ZnO [J],Progress in Materials Science 50,293-340.
    Pfisterer D,Hofmann MD,Sann J,et al.2006,Intrinsic and extrinsic point-defects in vapor transport grown ZnO bulk crystals [J], Physica B 376-377,767-770.
    Qiu HS, Meyer B, Wang YM,et al.2008, Ionization Energies of Shallow Donor States in ZnO Created by Revversible Formation and Depletion of H Interstitials [J], Phys. Rev. Lett. 101,236401.
    Reynolds, DC, Look DC, Jogai B 2001,Fine structure on the green band in ZnO [J], J. Appl.Phys.89,6189-6191.
    Ryu YR,Lee TS, White HW 2003, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition [J], Appl. Phys. Lett. 83, 87-89.
    Sann J, Stehr J, Hofstaetter A, et al. 2007, Zn interstitial related donors in ammonia-treated ZnO powders [J], Phys. Rev. B 76, 195203.
    Selim FA,Weber MH, Solodovnikov D, et al. 2007, Nature of Native Defects in ZnO [J], Phys.Rev. Lett. 99, 085502.
    Sun JW, Lu YM,Liu YC, et al. 2006, The activation energy of the nitrogen acceptor in p-type ZnO film grown by plasma-assisted molecular beam epitaxy [J], Solid State Communications 140,345-348.
    Shan FK, Liu GX, Lee WJ, et al. 2007, The role of oxygen vacancies in epitaxial-deposited ZnO thin films [J], J. Appl. Phys. 101, 053106.
    Tang ZK, Wong GKL, Yu P, et al. 1998, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J], Appl. Phys. Lett. 72, 3270-3272.
    Tuomisto F, Ranki V, Saarinen K, et al. 2003, Evidence of the Zn Vacancy Acting as the Dominant Acceptor in n-Type ZnO [J], Phys. Rev. Lett. 91,205502.
    Tuomisto F, Saarinen K, Look DC, et al. 2005, Introduction and recovery of point defects in electron-irradiated ZnO [J], Phys. Rev. B 72, 085206.
    Vaithianathan V, Lee BT, Chang CH, et al. 2006, Characterization of As-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy [J], Appl. Phys. Lett. 88,112103.
    Vaithianathan V, Kim SS, Asokan K 2006, Comment on "Characterization of As-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy: Theory: [Appl. Phys. Lett. 89,222113] [J], Appl. Phys. Lett. 92,236101.
    Van de Walle CG 2000, Hydrogen as a Cause of Doping in Zinc Oxide [J], Phys. Rev. Lett. 85,1012-1015.
    Van de Walle CG and Neugebauer J 2004, First-principles calculations for defects and impurities:Applications to Ⅲ-nitrides [J], J. Appl. Phys. 95,3851-3879.
    Vanheusden K, Seager CH, Warren WL, et al. 1995, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J], Appl. Phys. Lett. 68,403-405.
    Vanheusden K, Seager CH, Warren WL, et al.1996, Mechanisms behind green photoluminescence in ZnO phosphor powders [S], J. Appl.Phys. 79, 7983-7990.
    Vlasenko LS and Watkins GD 2005, Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO [J], Phys. Rev. B 71,125210.
    Wagner P and Helbig R 1974, Halleffekt und anisotropie der beweglichkeit der elektronen in ZnO [J], J. Phys. Chem.Solids 35,327-335.
    Wang LJ and Giles NC 2004, Determination of the ionization energy of nitrogen acceptors in zinc oxide using photoluminescence spectroscopy [J], Appl. Phys. Lett. 84,3049-3041.
    Wardle MG,Goss JP, Briddon PR 2005, Theory of Li in ZnO: A limitation for Li-based p-type doping [J], Phys. Rev. B 71, 155205.
    Wardle MG, Goss JP, Briddon PR 2005, Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO [J], Phys. Rev. B 72, 155108.
    Wardle MG, Goss JP, Briddon PR 2006, First-Principles Study of the Diffusion of Hydrogen in ZnO [J], Phys. 96,205504.
    Wu J and Yang YT 2008, Deposition of K-doped p type ZnO thin films on (0001) A(?)2O3 substrates [J], Mater. Lett. 62, 1899-1901.
    Xiao ZY, Liu YC, Li BH, et al. 2006, Electrical transport properties in nitrogen-doped p-type ZnO thin film [J], Semicond. Sci. Technol. 21, 1522-1526.
    Xiu FX, Yang Z, Mandalapu LJ, et al. 2005, High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy [J], Appl. Phys. Lett. 87, 152101.
    Xiu FX, Yang Z, Mandalapu LJ, et al. 2005, Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy [J], Appl. Phys. Lett. 87,252102.
    Xiu FX, Yang Z, Mandalapu LJ, et al. 2006, p-Type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy [J], Appl. Phys. Lett. 88, 052106.
    Xiu FX, Yang Z, Mandalapu LJ, et al. 2006, Donor and acceptor competitions in phosphorus doped ZnO [J], Appl. Phys. Lett. 88,152116.
    Yamamoto T and Katayama-Yoshida H 1999, Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO [J], Jpn. J. Appl. Phys. 38, L166-L169.
    Yamamoto T and Katayama-Yoshida H 2000, Unipolarity of ZnO with a wide-band gap and its solution using codoping method [J], J. Cryst. Growth 214/215,552-555.
    Yan YF, Zhang SB, Pantelides ST 2001, Control of Doping by Impurity Chemical Potentials:Predictions for p-Type ZnO [J], Phys. Rev. Lett. 86, 5723-5726.
    Yan YF, Al-Jassim MM, Wei SH 2006, Doping of ZnO by group-IB elements [J], Appl. Phys. Lett.89, 181912.
    Yu ZG,Gong H,Wu P 2005,Dopant Sources Choice for Formation of p-Type ZnO:Phosphorus Compound Sources [J],Chem.Mater.17,852.
    Yu ZG,Wu P,Gong H 2006,Control of p-and n-type conductivities in P doped ZnO thin films by using radio-frequency sputtering [J],Appl.Phys.Lett.88,131114.
    Yuan GD,Ye ZZ,Zhu LP,et al.2005,Control of conduction type in Al-and N-codoped ZnO thin films [J],Appl.Phys.Lett.86,202106.
    Yuen C,Yu SF,Leong ESP,et al.2007,Room temperature deposition of p-type arsenic doped ZnO polycrystalline films by laser-assist filtered cathodic vacuum arc technique [J],J.Appl.Phys.101,094905.
    Zeng Y J,Ye ZZ,Xu WZ,et al.2005,Realization of p-type ZnO 1ms via monodoping of Li acceptor [J],J.Cryst.Growth 283,180-184.
    Zeng YJ,Ye ZZ,Xu WZ,et al.2006,Dopant source choice for formation of p-type ZnO_Li acceptor [J],Appl.Phys.Lett.88,062107.
    Zeng YJ,Ye ZZ,Lu JG,et al.2006,Identification of acceptor states in Li-doped p-type ZnO thin films [J],Appl.Phys.Lett.89,042106.
    Zhang SB,Wei SH,Zunger A 2001,Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO [J],Phys.Rev.B 63,075205.
    李正中,2002.固体理论[M]:第2版.北京:高等教育出版社.
    曾谨言,2000.量子力学[M]:第1版.北京:科学出版社.
    Martin RM,2007,Electronic Structure:Basic Theory and Practical Methods[M],第1版.北京:世界图书出版公司北京公司.
    Ceperley DM and Alder BJ, 1980, Ground State of the Electron Gas by a Stochastic Method [J],Phys. Rev. Lett. 45, 566-569.
    Dirac PAM, 1958. The principles of quantum mechanics [M]:V1.Oxford: Clarendon Press.
    Henkelman G,Uberuaga BP, J(?)nsson H, 2000, A climbing image nudged elastic band method for finding saddle points and minimum energy path [J], J. Chem.Phys.113, 9901-9904.
    Henkelman G,Uberuaga BP, Jonsson H, 2000, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points [J], J. Chem. Phys.113,9978-9985.
    Hohenberg P and Kohn W, 1964, Inhomogeneous Electron Gas [J], Phys. Rev. 136, B864-B871.
    J(?)nsson H, Mills G,Jacobsen KW, 1998, "Nudged elastic band method for finding minimum energy paths of transitions", in Classical and Quantum Dynamics in Condensed Phase Simulations [M], edited by Berne BJ, Ciccotti G, Coker DF, Singapore: World Scientific. P.385.
    Kohn W and Sham LJ, 1965, Self-Consistent Equations Including Exchange and Correlation Effects [J], Phys. Rev. 140,A1133-A1138.
    Kohn W, 1999, Nobel Lecture: Electronic structure of matter - wave functions and density functionals [J], Rev. Mod. Phys. 71, 1253-1266.
    McKee ML and Page M,1993, Reviews in Computational Chemistry [M], Vol.Ⅳ, edited by Lipkowitz KB and Boyd DB, New York: VCH Publishers Inc.
    [1]http://www.crystal.unito.it/Basis_Sets/Ptable.html
    [2] http://www.theochem.uni-stuttgart.de
    黄昆,韩汝琦,1988.固体物理学[M]:第1版.北京:高等教育出版社.
    李正中,2002.固体理论[M]:第2版.北京:高等教育出版社.
    B鴕seth TM, Svensson BG,Kuznetsov AY, et al.2006, Identification of oxygen and zinc vacancy optical signals in ZnO [J], Appl.Phys. Lett. 89,262112.
    Ceperley DM and Alder BJ, 1980, Ground State of the Electron Gas by a Stochastic Method [J],Phys. Rev. Lett. 45, 566-569.
    Chanier T, Opahle I, Sargolzaei M, et al. 2008, Magnetic State around Cation Vacancies in Ⅱ-Ⅵ Semiconductors [J], Phys. Rev. Lett. 100,026405.
    Cox RT, Block D, Herver A, et al. 1978, Exchange broadened, optically detected ESR spectra for luminescent donor-acceptor pairs in Li doped ZnO [J], Solid State Commun. 25, 77-80.
    Dean JA,1992, Lange(?)Handbook of Chemistry [M], 14eth ed., New York: McGraw-Hill.
    Ehrenreich H and Philps HR,1962, Optical Properties of Ag and Cu [J], Phys. Rev. 128, 1622.
    Erhart P, Klein A, Albe K, 2005, First-principles study of the structure and stability of oxygen defects in znic oxide [J], Phys. Rev. B 72, 085213.
    Erhart P, Klein A, Albe K 2006, First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects [J], Phys. Rev. B 73,205203.
    Fan JW and Freer R,1995, The roles played by Ag and Al dopants in controlling the electrical properties of ZnO varistors [J], J. Appl. Phys. 77,4795-4800.
    Gruzintsev AN, Volkov VT, Khodos II, et al. 2002, Luminescent Properties of ZnO Films Doped with Group-IB Acceptors [J], Russian Microelectronics 31(3), 234-240.
    Gruzintsev AN, Volkov VT, Khodos II, et al. 2003, Photoelectronic properties of ZnO films doped with Cu and Ag acceptor impurities [J], Semiconductors, 37,259-262.
    Hewat AW, 1970, Lattice dynamics of ZnO and BeO [J], Solid State Commun. 8, 187-189.
    Janotti A and Van de Walle CG,2005, Oxygen vacancies in ZnO [J], Appl. Phys. Lett. 87,122102.
    Janotti A and Van de Walle CG,2007, Native point defects in ZnO [J], Phys. Rev. B 76,165202.
    Janotti A and Van de Walle CG 2007, Hydrogen multicentre bonds [J], Nat. Mater. 6,44.
    Kang HS, Ahn BD, Kim JH, et al. 2006, Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant [J], Appl. Phys. Lett. 88,202108.
    Karazhanov SZ, Ravindran P, Kjekshus A, et al. 2007, Electronic structure and optical properties of ZnX (X=O, S, Se, Te): A density functional study [J], Phys. Rev. B 75, 155104.
    Lander JJ, 1960, Reactions of Lithium as a donor and an acceptor in ZnO [J], J. Phys. Chem.Solids 15, 324-334.
    Lee HY, Ko HJ, Yao T, 2003, Effect of Ag photodoping on deep-level emission spectra of ZnO epitaxial films [J], Appl. Phys. Lett. 82, 523-525.
    Lew Yan Voon LC and Ram-Mohan LR, 1993, Tight-binding representation of the optical matrix elements: Theory and applications [J], Phys. Rev. B 47,15500.
    Mc Cabe D, Johnston K, Henry MO, et al. 2003, Optical absorption of a Li-related impurity in ZnO [J], PhysicaB, 340-342,225-229.
    Meyer BK, Sann J, Zeuner A, 2005, Lithium and sodium acceptors in ZnO [J], Superlattices and Microstructures 38, 344-348.
    Pascale F, Zicovich-Wilson CM, Lopez-Gejo F, et al. 2003, The Calculation of the Vibrational Frequencies of Crystalline Compounds and Its Implementation in the CRYSTAL Code [J], J.Comput. Chem. 25, 888-897.
    Patterson CH, 2006, Role of defects in ferromagnetism in Zn_(1-x)Co_xO:A hybrid density-functional study [J], Phys. Rev. B 74,144432.
    Perdew JP and Zunger A, 1981, Self-interaction correction to density-functional approximations for many-electron systems [J], Phys. Rev. B 23, 5048-5079.
    Sanchez-Portal D, Ordejon P, Artacho E, et al. 1997, Density-functional method for very large systems with LCAO basis sets [J], Int. J. Quantum Chem. 65,453-461.
    Saunders VR,Dovesi R,Roetti C, et al. 2003, CRYSTAL2003 User(?)Manual [M], Torino:University of Torino.
    Schirmer OF, 1968, The structure of the paramagnetic lithium center in zinc oxide and beryllium oxide [J], J. Phys. Chem. Solids 29, 1407-1429.
    Troullier N and Martins JL,1993, Efficient pseudopotentials for plane-wave calculations [J], Phys.Rev.B 43,1993-2006.
    Yan YF, Al-Jassim MM, Wei SH 2006, Doping of ZnO by group-IB elements [J], Appl. Phys. Lett.89, 181912.
    Yang ZQ and Xu ZZ,1996, Electronic and optical properties of unstrained and strained wurtzite GaN[J], Phys. Rev. B 54, 17577.
    Zhang Y. Zhang Z, Lin BX, et al. 2005, Effects of Ag Doping on the Photoluminescence of ZnO Films Grown on Si Substrates [J], J. Phys. Chem. B 109, 19200-19203.
    Zwingel D, 1972, Trapping and recombination processes in the thermoluminescence of Li-doped ZnO single crystals [J], J. Lumin. 5, 385-405.
    Zwingel D and Gartner F,1974,Paramagnetic and optical properties of Na-doped ZnO single crystals [J],Solid State Commun.14,45-49.
    Borrnert F, Lavrov E, Weber J, 2007, Hydrogen motion in the Cu-H complex in ZnO [J], Phys.Rev. B 75,205202.
    Buchholz DB, Chang RPH, Song JH, et al. 2005, Room-temperature ferromagnetism in Cu-doped ZnO thin films [J], Appl. Phys. Lett. 87, 082504 .
    Chakraborti D, Narayan J, Prater JR,2007, Room temperature ferromagnetism in Zn1-xCuxO thin films [J], Appl. Phys. Lett. 90, 062504.
    Gartner G and Mollwo E, 1978, IR Absorption of OH and OD Centres and OH/OH, OD/OD, and OH/OD Complexes in Cu-Doped ZnO Single Crystals [J], Phys. Stat. Sol. (B) 89, 381-388.
    Gopal P and Spaldin NA, 2006, Magnetic interactions in transition-metal-doped ZnO: An ab initio study [J], Phys. Rev. B 74,094418.
    Hallibuton LE, Wang LJ, Bai LH, et al. 2004, Infrared absorption from OH~- ions adjacent to lithium acceptors in hydrothermally grown ZnO [J], J. Appl. Phys. 96, 7168-7172.
    Huang LM, Rosa AL, Ahuja R,2006, Ferromagnetism in Cu-doped ZnO from first-principles theory [J], Phys. Rev. B 74, 075206.
    Janotti A and Van de Walle CG,2007, Native Point defects in ZnO [J], Phys. Rev. B 76, 165202.
    Kanai Y,1991,Admittance spectroscopy of Cu-doped ZnO crystals [J], Jpn. J. Appl. Phys. Part Ⅰ 30, 703-707.
    Kumar OS, Watanabe E, Nakai R, et al. 2007, Growth of nitrogen-doped ZnO films by MOVPE using diisopropylzinc and tertiary-butanol [J], J. Cryst.Growth 298,491-494.
    Lavrov EV, Weber J, Borrnert F, et al. 2002, Hydrogen-related defects in ZnO studied by infrared absorption specrroscopy [J], Phys. Rev. B 66,165205.
    Lavrov EV, Borrnert F, Weber J, 2005, Dominant hydrogen-oxygen complex in hydrothermally grown ZnO [J], Phys. Rev. B 71, 035205.
    Lavrov EV and Weber J, 2006, Effect of uniaxial stress on vibrational modes of hydrogen in ZnO[J], Phys. Rev. B 73, 035208.
    Lavrov EV and Weber J, 2006, Uniaxial stress study of the Cu-H complex in ZnO [J], Phys. Stat. Sol.B243,2657-1664.
    Li XN, Keyes B, Asher S, et al. 2005, Hydrogen passivation effect in nitrogen-doped ZnO thin film [J], Appl. Phys. Lett. 86, 122107.
    Limpijumnong S, Li X, Wei SH, et al. 2006, Probing deactivations in Nitrogen doped ZnO by vibrational signatures: A first principles study [J], PhysicaB, 376-377, 686-689.
    Martin KR,Blaney P, Shi G,et al.2006, Temperature dependence of the vibrational spectrum of a Li-OH complex in ZnO: Infrared absorption experiments and theory [J], Phys. Rev. B 73,235209.
    Shi GA, Stavola M, Fowler WB, 2006, Identification of an OH-Li center in ZnO: Infrared absorption spectroscopy and density functional theory [J], Phys. Rev. B 73, 081201(R).
    Ye LH, Freeman AJ, Delley B, 2006, Half-metallic ferromagnetism in Cu-doped ZnO_Density functional calculations [J], Phys. Rev. B 73, 033203.
    Wardle MG,Goss JP, Briddon PR 2005, Theory of Fe, Co, Ni, Cu,and their complexes with hydrogen in ZnO [J], Phys. Rev. B 72, 155108.
    Wardle MG,Goss JP, Briddon PR 2006, First-Principles Study of the Diffusion of Hydrogen in ZnO [J], Phys. Rev. Lett. 96,205504.
    Allenic A, Guo W, Chen Y, et al.2007, Amphoteric Phosphorus Doping for Stable p-Type ZnO [J],Adv. Mater. 19,3333-3337.
    Claflin B, Look DC, Park SJ, et al. 2006, Persistent n-type photoconductivity in p-type ZnO [J], J.Cryst. Growth 287, 16-22.
    Cox SFJ, Davis EA, Cottrell SP, et al. 2001, Experimental Confirmation of the Predicted Shallow Donor Hydrogen State in Zinc Oxide [J], Phys. Rev. Lett. 86,2601-2604.
    Dev P, XueY, Zhang PH, 2008, Defect-Induced Intrinsic Magnetism in Wide-Gap Ⅲ Nitrides [J],Phys. Rev. Lett. 100, 117204.
    Hofmann DM, Hofstaetter A, Leiter F, et al. 2002, Hydrogen: A Relevant Shallow Donor in Zinc Oxide [J], Phys. Rev. Lett. 88, 045504.
    Huang LM, Rosa AL, Ahuja R,2006, Ferromagnetism in Cu-doped ZnO from first-principles theory [J], Phys. Rev. B 74, 075206.
    Hwang DK, Kim HS, Lim JH, et al. 2005, Study of the photoluminescence of phosphorus-doped p-type ZnO thin films [J],Appl.Phys. Lett. 86, 151917.
    Johnson C, Lin JY, Xiang HX, et al. 1996, Metastability and persistent photoconductivity in Mg-doped p-type GaN [J], Appl. Phys. Lett. 68, 1808-1810.
    Kang HS, Kim GH,Kim DL, et al. 2006, Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film [J], Appl. Phys. Lett 89, 181103.
    Lee EC, Kim YS, Jin YG,et al. 2001,Compensation mechanism for N acceptors in ZnO [J], Phys.Rev.B 64,085120.
    Lee WJ, Kang J, Chang KJ, et al. 2006, Defect properties and p-type doping efficiency in phosphorus-doped ZnO [J], Phys. Rev. B 73,024117.
    Lee J, Ha J, Hong J, et al. 2008, Growth of nitrogen doped ZnO films through a nitrogen diffusion process from WN films formed by a cosputtering technique [J], J. Vac. Sci. Technol. B, 26,1696-1699.
    Li XN, Keyes B, Asher S, et al. 2005, Hydrogen passivation effect in nitrogen-doped ZnO thin film [J],Appl. Phys. Lett. 86, 122107.
    Li JB, Wei SH, Li SS, et al. 2006, Design of shallow acceptors in ZnO: First-principles band-structure calculations [J], Phys. Rev. B 74,081201(R).
    Limpijumnong S, Zhang SB, Wei SH, et al. 2004, Doping by Large-Size-Mismatched Impurities:The Microscopic Origin of Arsenic- or Antimony-Doped p-Type Zinc Oxide [J], Phys. Rev. Lett. 92, 155504.
    Liu W, Gu SL, Ye JD, et al.2008, High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO [J], J. Cryst. Growth 310,3448-3452.
    Look DC, Reynolds, DC, Litton CW, et al. 2002, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J], Appl.Phys. Lett. 81,1830-1832.
    Look DC, Renlund GM, Burgener II RH, et al. 2004, As-doped p-type ZnO produced by an evaporation sputtering process [J], Appl. Phys. Lett. 85, 5269-5271.
    Lu JG,Liang QN, Zhang YZ, et al. 2007, Improved p-type conductivity and acceptor states in N-doped ZnO thin films [J], J. Phys. D: Appl. Phys. 40, 3177-3181.
    Pan XH, Jiang J, Zeng YJ, et al. 2008, Electrical and optical properties of phosphorus doped p-type ZnO films grown by metalorganic chemical vapor deposition [J], J. Appl. Phys. 103,023708.
    Park CH, Zhang SB, Wei SH, 2002, Origin of p-type doping difficulty in ZnO: The impurity perspective [J], Phys. Rev. B 66, 073202.
    Ryu YR,Lee TS, White HW 2003, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition [J], Appl. Phys. Lett. 83, 87-89.
    Shen L, Wu RQ, Pan H, et al. 2008, Mechanism of ferromagnetism in nitrogen-doped ZnO:First-principle calculations [J], Phys. Rev. B 78, 073306.
    Sun JW, Lu YM, Liu YC, et al. 2006, The activation energy of the nitrogen acceptor in p-type ZnO film grown by plasma-assisted molecular beam epitaxy [J], Solid State Communications 140,345-348.
    Tsukazaki A, Ohtomo A, Onuma T, et al. 2004, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J], Nat. Mater. 4,42-46.
    Vaithianathan V, Lee BT, Chang CH, et al. 2006, Characterization of As-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy [J], Appl. Phys. Lett. 88, 112103.
    Van de Walle CG,Hydrogen as a Cause of Doping in Zinc Oxide [J], Phys. Rev. Lett. 85,1012-1015.
    Wang LG and Zunger A, 2003, Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO [J], Phys. Rev. Lett. 90, 256401.
    Xiao ZY, Liu YC, Li BH, et al.2006, Electrical transport properties in nitrogen-doped p-type ZnO thin film [J], Semicond. Sci. Technol. 21, 1522-1526.
    Xiao ZY, Liu YC, Mu R,et al. 2008, Stability of p-type conductivity in nitrogen-doped ZnO thin film [J], Appl. Phys. Lett. 92, 052106.
    Xiu FX, Yang Z, Mandalapu LJ, et al. 2006, p-Type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy [J],Appl.Phys.Lett.88,052106.
    Yuen C,Yu SF,Leong ESP,et al.2007,Room temperature deposition of p-type arsenic doped ZnO polycrystalline films by laser-assist filtered cathodic vacuum arc technique [J],J.Appl.Phys.101,094905.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700