用户名: 密码: 验证码:
脉冲激光沉积氧化锌及其相关多层膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种重要的宽带隙半导体氧化物材料。其较大的禁带宽度(3.37eV)和激子束缚能(60meV)以及较好的化学稳定性,使其成为制造光电子器件的理想材料。脉冲激光沉积系统是一种相对先进的薄膜生长设备,其优点之一是可以精确地把需要生长的材料的厚度误差控制在一个极小的范围。这使得脉冲激光沉积非常适合用于研究结构复杂的ZnO薄膜。
     本论文的研究工作主要着眼于利用脉冲激光沉积方法生长ZnO及其他相关多层膜材料,研究其生长条件、性能和在制备光电子器件中潜在的应用价值。论文的研究结果概括如下:
     1.在蓝宝石衬底上550℃、60Pa氧压的条件下生长出ZnO/ZnMgO超晶格。超晶格的光致发光谱的近带边发射峰的峰位在3.3-3.5eV的范围内可控。从强度归一化的低温光致发光谱中可以观察到激子束缚能随着光学声子伴随的自由激子峰的强度变大而减小。将超晶格生长在650℃、60Pa氧压条件下沉积的ZnO缓冲层上,可以提高其质量,且具有纳米针形貌,其PL光谱具有垂直于衬底向上的方向性,该方向性与激光角度没有关系。这对研究微谐振腔有一定的应用价值。
     2.在蓝宝石衬底上550℃、60Pa氧压的条件下生长出ZnO/MgO多层膜反射器。ZnO/MgO反射器是由交替生长九个周期的ZnO和MgO构成的。实验表明,通过改变生长时间,可以控制ZnO/MgO反射器的反射波长。
     3.在蓝宝石衬底上生长一层较薄的MgO或者ZnMgO缓冲层,通过改变缓冲层的厚度,就可以极大地改变生长在缓冲层上面的ZnO层的形貌,并且观察到了纳米ZnO结构。同时通过改变MgO缓冲层的厚度和ZnO的生长速度,得知ZnO纳米结构必须在极薄MgO缓冲层与较慢的ZnO生长速度条件下才能成功制备。用ZnMgO作为缓冲层生长出来的ZnO纳米柱方向凌乱,比较适合应用在太阳能电池领域。
     4.成功制备多孔MgO。在生长速度慢,生长温度高,设备的真空度高的条件下先生长一层极薄的ZnO缓冲层,然后再生长MgO,便可成功制备多孔MgO。孔洞本身由MgO构成,而孔洞的底部是ZnO。该多孔MgO的孔洞距离大,可以用来生长纳米颗粒组间距较大的材料。
     5.用PLD生长的AlN层可以在ZnO退火的时候防止其O原子的逃逸。因为ZnO薄膜中O原子的逃逸经常会产生O空位,使p型掺杂产生困难,这一结果对制备质量更高的p型ZnO及其光电器件有潜在的应用价值。在ZnO光致发光谱中位于3.336 eV的发射峰尚未被人们理解清楚,我们证明它与ZnO的点缺陷无关,并且推测此峰可能是由ZnO位错引起的。
ZnO is an important wide gap material.Because of the wide band gap of 3.37 eV,large excition binding energy gap semiconductor of 60 meV,and high chemical stability,ZnO is an excellent candidate for the fabrication of nanoscale electronic and optoelectronic devices.The aim of this article is researching on ZnO and the related multilayers grown by pulsed laser deposition.The results are:
     1.The superlattices were directly grown by the pulsed laser deposition method.In low temperature PL,it can be observed that the coupling strength between excitons and longitudinal optical phonons is a decreasing function of wellwidth if the wellwidth is small. But if the superlattice was grown on the ZnO buffer layer,the buffer layer could not only increase the quality of superlattice,but also change the common morphology of the superlattice to the nanostructure morphology.Direction of the PL of superlattice is also almost perpendicular to the substrate and has nothing to do with the incident angle of the laser.
     This nanostructure would be useful for researching microcavity,or fabricating a 50-100 nm diameter beam of light with a strong orientation.
     2.ZnO/MgO multilayers samples were grown on sapphire(0001) substrate.The transmission and photoluminescence spectra show that the samples exhibit some Distribute Bragg Reflection phenomenon.
     3.ZnO films with different thickness MgO buffer layers have been grown on sapphire substrate.The SEM results show that the grain size in the direction parallel to the substrate surface increase with the MgO layer thickness.Thin MgO buffer layer and small growth rate of the ZnO layer are the key factors for depositing ZnO nanowires.The ZnO nanowires can be useful for frabricating solar cell.
     4.The MgO pores with thin ZnO layer at the bottom were also grown on sapphire.Thin ZnO layer on sapphire can form islands.When the substrate is sapphire,MgO is hard to be deposited on the ZnO small islands at high temperature and high vacuum.So this phenomenon can be used for fabricating the porous MgO.It is evident that porous material can be realized at high temperature and high vacuum by pulsed laser deposition method. Porous MgO can be used for fabricating the materials in which the shortest distance between the two nanoparticles is about 5 um.
     5.The ZnO films coated with AlN layers were annealed.It can be observed from room temperature photoluminescence that the ZnO films coated with AlN layers do not show a deep level peak.Because the O atoms in ZnO surface would form oxygen and increase the concentration of oxygen vacancies,which is a donor defect in ZnO,by using the high temperature stability of AlN,the oxygen vacancies could be controlled for realizing the p-type ZnO.The peak at about 3.336 eV may be due to the dislocation.
引文
[1]Anderson Janotti and Chris G.Van de Walk,Native point defects in ZnO[J].Phys.Rev.B,2007;76:165202 1-22.
    [2]F.A.Selim,M.H.Weber,D.Solodovnikov,et al.Nature of Native Defects in ZnO[J].Phys.Rev.Lett.2007;99:085502 1-4.
    [3]Fumiyasu Oba,Atsushi Togo,and Isao Tanaka,et al.Defect energetics in ZnO:A hybrid Hartree-Fock density functional study[J].Phys.Rev.B,2008;77:245202 1-6.
    [4]T.Minami,H.Nanto and S.Takata,UV emission from sputtered zinc oxide thin films[J].Thin solid films,1983;109:379-384.
    [5]N.Sakagami,M.Yamashita,T.Sekiguchi et al.Variation of electrical properties on growth sectors of ZnO single crystals[J].Journal of Crystal Growth,2001;229:98-103.
    [6]M.Liu,A.H.Kitai,P.Mascher,Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese[J].J.Lumin.,1992;54:35-42.
    [7]M.Chen,X.Wang,Y.H.Yu,X-ray photoelectron spectroscopy and auger electron Spectroscopy studies of Al-doped ZnO films[J].Applied Surface Science 2000;158:134-140.
    [8]S.Cornelius,M.Vinnichenko,N.Shevchenko,et al.Achieving high free electron mobility in ZnO:Al thin films grown by reactive pulsed magnetron sputtering[J].Appl.Phys.Lett.,2009;94:042103 1-3.
    [9]Burhan Bayraktaroglu,Kevin Leedy,and Robert Bedford,et al.High temperature stability of postgrowth annealed transparent and conductive ZnO:Al films[J].Appl.Phys.Lett.,2008;93:022104 1-3.
    [10]Bin-Zhong Dong,Guo-Jia Fang,Jian-Feng Wang,et al.Effect of thickness on structural,electrical,and optical properties of ZnO:Al films deposited by pulsed laser deposition[J].J Appl.Phys.2007;101:033713.
    [11]K.B.Sundaram,A.Khan,Characterization and optimization of zinc oxide films by r.f.magnetron sputtering[J].Thin Solid Films,1997;195:87-91.
    [12]Zhong Lin Wang and Jinhui Song,Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,Science 2006;312:242-246.
    [13]Rusen Yang,Yong Qin,Liming Dai and Zhong Lin Wang Power generation with laterally packaged piezoelectric fine wires 2009;4:34-39.
    [14]Sung-Kyu Kim,Jong-Yeog Son,Epitaxial ZnO Thin Films for the Application of Ethanol Gas Sensor:Thickness and Al-Doping Effects[J].Electrochemical and Solid-State Letters,2009;12(2):J17-J19.
    [15]Aditee Joshi,D.K.Aswal,S.K.Gupta,ZnO-nanowires modified polypyrrole films as highly selective and sensitive chlorine sensors[J].Appl.Phys.Lett.,2009;94:103115 1-3.
    [16]M.-W.Ann,K.-S.Park,J.-H.Heo,Gas sensing properties of defect-controlled ZnO-nanowire gas sensor[J].Appl.Phys.Lett.,2008;93:263103 1-3.
    [17]Jun Kwan Kim,Jung Wook Lim,Hyun Tak Kim,Fabrication of p-Type ZnO Thin Films Using rf-Magnetron Sputter Deposition[J].Electrochemical and Solid-State Letters,2009;12(4)H109-H112.
    [18]Santa Chawla,K.Jayanthi,R.K.Kotnala,Room-temperature ferromagnetism in Li-doped p-type luminescent ZnO nanorods[J].Phys.Rev.B,2009;79:125204 1-7.
    [19]Sheng Chu,Mario Olmedo,Zheng Yang,et al.Electrically pumped ultraviolet ZnO diode lasers on Si[J].Appl.Phys.Lett.,2008;93:181106 1-3
    [20]Y.Yang,X.W.Sun,B.K.Tay,et al.Ap-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation[J].Appl.Phys.Lett.,2008;93:253107 1-3.
    [21]Christian Czekalla,Chris Sturm,Rudiger Schmidt-Grund,et al.Whispering gallery mode lasing in zinc oxide microwires[J].Appl.Phys.Lett.,2008;92:241102(1-3).
    [22]R.Shimada,J.Xie,V.Avrutin,U.Ozgiir,Cavity polaritons in ZnO-based hybrid microcavities[J].Appl.Phys.Lett.2008;92:011127 1-3.
    [23]J.Kasprzak,M.Richard,S.Kundermann,et al.Bose-Einstein condensation of exciton polaritons[J].Nature,2006;443:409-414.
    [24]Xuming Bian,Jingwen Zhang,Zhen Bi,et al.Fast-response photoconductive met al-semiconductor-met al ultraviolet detector based on ZnO film grown by radio-frequency magnetron sputtering[J].Optical Engineering,2008;47(6):064001.
    [25]K.W.Liu,D.Z.Shen,C.X.Shan,et al.Zn_(0.76)Mg_(0.24)O homojunction photodiode for ultraviolet detection[J].Appl.Phys.Lett.,2007;91:201106 1-3.
    [26]Yun-Ju Lee,Douglas S.Ruby,David W.Peters,ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells[J].Nanoletters,2008;5:1501-1505;
    [27]T.Bretagnon,P.Lefebvre,T.Guillet,et al.Barrier composition dependence of the internal electric field in ZnO/Zn_(1-x)Mg_xO quantum wells[J].Appl.Phys.Lett.,2007;90:201912 1-3.
    [28]K.Koike,G.-Y.Takada,K.Fujimoto,et al.Characterization of[ZnO]_m[ZnMgO]_n multiple quantum wells grown by molecular beam epitaxy[J],Physica E(Amsterdam),2006;32:191-194.
    [29]P.Gopal and N.A.spaldin,Polarization,Piezoelectric Constants,and Elastic Constants of ZnO,MgO,and CdO[J].J.Electron.Mater.,2006;35:538-542.
    [30]A.Malashevich and D.Vanderbilt,First-principles study of polarization in Zn_(1-x)Mg_xO[J].Phys.Rev.B,2007;75:045106.
    [31]T.Makino,K.Tamura,C.H.Chia,et al.Radiative recombination of electron-hole pairs spatially separated due to quantum-confined Stark and Franz-Keldish effects in ZnO/Mg_(0.27)Zn_(0.73)0 quantum wells[J].Appl.Phys.Lett.,2002;81:2355-2357.
    [32]T.Makino,K.Tamura,C.H.Chia,et al.Temperature quenching of exciton luminescence intensity in ZnO/(Mg,Zn)0 multiple quantum wells[J].J.Appl.Phys.,2003;93:5929-5933.
    [33]Coli and G,Bajaj KK.Excitonic transitions in ZnO/MgZnO quantum well heterostructures[J].Appl.Phys.Lett.,2001;78:2861-2863.
    [34]N.T.Peiekanos,J.Ding,M.Hagerott,et al.Quasi-two-dimensional excitons in(Zn,Cd)Se/ZnSe quantum wells:Reduced exciton-LO-phonon coupling due to confinement effects[J].Phys.Rev.B,1992;45:6037-6042.
    [35]H.D.Sun,T.Makino,N.T.Tuan,et al.Temperature dependence of excitonic absorption spectra in ZnO/Zn_(0.88)Mg_(0.12)O multiquantum wells grown on lattice-matched substrates[J].Appl.Phys.Lett.,2001;78:2464-2466.
    [36]S.Kalliakos,X.B.Zhang,T.Taliercio,et al.Large size dependence of exciton longitudinal optical phonon coupling in nitride-based quantum wells and quantum boxes[J].Appl.Phys.Lett.,2002;80:428-430.
    [37]T.Bretagnon,P.Lefebvre,T.Guillet,et al.Barrier composition dependence of the internal electric field in ZnO/Zn_(1-x)Mg_rO quantum wells[J].Appl.Phys.Lett.,2007;90:201912 1-3.
    [38]K.Koike,G.-Y.Takada,K.Fujimoto,et al.[ZnO]_m[ZnMgO]_n multiple quantum wells grown by molecular beam epitaxy[J].Physica E(Amsterdam),2006;32:191.
    [39]C.Morhain,T.Bretagnon,P.Lefebvre,et al.Internal electric field in wurtzite ZnO/Zn_(0.78)Mg_(0.22)O quantum wells[J].Phys.Rev.B,2005;72:241305(R)1-4.
    [40]B.Gil,P.Lefebvre,T.Bretagnon,et al.Spin-exchange interaction in ZnO-based quantum wells[J].Phys.Rev.B,2006;74:153302 1-4.
    [41]Th.Gruber,C.Kirchner,R.Kling,et al.ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region[J].Appl.Phys.Lett.,2004;84:5359-5361.
    [42]B.P.Zhang,N.T.Binh,K.Wakatsuki,et al.Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect[J].Appl.Phys.Lett.,2005;86:032105 1-3.
    [43]Marian Zamfirescu,Alexey Kavokin,Bernard Gil,et al.ZnO as a material mostly adapted for the realization of room-temperature polariton lasers[J].Phys.Rev.B,2002;65:161205(R)1-4.
    [44]R.Shimada,Xie,V.Avrutin,U.Ozgiir,et al.Cavity polaritons in ZnO-based hybrid microcavities[J].Appl.Phys.Lett.,2002;92:011127 1-3.
    [45]Christian Czekalla,Chris Sturm,Riidiger Schmidt-Grund,et al.Whispering gallery mode lasing in zinc oxide microwires[J].Appl.Phys.Lett.,2008;92:241102 1-3.
    [46]R.Houdre,R.P.Stanley,U.Oesterle,et al.Room-temperature cavity polaritons in a semiconductor microcavity[J].Phys.Rev.B,1995;49:16761-16764.
    [47]F.Tassone and F.Bassani,Quantum-well reflectivity and exciton-polariton dispersion[J].Phys.Rev.B,1992;45:6023-6030.
    [48]G.Panzarini,Double quantum well in a semiconductor microcavity:Three oscillator model and ultrafast radiative decay[J].Phys.Rev.B,1995;52:10780-10783.
    [49]G.Panzarini and L.C.Andreani,Quantum theory of exciton polaritons in cylindrical semiconductor microcavities[J].Phys.Rev.B,1999;60:16799-16806.
    [50]E.Dupont,J.A.Gupta,and H.C.Liu,Giant vacuum-field Rabi splitting of intersubband transitions in multiple quantum wells[J].Phys.Rev.B,2007;75:205325 1-5.
    [51]A.Alyamani,D.Sanvitto,A.A.Khalifa,et al.GaN hybrid microcavities in the strong coupling regime grown by met al-organic chemical vapor deposition on sapphire substrates[J].J.Appl.Phys.,2007;101:093110 1-3.
    [52]Armitage,M.S.Skolnick,V.N.Astratov,et al.Optically induced splitting of bright excitonic states in coupled quantum microcavities[J].Phys.Rev.B,1998;57:14877-14881.
    [53]R.Huang,F.Tassone,Y.Yamamoto,Experimental evidence of stimulated scattering of excitons into microcavity polaritons[J].Phys.Rev.B,2000;61:R7854-R7857.
    [54]P.G.Savvidis,J.J.Baumberg,R.M.Stevenson,et al.Angle-Resonant Stimulated Polariton Amplifier[J].Phys.Rev.Lett.,2000;84:1547-1550.
    [55]Cristiano Ciuti,Paolo Schwendimann,and Antonio Quattropani,Parametric luminescence of microcavity polaritons[J].Phys.Rev.B,2000;63:041303(R)1-4.
    [56]T.Tawara,H.Gotoh,T.Akasaka,et al.Cavity Polaritons in InGaN Microcavities at Room Temperature[J].Phys.Rev.Lett.,2004;92:256402 1-3.
    [57]P.G.Lagoudakis,M.D.Martin,J.J.Baumberg,et al.Electron-Polariton Scattering in Semiconductor Microcavities[J].Phys.Rev.Lett.,2003;90:206401 1-4.
    [58]Guillaume Malpuech,Aldo Di Carlo,Alexey Kavokin,et al.Room-temperature polariton lasers based on GaN microcavities[J].Appl.Phys.Lett.,2002;81:412-414.
    [59]Marian Zamfirescu,Alexey Kavokin,Bernard Gil,et al.ZnO as a material mostly adapted for the realization of room-temperature polariton lasers[J].Phys.Rev.B,2002;65:161205(R)1-4.
    [60]M.Richard,J.Kasprzak,R.Andre,et al.Experimental evidence for nonequilibrium Bose condensation of exciton polaritons,Phys.Rev.B,2005;72:201301(R)1-4.
    [61]Fabrice P.Laussy,Ivan A.Shelykh and Guillaume Malpuech,et al.Effects of Bose-Einstein condensation of exciton polaritons in microcavities on the polarization of emitted light[J].Phys.Rev.B,2006;73:035315 1-10.
    [62]D.Porras,C.Ciuti,J.J.Baumberg,et al.Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities[J].Phys.Rev.B,2002;66:085304 1-11.
    [63]David Snoke,Spontaneous Bose Coherence of Excitons and Polaritons[J].Science,2002;289:1368-1372.
    [64]L.V.Butov,C.W.Lai,A.L.Ivanov,et al.Towards Bose-Einstein condensation of excitons in potential traps[J].Nature,2002;412:41-51.
    [65]J.Kasprzak,M.Richard,S.Kundermann,et al.Bose-Einstein condensation of exciton polaritons[J].Nature,2006;443:409-414.
    [66]H.Y.Fan,Temperature Dependence of the Energy Gap in Monatomic Semiconductors[J].Phys.Rev.,1950;78:808-809.
    [67]H.Y.Fan,Temperature Dependence of the Energy Gap in Semiconductors[J].Phys.Rev.,1951;82:900-905.
    [68]LL Gol'dman,V.Krivchenokov.Problem of Quantum Mechanics[M].Addison-Wesley,Reading,MA,1961;p.60.
    [69]W.Z.Shen,Y.Chang,S.C.Shen,et al.Temperature-dependent exciton behavior in quaternary GalnAsSb/AlGaAsSb strained single quantum wells[J].J.Appl.Phys.,1996;79:2139-2141.
    [70]M.Smith,J.Y.Lin,H.X.Jiang,et al.Exciton-phonon interaction in InGaN/GaN and GaN/AlGaN multiple quantum wells[J].Appl.Phys.Lett.,1997;70:2882-2884.
    [71]W.H.Zachariasen,Theory of X-ray Diffraction in Crystals[M].Wiley,New York,(1945).
    [72]Takayuki Makino,Gen Isoyaa,Yusaburo Segawa,et al.Optical characterization for combinatorial systems based on semiconductor ZnO[J].Proc.SPIE,2000;3941:28-35
    [73]A.El-Shaer,A.Bakin,A.Che Mofor,et al.Layer by layer growth of ZnO on(0001)sapphire substrates by radical-source molecular beam epitaxy[J].,Superlattices and Microstructures 2007;42:158-164.
    [74]A.Setiawan,H.J.Ko,T.Yao,Effects of annealing of MgO buffer layer on structural quality of ZnO layers grown by P-MBE on c-sapphire[J].,Materials Science in Semiconductor Processing 2003;6:371-374.
    [75]B.Pecz,A.El-Shaer,A.Bakin,et al.Structural characterization of ZnO films grown by molecular beam epitaxy on sapphire with MgO buffer[J].J Appl.Phys.,2006;100:103506 1-7.
    [76]Zhengping Fu,Weiwei Dong,Beifang Yang,et al.Effect of MgO on the enhancement of ultraviolet photoluminescence in ZnO[J].Solid State Communications,2006;138:179-183.
    [77]Z.W.Pan,Z.R.Dai,and Z.L.Wang,Nanobelts of Semiconducting Oxides[J].Science,2001;291:1947-1949.
    [78]Y.C.Kong,D.P.Yu,B.Zhang,et al.Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J].Appl.Phys.Lett.,2001;78:407-409.
    [79]O.G.Schmidt and K.Eberl,Nanotechnology:Thin solid films roll up into nanotubes[J].Nature(London),2001;410:168.
    [80]M.S.Gudiksen,L.J.Lauhon,J.Wang,et al.Growth of nanowire superlattice structures for nanoscale photonics and electronics[J].Nature(London),2002;415:617.
    [81]X.D.Wang,C.J.Summers,and Z.L.Wang,Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays[J].Nano Lett.,2004;4:423.
    [82]P.D.Yang,H.Q.Yan,S.Mao,Controlled Growth of ZnO Nanowires and Their Optical Properties[J].Adv.Funct.Mater.,2002;12:323.
    [83]Q.Wan and T.H.Wang,Enhanced photocatalytic activity of ZnO nanotetrapods[J].Appl.Phys.Lett.,2005;87:083105 1-3.
    [84]J.O.Hu,Q.Li,X.M.Meng,et al.Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes[J].Chem.Mater.,2003;15:305-308.
    [85]J.Lao,Y.Huang,D.Z.Wang,et al.ZnO Nanobridges and Nanonails[J].Nano Lett.,2003;3:235.
    [86]J.Q.Hu,Y.Bando,J.H.Zhan,et al.Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets[J].Appl.Phys.Lett.,2003;83:4414-4416.
    [87]P.X.Gao,Y.Ding,W.J.Mai,et al.Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices[J].Science,2005;309:1700.
    [88]H.Take,T.Matsumoto,and K.Yoshino,Anodic properties of porous carbon with periodic nanosturctrue[J].Synth.Met.,2003;135;731-732.
    [89]S.Shiraishi,H.Kurihara,H.Tsubota,et al.Electric Double Layer Capacitance of Highly Porous Carbon Derived from Lithium Met al and Polytetrafluoroethylene[J].Electrochem.Solid-State Lett.,2001;4;A5-8.
    [90]S.Han,Y.Yun,K.-W.Park,et al.Simple Solid-Phase Synthesis of Hollow Graphitic Nanoparticles and their Application to Direct Methanol Fuel Cell Electrodes,Adv.Mater.(Weinheim,Ger),[J].2003;15;1922-1925.
    [91]J.S.Yu,S.Kang,S.B.Yoon,et al.Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter[J].J.Am.Chem.Soc,2002;124;9382-9383.
    [92]Ryan William Sporer,Uziel Landau,Hong-Hsiang Harry Kuo,et al.A Process for Etching Modulated Profiles[J].J.Elec.Soc,2008;155;D651-659.
    [93]Parthasarathy,R.Martin,C.R.Synthesis of polymeric microcapsule arrays and their use for enzyme I mmobilization[J].Nature,1994;369:289-301.
    [94]H.Tsuji,F.Yagi,H.Hattori,H.Kita,Self-Condensation of ?-Butyraldehyde over Solid Base Catalysts[J].J.Catal,1994;148;759-770.
    [95]A.Bhargava,J.A.Alarco,I.D.R.Mackinnon,et al.Synthesis and characterisation of nanoscale magnesium oxide powders and their application in thick films of Bi_2Sr_2CaCu_2O_8[J].Mater.Lett.,1998;34;133-142.
    [96]Y.S.Yuan,M.S.Wong,S.S.Wang,Solid-state processing and phase development of bulk(MgOX/BPSCCO high-temperature superconducting composite[J].J.Mater.Res.,1996;11;8-17.
    [97]P.D.Yang,CM.Lieber,Nanorod-Superconductor Composites:A Pathway to Materials with High Critical Current Densities[J].Science,1996;273;1836-1840.
    [98]A.El-Shaer,A.Bakin,A.Che Mofor,et al.Layer by layer growth of ZnO on(0001)sapphire substrates by radical-source molecular beam epitaxy[J].Superlattices and Microstrucrures,2007;42;158-164.
    [99]H.Take,T.Matsumoto,and K.Yoshino,Anodic Properties of Porous Carbon with Periodic Nanostructure[J].Synth.Met.,2003;135:731.
    [100]S.Han,Y.Yun,K.-W.Park,et al.Simple Solid-Phase Synthesis of Hollow Graphitic Nanoparticles and their Application to Direct Methanol Fuel Cell Electrodes[J].Adv.Mater.(Weinheim,Ger),2003;15:1922.
    [101]J.S.Yu,S.Kang,S.B.Yoon,et al.Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter[J].J.Am.Chem.Soc,2002;124,9382
    [102]Bingqiang Cao,Fengqiang Sun,and Weiping Cai,Electrodeposition-Induced Highly Oriented Zinc Oxide Ordered Pore Arrays and Their Ultraviolet Emissions[J].Electrochemical and Solid-State Letters,2005;8:G237-G240.
    [103]W.Li,D.Mao,F.Zhang,et al.Characteristics of ZnO:Zn phosphor thin films by post-deposition annealing[J].Nucl.Instrum.Methods Phys.Res.B,2000;169:59-63.
    [104]G.Long and L.M.Foster,Aluminum Nitride,a Refractory for Aluminum to 2000℃[J].J.Am.Ceram.Soc,1959;2:53-59.
    [105]Kohei Ueno,Atsushi Kobayashi,Jitsuo Ohta,et al.Epitaxial growth of nonpolar A1N films on ZnO substrates using room temperature grown GaN buffer layers[J].Appl.Phys.Lett.,2007;91:081915 1-3.
    [106]E.Muller,D.Gerthsen,P.Bruckner,F.Scholz,Th.Gruber,A.Waag,Probing the electrostatic potential of charged dislocations in n-GaN and ?-ZnO epilayers by transmission electronholography[J].Phys.Rev.B,2006;73;245316 1-9.
    [107]C.Bekeny,T.Voss,B.Hilker,et al.Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods[J]J.Appl.Phys.,2007;102;044908 1-5.
    [108]H.Alves,D.Pfisterer,A.Zeuner,et al.Optical investigations on excitons bound to impurities and dislocations in ZnO[J].Opt.Mater,(msterdam,Neth.),2003;23;33 1-2.
    [109]Fumiyasu Oba,Atsushi Togo,Isao Tanaka,et al.Defect energetics in ZnO:A hybrid Hartree-Fock density functional study[J].Phys.Rev.B,2008;77;245202 1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700