用户名: 密码: 验证码:
蜜蜂保幼激素终端合成相关酶基因分子克隆、鉴定及其在级型发育过程中的表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜜蜂Apis mellifera作为高度真社会性昆虫,已成为社会生物学研究的模式生物。社会性昆虫的生殖劳动分工具有重要的进化意义,而级型分化是形成生殖劳动分工的基础。已有的研究成果为人们描绘出一个相对完善的级型分化调控网络。然而,仍有许多问题值得进一步探索,例如:影响级型分化各分表型——个体大小、发育时长、卵巢大小——的具体分子机制;保幼激素等重要内分泌因子的产生和作用的具体分子途径等。本研究借助新一代高通量测序技术,检测了蜜蜂蜂王和工蜂幼虫级型发育过程基因表达谱。同时,克隆和鉴定了蜜蜂保幼激素(juvenile hormone, JH)生物合成终端步骤相关3种酶基因——保幼激素酸甲基转移酶基因AmJHAMT、细胞色素P45015A1基因AmCYP15A1和法尼酸甲基转移酶基因AmFAMeT,并结合蜜蜂级型发育过程分析了这3个基因可能发挥的功能。主要研究结果如下:
     1.基于新一代测序技术的蜜蜂级型分化数字化基因表达谱
     本研究采用基于Illumina/Solexa高通量测序技术的数字化基因表达谱方法(digital gene expression profile, DGE),检测了西方蜜蜂蜂王和工蜂幼虫级型发育表达谱。分别从蜂王和工蜂两个DGE测序文库中获得了约760万和890万的可靠标签,相应的独立标签数目分别约为8.7万和10.0万。差异基因表达分析揭示,在蜂王幼虫中分别有1278个显著上调表达基因以及1451个显著下调表达基因,在最显著上调的50个基因中,多数是代谢酶类基因,同时还包括2个参与保幼激素合成的基因——-JHAMT和CYP15A1.相对地,工蜂幼虫最显著上调的基因仅有少数是代谢酶类基因。有62,417个无法比对到参考标签数据库的独立标签唯一比对到蜜蜂基因组序列中,运用Genscan对它们进行基因预测,获得了9,258个候选基因,其中有3,566个候选基因长度超过300nt。GO分析揭示这些候选基因可能参与胚后发育、生殖发育和有性生殖等生理过程。
     2.蜜蜂JHAMT酶基因分子克隆、鉴定及其在级型分化中的功能研究
     保幼激素酸甲基转移酶(juvenile hormone acid methyltransferase, JHAMT)是一种参与昆虫体内保幼激素终端合成步骤的酶,它将来源于S-腺苷-L-甲硫氨酸(S-adenosyl-L-methionine, SAM)的甲基转移到法尼酸(farnesoic acid, FA)(或保幼激素酸,juvenile hormone acid,JHA)的羧基上。运用RACE技术克隆了西方蜜蜂.JHAMT基因——AmJHAMT的全长cDNA,其长度为1253bp,编码一个278aa的蛋白质,该蛋白与已知的JHAMT蛋白有32%-36%的序列一致性.AmJHAMT包含在SAM依赖性甲基转移酶超家族中保守的SAM结合基序——“基序I”。它的二级结构同样包含SAM甲基转移酶超家族成员典型的核心折叠。同时,那些与SAM及酶促底物——FA或JHA——结合的活性位点在AmJHAMT序列中仍然保守。在大肠杆菌中表达了AmJHAMT蛋白,并用重组蛋白制备了相应的多克隆抗体;运用免疫印迹和质谱技术进一步验证了预测的AmJHAMT蛋白氨基酸序列的正确性。荧光定量PCR和免疫印迹分析显示,在级型发育过程中,蜂王比工蜂表达更多的AmJHAMT mRNA和蛋白质;同时,蜂王与工蜂的AmJHAMT mRNA和蛋白质时序表达谱与JH滴度变化保持相似的波动模式。
     3.蜜蜂CYP15A1酶基因分子克隆、鉴定及其在级型分化过程中的表达
     细胞色素P450超家族(cytochrome P450superfamily, CYP)的CYP15家族成员(如CYP15A1)催化昆虫JH终端合成步骤的环氧化反应(oxidation),使甲基法尼酯(methyl farnesoate, MF)转变为JH。本研究从西方蜜蜂幼虫中克隆了包含完整ORF的CYP15A1基因——AmCYP15A1,其ORF长为1515bp,编码含504aa的蛋白。多重比对分析发现,AmCYP15A1与多数昆虫CYP15序列一致性低于50%,然而AmCYP15A1以及其他昆虫CYP15蛋白都含有构成CYP蛋白一般结构折叠相应的基序,以及N端膜锚及铰链等CYPs特征结构。系统发生分析显示,AmCYP15A1先后与来自膜翅目、双翅目、鞘翅目、直翅目、蜚蠊目、半翅目以及虱目昆虫的CYP15s聚集成为一个主进化枝,而鳞翅目昆虫CYP15s独立构成另一个主进化枝。在级型发育过程的绝大多数时期,蜂王中的AmCYP15A1mRNA表达丰度显著高于工蜂,尤其是在级型发育的关键窗口期(也称JH敏感期)。另一方面,从表达趋势上来看,无论是在蜂王,还是在工蜂中,AmCYP15A1基因表达丰度均在幼虫L5F时期达到峰值,随后迅速下降,直至Pw期呈现很低的表达水平,这与末龄期-蛹期过程JH滴度变化保持一致。
     4.蜜蜂FAMeT酶基因分子克隆、鉴定及其在级型发育过程中的表达
     法尼酸甲基转移酶(Farnesoic acid O-methyltransferase, FAMeT)被认为参与JH终端合成过程——FAMeT以SAM为辅助因子催化FA转变为MF。本研究从西方蜜蜂幼虫中成功克隆得到FAMeT基因——AmFAMeT,其cDNA ORF长为891bp,编码含296aa蛋白。多重比对分析表明, AmFAMeT与来自昆虫的FAMeT序列具有更高的一致性(54%-85%),而与甲壳动物的序列一致性较低(<50%)。比较AmFAMeT基因在蜂王和工蜂幼虫相同发育阶段的表达丰度可知,在多数情况下,二者AmFAMeT表达水平无显著差异,同时,基因表达趋势互不一致,且与JH滴度变化也无明显一致性。
     综上所述,蜜蜂级型分化是一个伴随着剧烈基因差异表达的过程。AmJHAMT与AmCYP15A1分别是蜜蜂中真实存在的JHAMT酶基因及CYP15酶基因,它们通过调控JH终端生物合成而参与级型分化调节。AmFAMeT与蜜蜂级型分化无关联,可能已失去了催化JH合成的功能。
As a highly eusocial insect, the honey bee, Apis mellifera, has become a model organism in sociobiology. The reproductive division of labor in social insects, based on caste differentiation, is of great significance in evolution. People have been able to build a relatively complete regulatory network of honey bee caste differentiation with the exiting results. However, there are still many issues worthy of further exploration, such as the molecular mechanisms determining the expression of sub-phenotypes like body size, developmental duration, and ovary size, as well as the molecular pathways involved in the biosynthesis and actions of the important endocrine factors such as Juvenile hormone (JH). In this study, the next-generation sequencing (NGS) technology was employed to detect the gene expression profiles of queen and worker caste development. Three genes AmJHAMT, AmCYP15A1and AmFAMeT involved in the final steps of JH biosynthesis in honey bees were cloned and characterized, and their putative functions for honey bee caste development were investigated. The main findings were as follows:
     1. Next-generation sequencing-based digital gene expression profiles during honeybee caste differentiation
     In this study, the digital gene expression profiling (DGE) was used to detect gene expression profiles responding to the queen and worker caste development. About7.6million and8.9million clean tags, with87,000and100,000distinct tags were obtained from the queen and worker DGE sequencing library, respectively.1,278and1,451genes were found to be significantly up-regulated and down-regulated in queen larvae compared with worker larvae. The majority of the top50significantly up-regulated genes in queen larvae were metabolic enzymes, and two juvenile hormone synthesis-related genes, JHAMT and CYP15A1were also included in this set. In contrast, only a few metabolic enzymes were detected in the50most significantly up-regulated gene list of worker larvae. There were62,417entities uniquely mapped to the honey bee genome, which failed to map to the reference tag database, and9,258candidate genes were obtained by gene prediction from these entities using Genscan program, of which3,566candidate genes were longer than300nt. GO analysis revealed that these candidate genes might be involved in the embryonic development, reproductive development and sexual reproduction.
     2. Molecular cloning and characterization of JHAMT in A. mellifera, and its functions during caste differentiation
     Juvenile hormone acid methyltransferase (JHAMT) is an enzyme involved in one of the final steps of juvenile hormone biosynthesis in insects, which transfers a methyl group from S-adenosyl-L-methionine (SAM) to the carboxyl group of either farnesoic acid (FA) or JH acid (JHA). RACE amplification method was used to clone JHAMT cDNA from the honey bee, Apis mellifera(AmJHAMT). The full length cDNA of AmJHAMT was1253bp long and encoded a278-aa protein that shared32%-36%identity with known JHAMTs. A SAM-binding motif, conserved in the SAM-dependent methyltransferase (SAM-MT) superfamily, was present in AmJHAMT. Its secondary structure also contained a typical SAM-MT fold. Most of the active sites bound with SAM and substrates (JHA or FA) were conserved in AmJHAMT as in other JHAMT orthologs. Purified recombinant AmJHAMT protein expressed in E. coli was used to produce polyclonal antibodies, and the identity of AmJHAMT was verified latter by immunoblotting and mass spectrometry. Quantitative RT-PCR and immunoblotting analyses revealed that queen larvae contained significantly higher levels of AmJHAMT mRNA and protein than worker larvae during the periods of caste development. The temporal profiles of both AmJHAMT mRNA and protein in queens and workers showed a similar pattern as the JH biosynthesis.
     3. Molecular cloning and characterization of CYP15A1in A. mellifera, and its expression during caste differentiation
     The CYP15family members like CYP15A1of Cytochrome P450superfamily (CYP) catalyze the epoxidation reaction of the final steps of JH biosynthesis in insects, which transfers methyl farnesoate (MF) to JH. In this study, a putative CYP15A1gene, named AmCYP15A1, was cloned from the queen larvae of A. mellifera. It contained an1515bp ORF, which encoded an504aa protein. Multiple alignment analysis showed a relatively low identity between AmCYP15A1with most other insect CYP15s (<50%). However, AmCYP15A1and the other insect CYP15s all contained the motifs constituting the general CYP structure fold, and some other characteristic structures of CYPs, like N-terminal membrane anchor and hinges and so on. Phylogenetic analysis displayed that AmCYP15A1was successively clustered with the CYP15orthologs of insects from Hymenoptera, Diptera, Coleoptera, Orthoptera, Blattodea, and Hemiptera, which finally formed a major clade. However, the other major clade was constituted only by Lepidopteran CYP15s. The gene expression level of AmCYP15A1was determined by qPCR, and the result showed that the AmCYP15A1mRNA expression levels in queens were significantly higher than those in workers during most of developmental stages, especially for the physiologically critical temporal window of caste differentiation (also known as JH-sensitive period). On the other hand, the AmCYP15A1mRNA levels of both queens and workers peaked in the feeding stage of the5th instar, and then decreased rapidly to a low level until the white-eyed pupal stage, which was consist with JH biosynthesis activity.
     4. Molecular cloning and characterization of FAMeT in A. mellifera, and its expression during caste development
     Farnesoic acid methyl transferases (FAMeT) are thought to be involved in the terminal steps of JH biosynthesis, which catalyzes the methylation of FA to MF using the cofactor SAM. In this study, a putative FAMeT gene, namely AmFAMeT, was cloned from the queen larvae of western honey bees. It contained an891bp ORF which encoded an504aa protein. Multiple alignment analysis indicated that AmFAMeT had a higher identity with insects FAMeTs (54%-85%) when compared with crustacean ones (<50%). Comparison of AmFAMeT expression abundance between queen and workers showed that there were no significant differences for the most of caste developmental stages. Meanwhile, the trends of gene expression differed between the two castes, and were both not consist with the JH biosynthesis.
     In a word, our results suggest that:1) Honey bee caste differentiation is a process with significantly differential gene expression;2) AmJHAMT and AmCYP15A1are real JHAMT and CYP15enzyme genes in A. mellifera, which involve in the regulation of caste differentiation by control the terminal biosynthesis of JH;3) AmFAMeT is not related to the caste development, and may lose the function of catalyzing final reactions of JH biosynthesis.
引文
't Hoen, P.A.C., Ariyurek, Y., Thygesen, H.H., et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms[J]. Nucleic Acids Research,2008: gkn705.
    Adams, M.D. Celniker, S.E. Holt, R.A., et al. The genome sequence of Drosophila melanogaster[J]. Science, 2000, 287(5461):2185-2195.
    Altschul, S.F., Gish, W., Miller, W., et al. Basic local alignment search tool[J]. Journal of Molecular Biology, 1990,215(3):403-410.
    Ando, T., Fujiyuki, T., Kawashima, T., et al. In vivo gene transfer into the honeybee using a nucleopolyhedrovirus vector[J]. Biochemical and Biophysical Research Communications, 2007,352(2):335-340.
    Asencot, M. and Lensky, Y. The effect of sugars and juvenile hormone on the differentiation of the female honeybee larvae (L.) to queens[J]. Life Science,1976, 18(7):693-699.
    Asencot, M. and Lensky, Y. The effect of soluble sugars in stored royal jelly on the differentiation of female honeybee (Apis mellifera L.) larvae to queens[J]. Insect Biochemistry, 1988, 18(2):127-133.
    Audic, S. and Claverie, J.M. The significance of digital gene expression profiles[J]. Genome Research,1997,7(10):986-995.
    Barchuk, A., Cristino, A., Kucharski, R., et al. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera[J]. BMC Developmental Biology, 2007, 7(1): 70.
    Barker, S.A., Foster, A.B., Lamb, D.C., et al. Biological origin and configuration of 10-hydroxy-2-decenoic acid[J].Nature, 1959,184(4686):634-634.
    Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
    Bartel, D.P. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.
    Belles, X., Martin, D., and Piulachs, M.D. The mevalonate pathway and the synthesis of juvenile hormone in insects[J]. Annual Review of Entomology, 2005, 50(1):181-199.
    Benjamini, Y. and Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing[J]. Journal of the Royal Statistical Society Series B (Methodological), 1995, 57(1):289-300.
    Bird, A. DNA methylation patterns and epigenetic memory[J]. Genes & Development, 2002, 16(1):6-21.
    Brogiolo, W., Stocker, H., Ikeya, T., et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control[J]. Current Biology, 2001,11(4):213-221.
    Bryden, J., Gill, R.J., Mitton, R.A.A., et al. nic sublethal stress causes bee colony failure[J]. Ecology Letters,2013,16(12):1463-1469.
    Burtenshaw, S.M., Su, P.P., Zhang, J.R., et al. A putative farnesoic acid O-methyltransferase (FAMeT) orthologue in Drosophila melanogaster (CG10527): relationship to juvenile hormone biosynthesis[J]? Peptides, 2008, 29(2):242-251.
    Bustin, S.A., Benes, V., Garson, J.A., et al. The MIQE guidelines:minimum information for publication of quantitative real-time PCR experiments[J]. Clinical Chemistry, 2009, 55(4): 611-622.
    Capella, I.C.S. and Hartfelder, K. Juvenile hormone effect on DNA synthesis and apoptosis in caste-specific differentiation of the larval honey bee (Apis mellifera L.) ovary[J]. Journal of Insect Physiology, 1998,44(5-6):385-391.
    Chen, S., Su, S., and Lin, X. An introduction to high-yielding royal jelly production methods in China[J]. Bee World, 2002, 83:69-77.
    Chen, X., Hu, Y., Zheng, H., et al. Transcriptome comparison between honey bee queen- and worker-destined larvae. Insect Biochemistry and Molecular Biology,2012,42(9):665-673.
    Cloonan, N., Forrest, A.R.R., Kolle, G., et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing[J]. Nature Methods, 2008, 5(7):613-619.
    Cole, C., Barber, J.D., and Barton, G.J. The Jpred 3 secondary structure prediction server[J]. Nucleic Acids Research, 2008, 36(suppl 2):W197-W201.
    Daimon, T., Kozaki, T., Niwa, R., et al. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori[J]. PLoS Genetics, 2012,8(3): e1002486.
    Daimon, T. and Shinoda, T. Function, diversity, and application of insect juvenile hormone epoxidases (CYP15) [J]. Biotechnology and Applied Biochemistry,2013,60(1):82-91.
    Dawson, Mark A. and Kouzarides, T. Cancer epigenetics:from mechanism to therapy[J]. Cell, 2012,150(1):12-27.
    de Azevedo, S.V. and Hartfelder, K. The insulin signaling pathway in honey bee (Apis mellifera) caste development-differential expression of insulin-like peptides and insulin receptors in queen and worker larvae[J]. Journal of Insect Physiology, 2008,54(6): 1064-1071.
    Dearden, P.K., Duncan, E.J., and Wilson, M.J. The honeybee Apis mellifera[J]. Cold Spring Harbor Protocols, 2009,2009(6):pdb.emo123.
    Dedej, S., Hartfelder, K., Aumeier, P., et al. Caste determination is a sequential process:effect of larval age at grafting on ovariole number, hind leg size and cephalic volatiles in the honey bee (Apis mellifera carnica) [J]. Journal of Apicultural Research, 1998, 37(3):183-190.
    Defelipe, L.A., Dolghih, E., Roitberg, A.E. et al. Juvenile hormone synthesis:"esterify then epoxidize" or "epoxidize then esterify"? Insights from the structural characterization of juvenile hormone acid methyltransferase[J]. Insect Biochemistry and Molecular Biology, 2011,41(4):228-235.
    Di Prisco, G., Cavaliere, V., Annoscia, D., et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees[J]. Proceedings of the National Academy of Sciences, 2013,110(46):18466-18471.
    Dietz, A., Hermann, H.R., and Blum, M.S. The role of exogenous JH I, JH III and Anti-JH (precocene II) on queen induction of 4.5-day-old worker honey bee larvae[J]. Journal of Insect Physiology,1979,25(6):503-512.
    Dong, S.Z., Ye, G.Y., Guo, J.Y., et al. Roles of ecdysteroid and juvenile hormone in vitellogenesis in an endoparasitic wasp, Pteromalus puparum (Hymenoptera: Pteromalidae). General and Comparative Endocrinology,2009,160(1):102-108.
    Edgar, B.A. How flies get their size:genetics meets physiology[J]. Nature Review Genetics, 2006,7(12):907-916.
    Elango, N., Hunt, B.G, Goodisman, M.A.D., et al. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27):11206-11211.
    Elsik, C., Mackey, A., Reese, J., et al. Creating a honey bee consensus gene set[J]. Genome Biology, 2007, 8(1):R13.
    Esquela-Kerscher, A. and Slack, F.J. Oncomirs-microRNAs with a role in cancer[J]. Nature Review Cancer,2006, 6(4):259-269.
    Evans, J.D. and Wheeler, D.E. Differential gene expression between developing queens and workers in the honey bee, Apis mellifera[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(10):5575-5580.
    Evans, J.D. and Wheeler, D.E. Expression profiles during honeybee caste determination[J]. Genome Biology, 2000,2(1):research0001.0001-research0001.0006.
    Evans, J.D. and Wheeler, D.E. Gene expression and the evolution of insect polyphenisms[J]. Bioessays,2001,23:62-68.
    Feil, R. Environmental and nutritional effects on the epigenetic regulation of genes[J]. Mutation Research/Fundamental and Molecular Mechanisms ofMutagenesis, 2006, 600(1-2): 46-57.
    Feyereisen, R., Pratt, G.E., and Hamnett, A.F. Enzymic synthesis of juvenile hormone in locust corpora allata:Evidence for a microsomal cytochrome P-450 linked methyl farnesoate epoxidase[J]. European Journal of Biochemistry, 1981,118(2):231-238.
    Flatt, T., Tu, M.P., and Tatar, M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history[J]. Bioessays, 2005, 27(10): 999-1010.
    Fluri, P., Luscher, M., Wille, H., et al. Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees[J]. Journal of Insect Physiology, 1982,28(1):61-68.
    Foret, S., Kucharski, R., Pellegrini, M., et al. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees[J]. Proceedings of the National Academy of Sciences, 2012, 109(13):4968-4973.
    Gotz, S., Garcia-Gomez, J.M., Terol, J., et al. High-throughput functional annotation and data mining with the Blast2GO suite[J]. Nucleic Acids Research, 2008, 36(10):3420-3435.
    Garofalo, R.S. Genetic analysis of insulin signaling in Drosophila[J]. Trends in Endocrinology and Metabolism, 2002,13(4):156-162.
    Gasteiger, E., Hoogland, C., Gattiker, A., et al. Protein identification and analysis tools on the ExPASy Server[M]. in The Proteomics Protocols Handbook (ed. J.M. Walker). Humana Press, 2005, pp.571-607.
    Gilbert, L.I., A. Granger, N., and Roe, R.M. The juvenile hormones: historical facts and speculations on future research directions[J]. Insect Biochemistry and Molecular Biology, 2000,30(8-9):617-644.
    Goldberg, A.D., Allis, C.D., and Bernstein, E. Epigenetics: a landscape takes shape. Cell, 2007, 128(4): 635-638.
    Goodman, W.G. and Granger, N.A. The juvenile hormones[M]. in Comprehensive Molecular Insect Science (ed. I.G Lawrence, I. Kostas, and S.G. Sarjeet). Elsevier, Amsterdam, 2005, pp. 319-408.
    Graham, S.E. and Peterson, J.A. How similar are P450s and what can their differences teach us[J]? Archives ofBiochemistiy and Biophysics, 1999, 369(1):24-29.
    Guidugli, K.R., Hepperle, C., and Hartfelder, K. A member of the short-chain dehydrogenase/reductase (SDR) superfamily is a target of the ecdysone response in honey bee(Apis mellifera) caste development[J]. Apidologie, 2004,35(1):37-47.
    Guo, X., Su, S., Skogerboe, G. et al. Recipe for a busy bee:microRNAs in honey bee caste determination[J]. PLoS One, 2013,8(12):e81661.
    Hammock, B.D. NADPH dependent epoxidation of methyl farnesoate to juvenile hormone in the cockroach Blaberus giganteus L.[J]. Life Sciences, 1975,17(3):323-328.
    Hartfelder, K. and Engels, W. Social insect polymorphism:hormonal regulation of plasticity in development and reproduction in the honeybee[M]. in Current Topics in Developmental Biology (ed. R.A. Pedersen and G.P. Schatten). Academic Press, 1998, pp. 45-77.
    Hartfelder, K. and Steinbruck, G. Germ cell cluster formation and cell death are alternatives in caste-specific differentiation of the larval honey bee ovary[J]. Invertebrate Reproduction & Development, 1997, 31(1):237-250.
    Haydak, M.H. Honey bee nutrition. Annual Review of Entomology, 1970, 15(1):143-156.
    He, P., He, H.Z., Dai, J., et al. The human plasma proteome:analysis of Chinese serum using shotgun strategy[J]. Proteomics, 2005,5(13):3442-3453.
    Hegedus, Z., Zakrzewska, A., Agoston, V.C., et al. Deep sequencing of the zebrafish transcriptome response to mycobacterium infection[J]. Molecular Immunology,2009, 46(15):2918-2930.
    Helvig, C., Koener, J.F., Unnithan, G.C., et al. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(12):4024-4029.
    Henry, M., Beguin, M., Requier, F., et al. A common pesticide decreases foraging success and survival in honey bees. Science,2012,336(6079):348-350.
    Holford, K.C., Edwards, K.A., Bendena, W.G., et al. Purification and characterization of a mandibular organ protein from the American lobster, Homarus americanus: a putative farnesoic acid O-methyltransferase. Insect Biochemistry and Molecular Biology, 2004, 34(8):785-798.
    Holt, R.A. Subramanian, G.M. Halpern, A., et al. The genome sequence of the malaria mosquito Anopheles gambiae[J]. Science, 2002,298(5591):129-149.
    Hui, J.H.L., Hayward, A., Bendena, W.G., et al. Evolution and functional divergence of enzymes involved in sesquiterpenoid hormone biosynthesis in crustaceans and insects[J]. Peptides, 2010,31(3):451-455.
    Hui, J.H.L., Tobe, S.S., and Chan, S.M. Characterization of the putative farnesoic acid O-methyltransferase (LvFAMeT) cDNA from white shrimp, Litopenaeus vannamei: evidence for its role in molting[J]. Peptides, 2008, 29(2):252-260.
    Hunter, S., Apweiler, R., Attwood, T.K., et al. InterPro:the integrative protein signature database[J]. Nucleic Acids Research, 2009, 37(suppl 1):D211-D215.
    Jaenisch, R. and Bird, A. Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J]. Nature Genetics, 2003,33:245-254.
    Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices[J]. Journal of Molecular Biology, 1999, 292(2):195-202.
    Jones, P.A. and Baylin, S.B. The fundamental role of epigenetic events in cancer[J]. Nature Review Genetics,2002,3(6):415-428.
    Kagan, R.M. and Clarke, S. Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes[J]. Archives of Biochemistry and Biophysics, 1994, 310(2): 417-427.
    Kamakura, M. Signal transduction mechanism leading to enhanced proliferation of primary cultured adult rat hepatocytes treated with royal jelly 57-kDa protein[J]. Journal of Biochemistry, 2002,132(6):911-919.
    Kamakura, M. Royalactin induces queen differentiation in honeybees[J]. Nature, 2011, 473(7348):478-483.
    Kamakura, M., Fukuda, T., Fukushima, M., et al. Storage-dependent degradation of 57-kDa protein in royal jelly: a possible marker for freshness[J]. Bioscience, Biotechnology, and Biochemistry, 2001a, 65(2): 277-284.
    Kamakura, M., Suenobu, N., and Fukushima, M. Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum[J]. Biochemical and Biophysical Research Communications, 2001b, 282(4):865-874.
    Kinjoh, T., Kaneko, Y., Itoyama, K., et al. Control of juvenile hormone biosynthesis in Bombyx mori:cloning of the enzymes in the mevalonate pathway and assessment of their developmental expression in the corpora allata[J]. Insect Biochemistry and Molecular Biology,2007, 37(8):808-818.
    Kucharski, R., Maleszka, J., Foret, S., et al. Nutritional control of reproductive status in honeybees via DNA methylation[J]. Science, 2008, 319:1827-1830.
    Kunert, N., Marhold, J., Stanke, J. et al. A Dnmt2-like protein mediates DNA methylation in Drosophila[J]. Development, 2003,130(21):5083-5090.
    Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970,227(5259):680-685.
    Larkin, M.A., Blackshields, G., Brown, N.P., et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948.
    Laufer, H., Borst, D., Baker, F.C., et al. Identification of a juvenile hormone-like compound in a crustacean[J]. Science, 1987, 235(4785):202-205.
    Liu, S., Zhang, C., Yang, B., et al. Cloning and characterization of a putative farnesoic acid O-methyltransferase gene from the brown planthopper, Nilaparvata lugens[J]. Journal of Insect Science, 2010,10(103):1-11.
    Livak, K.J. and Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001,25(4): 402-408.
    Lyko, F., Ramsahoye, B.H., and Jaenisch, R. DNA methylation in Drosophila melanogaster[J]. Nature, 2000, 408(6812): 538-540.
    Mackert, A., do Nascimento, A.M., Bitondi, M.M.G, et al. Identification of a juvenile hormone esterase-like gene in the honey bee, Apis mellifera L. — expression analysis and functional assays[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2008, 150(1):33-44.
    Maleszka, R. Epigenetic integration of environmental and genomic signals in honey bees: the critical interplay of nutritional, brain and reproductive networks[J]. Epigenetics, 2008, 3(4): 188-192.
    Marchal, E., Zhang, J., Badisco, L., et al. Final steps in juvenile hormone biosynthesis in the desert locust, Schistocerca gregaria[J]. Insect Biochemistry and Molecular Biology, 2011, 41(4):219-227.
    Marchler-Bauer, A., Lu, S., Anderson, J.B., et al. CDD:a Conserved Domain Database for the functional annotation of proteins[J]. Nucleic Acids Research, 2011, 39(suppl 1): D225-D229.
    Martin, J.L. and McMillan, F.M. SAM (dependent) I AM:the S-adenosylmethionine-dependent methyltransferase fold[J]. Current Opinion in Structural Biology, 2002,12(6):783-793.
    Matsumoto, T. Reduction in homing flights in the honey bee Apis mellifera after a sublethal dose of neonicotinoid insecticides[J]. Bulletin of Insectology, 2013,66(1):1-9.
    Mayoral, J.G., Nouzova, M., Yoshiyama, M., et al. Molecular and functional characterization of a juvenile hormone acid methyltransferase expressed in the corpora allata of mosquitoes[J]. Insect Biochemistry and Molecular Biology,2009,39(1):31-37.
    Melampy, R.M. and Willis, E.R. Respiratory metabolism during larval and pupal development of the female honeybee (Apis mellifica L.)[J]. Physiological Zoology, 1939, 12(3):302-311.
    Menzel, R. Searching for the memory trace in a mini-brain, the honeybee[J]. Learning & Memory,2001,8(2):53-62.
    Metzker, M.L. Sequencing technologies — the next generation [J]. Nature Review Genetics, 2010, 11(1):31-46.
    Michelette, E.R.D. and Soares, A.E.E. Characterization of preimaginal developmental stages in africanized honey bee workers (Apis mellifera L.)[J], Apidologie, 1993,24(4):431-440.
    Minakuchi, C., Namiki, T., Yoshiyama, M., et al. RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum[J]. FEBS Journal, 2008,275(11):2919-2931.
    Morozova, O. and Marra, M.A. Applications of next-generation sequencing technologies in functional genomics[J], Genomics, 2008, 92(5):255-264.
    Morrissy, A.S., Morin, R.D., Delaney, A. et al. Next-generation tag sequencing for cancer gene expression profiling[J]. Genome Research, 2009, 19(10): 1825-1835.
    Mutti, N.S., Dolezal, A.G., Wolschin, F., et al. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate[J]. The Journal of Experimental Biology, 2011,214(23):3977-3984.
    Nagaraju, G.P.C. Is methyl farnesoate a crustacean hormone? Aquaculture, 2007, 272(1—4): 39-54.
    Niwa, R., Niimi, T., Honda, N. et al. Juvenile hormone acid O-methyltransferase in Drosophila melanogaster[J].Insect Biochemistry and Molecular Biology, 2008, 38(7):714-720.
    Oldham, S. and Hafen, E. Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control[J]. Trends in Cell Biology,2003,13(2):79-85.
    Page, R.E. and Peng, C.Y.S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L.[J]. Experimental Gerontology, 2001,36(4—6):695-711.
    Patel, A., Fondrk, M.K., Kaftanoglu, O., et al. The making of a queen:TOR pathway is a key player in diphenic caste development[J]. PLoS ONE, 2007, 2(6):e509.
    Petersen, T.N., Brunak, S., von Heijne, G., et al. SignalP 4.0: discriminating signal peptides from transmembrane regions[J]. Nature Methods, 2011,8(10):785-786.
    Pinto, L.Z., Hartfelder, K., Bitondi, M.M.G., et al. Ecdysteroid titers in pupae of highly social bees relate to distinct modes of caste development[J]. Journal of Insect Physiology, 2002, 48(8):783-790.
    Rachinsky, A. and Feldlaufer, M.F. Responsiveness of honey bee (Apis mellifera L.) corpora allata to allatoregulatory peptides from four insect species[J]. Journal of Insect Physiology, 2000,46(1):41-46.
    Rachinsky, A., Strambi, C., Strambi, A. et al. Caste and metamorphosis:hemolymph titers of juvenile hormone and ecdysteroids in last instar honeybee larvae[J]. General and Comparative Endocrinology,1990,79(1):31-38.
    Rachinsky, A., Tobe, S.S., and Feldlaufer, M.F. Terminal steps in JH biosynthesis in the honey bee (Apis mellifera L.):developmental changes in sensitivity to JH precursor and allatotropin[J]. Insect Biochemistry and Molecular Biology,2000,30(8-9):729-737.
    Rassoulzadegan, M., Grandjean, V., Gounon, P., et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse[J]. Nature,2006,441(7092):469-474.
    Ratnieks, F.L.W. and Carreck, N.L. Clarity on Honey Bee Collapse[J]? Science,2010,327(5962): 152-153.
    Rembold, H., Czoppeh, C., Grune, M. et al., ed. Juvenile hormone titers during honey bee embryogenesis and metamorphosis[M]. in Insect Juvenile Hormone Research (ed. B. Mauchamp, E. Couillaud, and J.C. Baehr). Institute National de la Recherche Agronomique, Paris,1992, pp.37-43.
    Rembold, H., Czoppelt, C., and Rao, P.J. Effect of juvenile hormone treatment on caste differentiation in the honeybee, Apis mellifera[J]. Journal of Insect Physiology,1974a, 20(7):1193-1202.
    Rembold, H., Lackner, B., and Geistbeck, I. The chemical basis of honeybee, Apis mellifera, caste formation. Partial purification of queen bee determinator from royal jelly[J]. Journal of Insect Physiology,1974b,20(2):307-314.
    Riddiford, L.M. Cellular and Molecular Actions of Juvenile Hormone I. General Considerations and Premetamorphic Actions[M]. in Advances in Insect Physiology (ed. P.D. Evans). Academic Press,1994, pp.213-274..
    Robinson, G.E. Regulation of division of labor in insect societies[J]. Annual Review of Entomology,1992,37(1):637-665.
    Robinson, G.E., Page, R.E., Strambi, C., et al. Hormonal and genetic control of behavioral integration in honey bee colonies[J]. Science,1989,246(4926):109-112.
    Rost, B., Yachdav, G., and Liu, J. The PredictProtein server[J]. Nucleic Acids Research, 2004, 32(suppl 2):W321-W326.
    Schaefer, M. and Lyko, F. DNA methylation with a sting:an active DNA methylation system in the honeybee[J]. Bioessays,2007,29(3):208-211.
    Schulte, C., Leboulle, G., Otte, M., et al. Honey bee promoter sequences for targeted gene expression[J]. Insect Molecular Biology,2013,22(4):399-410.
    Sheng, Z., Ma, L., Cao, M.-X. et al. Juvenile hormone acid methyl transferase is a key regulatory enzyme for juvenile hormone synthesis in the Eri silkworm, Samia cynthica ricini[J]. Archives of Insect Biochemistry and Physiology,2008,69(3):143-154.
    Shi, Y., Yan, W., Huang, Z., et al. Genomewide analysis indicates that queen larvae have lower methylation levels in the honey bee (Apis mellifera) [J]. Naturwissenschaften,2013,100(2): 193-197.
    Shi, Y.Y., Huang, Z.Y., Zeng, Z.J., et al. Diet and cell size both affect queen-worker differentiation through DNA Methylation in honey bees (Apis mellifera, Apidae) [J]. PLoS ONE, 2011,6(4): e18808.
    Shi, Y.Y., Wu, X.B., Huang, Z.Y., et al. Epigenetic modification of gene expression in honey bees by heterospecific gland secretions[J]. PLoS ONE, 2012,7(8):e43727.
    Shinoda, T. and Itoyama, K. Juvenile hormone acid methyltransferase:a key regulatory enzyme for insect metamorphosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(21):11986-11991.
    Shuel, R. and Dixon, S. The early establishment of dimorphism in the female honeybee, Apis mellifera L.[J]. Insectes Sociaux,1960,7(3):265-282.
    Silva Gunawardene, Y.I.N., Chow, B.K.C., He, J.G., et al. The shrimp FAMeT cDNA is encoded for a putative enzyme involved in the methylfarnesoate (MF) biosynthetic pathway and is temporally expressed in the eyestalk of different sexes[J]. Insect Biochemistry and Molecular Biology,2001,31(11):1115-1124.
    Silva Gunawardene, Y.I.N., Tobe, S.S., Bendena, W.G., et al. Function and cellular localization of farnesoic acid O-methyltransferase (FAMeT) in the shrimp, Metapenaeus ensis[J]. European Journal of Biochemistry, 2002, 269(14):3587-3595.
    Soulard, A., Cohen, A., and Hall, M.N. TOR signaling in invertebrates[J]. Current Opinion in Cell Biology,2009,21(6):825-836.
    Spannhoff, A., Kim, Y.K., Raynal, N.J.M., et al. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees[J]. EMBO Reports, 2011,12(3):238-243.
    Stay, B. A review of the role of neurosecretion in the control of juvenile hormone synthesis:a tribute to Berta Scharrer[J]. Insect Biochemistry and Molecular Biology,2000,30(8-9): 653-662.
    Stay, B., Tobe, S.S., and Bendena, W.G. Allatostatins:identification, primary structures, functions and distribution[J]. Advances in Insect Physiology, 1994, 25:267-337.
    Stay, B. and Woodhead, A. Neuropepride regulators of insect corpora allata[J]. American Zoology, 1993, 33(3):357-364.
    Tamura, K., Dudley, J., Nei, M., et al. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution,2007,24(8): 1596-1599.
    The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera[J]. Nature, 2006,443(7114):931-949.
    Tobe, S.S. and Stay, B. Structure and regulation of the corpus allatum[M], Academic Press, 1985.
    Tobe, S.S., Young, D.A., Khoo, H.W., et al. Farnesoic acid as a major product of release from crustacean mandibular organs in vitro[J]. Journal of Experimental Zoology, 1989, 249(2): 165-171.
    Vannini, L., Ciolfi, S., Dallai, R., et al. Putative-farnesoic acid O-methyltransferase (FAMeT) in medfly reproduction [J]. Archives of Insect Biochemistry and Physiology, 2010a, 75(2): 92-106.
    Vannini, L., Ciolfi, S., Spinsanti, G., et al. The putative-farnesoic acid O-methyl transferase (FAMeT) gene of Ceratitis capitata: characterization and pre-imaginal life expression[J]. Archives of Insect Biochemistry and Physiology, 2010b, 73(2):106-117.
    Vercelli, D. Genetics, epigenetics, and the environment: switching, buffering, releasing[J]. Journal of Allergy and Clinical Immunology, 2004,113(3):381-386.
    Vieira, C.U., Bonetti, A.M., Simoes, Z.L.P., et al. Farnesoic acid O-methyl transferase (FAMeT) isoforms:conserved traits and gene expression patterns related to caste differentiation in the stingless bee, Melipona scutellaris[J]. Archives of Insect Biochemistry and Physiology, 2008,67(2):97-106.
    Wainwright, G., Webster, S.G., and Rees, H.H. Neuropeptide regulation of biosynthesis of the juvenoid, methyl farnesoate, in the edible crab, Cancer pagurus[J]. Biochemical Journal, 1998,334(3):651-657.
    Wang, Y., Jorda, M., Jones, P.L., et al. Functional CpG methylation system in a social insect[J]. Science, 2006,314(5799):645-647.
    Weaver, N. Rearing of honeybee larvae on royal jelly in the laboratory[J]. Science, 1955, 121(3145):509-510.
    Weaver, N. Physiology of caste determination[J]. Annual Review of Entomology, 1966, 11(1): 79-102.
    Werck-Reichhart, D. and Feyereisen, R. Cytochromes P450:a success story[J]. Genome Biology, 2000, 1(6):reviews3003.3001-reviews3003.3009.
    Wheeler, D.E., Buck, N., and Evans, J.D. Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera[J]. Insect Molecular Biology,2006, 15(5):597-602.
    Whitehorn, P.R., O'Connor, S., Wackers, F.L., et al. Neonicotinoid pesticide reduces bumble bee colony growth and queen production [J]. Science, 2012,336(6079):351-352.
    Wigglesworth, V.B. The phisiology of insect metamorphosis[M]. Cambridge University Press, 1954.
    Williamson, M., Lenz, C., Winther, A.M.E. et al. Molecular cloning, genomic organization, and expression of a C-type (manduca sexta-type) allatostatin preprohormone from Drosophila melanogaster[J]. Biochemical and Biophysical Research Communications, 2001,282(1): 124-130.
    Wilson, E.O. The insect societies[M]. Belknap/Harvard Univ. Press, Cambridge, MA, 1971.
    Wilson, E.O. The sociogenesis of insect colonies[J]. Science, 1985,228(4707):1489-1495.
    Wirtz, P. and Beetsma, J. Induction of caste differentiation in the honeybee by juvenile hormone[J]. Entomologia Experimentalis et Applicata, 1972, 15(4):517-520.
    Wolschin, F., Mutti, N.S., and Amdam, G.V. Insulin receptor substrate influences female caste development in honeybees[J]. Biology Letters, 2011,7(1):112-115.
    Wyatt, G.R. and Davey, K.G. Cellular and Molecular actions of juvenile hormone Ⅱ. roles of juvenile hormone in adult insects[M]. in Advances in Insect Physiology (ed. P.D. Evans). Academic Press, 1996, pp.1-155.
    Xia, Q., Zhou, Z., Lu, C., et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori)[J]. Science, 2004, 306(5703):1937-1940.
    Yagi, K.J., Konz, K.G., Stay, B., et al. Production and utilization of farnesoic acid in the juvenile hormone biosynthetic pathway by corpora allata of larval Diploptera punctata[J]. General and Comparative Endocrinology, 1991,81(2):284-294.
    Zhang, H., Tian, L., Tobe, S., et al. Drosophila CG10527 mutants are resistant to juvenile hormone and its analog methoprene[J]. Biochemical and Biophysical Research Communications,2010,401(2):182-187.
    陈盛禄.中国蜜蜂学[M].北京:中国农业出版社,2001.
    嵇保中,刘曙雯,田铃,等.保幼激素生物合成研究进展[J].生命科学,2007,19(1):90-96.
    李胜,蒋容静,和曹梅讯.保幼激素的代谢[J].昆虫学报,2004,47(3):389-393.
    刘芳.意蜂哺育蜂与采集蜂头部mRNAs与miRNAs表达谱Solexa测序比较分析及其调控网络研究[D].杭州:浙江大学,2012.
    刘艳,胜振涛,蒋容静,等.保幼激素合成的研究进展[J].昆虫学报,2007,50(12):1285-1292.
    刘影,胜振涛,和李胜.保幼激素的分子作用机制[J].昆虫学报,2008,51(9):974-978.
    石元元,曾志将,吴小波,等.人工注射Dnmt3 siRNA对意大利蜜蜂雌蜂发育的影响[J].屠虫学报2011,54(3):272-278.
    颜伟玉,许标,谢宪兵,等.化学放射法测定蜜蜂保幼激素酯酶活性[J].江西农业大学学报,2004,26(5):785-786
    曾志将.蜜蜂生物学[M].北京:中国农业出版社,2007.
    周冰峰,鲍秀良,龚蜜,等.保幼激素类似物ZR512对蜜蜂蜂王初生重的影响[J].福建农业大学学报,1995a,24(1):109-112.
    周冰峰,龚蜜,鲍秀良,等.保幼激素类似物ZR512对蜜蜂蜂王胚后发育的调控作用[J].福建农业大学学报1995b,24(2):227-230.
    周冰峰,张淑娟,周碧青,等.保幼激素类似物ZR-512对蜂王生殖系统发育和生理的影响[J],中国养蜂,2002,53(1):6-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700