用户名: 密码: 验证码:
建立常染色体显性多囊肾病小型猪模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常染色体显性多囊肾病(Autosomal Dominant Polycystic Kidney Disease, ADPKD)是一种常见的肾脏显性遗传疾病,由PKD1或者PKD2基因突变引起,发病率大约1/400-1/1000。病理症状主要表现为肾脏中产生充满液体的囊泡,并且随着病情的发展,这些囊泡的数量会逐渐增多,体积也会逐渐增大。大约一半的ADPKD患者在50~60岁期间会产生终末期肾病。到目前为止,除了肾脏透析或者肾脏移植,仍然没有药物或者治疗方法能够治愈ADPKD.通过对小鼠ADPKD疾病模型的研究,人们对于ADPKD的发病机理有了比较深刻的认识。但是,小鼠ADPKD模型还没有能够帮助人类寻找到一种有效的治疗药物或者治疗方法。相对于小鼠和人类在肾脏结构等方面的较大差异,小型猪和人类的肾脏具有更高的相似性,这使小型猪成为构建肾脏疾病模型的极佳实验动物。因此,本研究尝试建立ADPKD的小型猪模型,为研究ADPKD致病机理和开发治疗手段提供一种更能真实反映人类ADPKD的新模型。
     SBM小鼠是一种在肾脏过表达c-Myc基因的ADPKD模型。以此为基础,本研究尝试通过在小型猪肾脏中过表达c-Myc基因来建立ADPKD模型。使用小鼠肾脏特异表达基因Ksp-cadherin的启动子和猪c-Myc基因的cDNA,构建了pKsp-c-Myc-b转基因载体,然后通过体细胞核移植得到了7头c-Myc转基因猪。其中,3头转基因猪出生后很快死亡,尸检没有发现肾脏有明显病变。Western Blot显示c-Myc基因在3号转基因猪的脑、心、肝、肾都有明显过表达。3号转基因猪的肾脏免疫组化染色结果显示:肾脏管腔上皮细胞的c-Myc基因明显过表达,但是除了管腔略微扩张,没有出现囊泡等明显病理症状。在存活的转基因猪生长到1、4、6月龄时,测定转基因猪和同窝野生型猪的血尿素氮(BUN)和血肌酐(Scr):1月龄时转基因猪的BUN明显高于野生型猪,但是4、6月龄时没有显著差异;转基因猪和野生型猪的Scr在三个时间点都没有明显差异。在10号转基因猪生长到13月龄时,取其肾脏进行检测:WesternBlot显示其肾脏中c-Myc、Erkl/2总蛋白和磷酸化Erkl/2表达水平和野生型猪没有差异,H&E染色也没有发现肾脏存在明显病变。因此,pKsp-c-Myc-b转基因小型猪未能表现出常染色体显性多囊肾病的病理症状,说明SBM小鼠有其独特性。
     为了在小型猪上建立含有PKD2错义突变(亚等位基因)的ADPKD疾病模型,本研究筛选了针对猪PKD2基因第9号外显子的7对TALEN,尝试将小型猪polycystin-2蛋白的第658号亮氨酸突变为色氨酸。通过测序和EcoRV酶切两种方法证明:T-93、T-931和T-934三对(?)ALEN有效,其中T-93的突变效率最高。37℃细胞培养条件下,T-93的突变效率是6%-7%;如果采取30℃低温培养,T-93的突变效率提高到15%~17%。T-93、T-931和T-934的靶点基本一致,区别在于T-931和T-934的识别序列更长,但是,T-931和T-934的突变效率明显低于T-93。将T-93和ssDNA同源模板一起核转染中国实验用小型猪胎儿成纤维细胞后,细胞活力很差,大量死亡,因此还需要继续优化条件。
     为了建立小型猪1KD2基因敲除模型,本研究利用CRISPR-Cas9技术筛选了针对猪PKD2基因不同外显子的11个靶点:6个靶点有效,其中pX330-1效率最高,达到了11%,其突变位点在第1号外显子,预期能有效造成polycystin-2蛋白失活。
     已有研究表明CDH16基因在人、小鼠和兔上是一种肾脏特异表达基因。为了在小型猪上实现肾脏特异性基因敲除,需要使用肾脏特异的启动子。因此,本研究对猪CDH16基因进行了鉴定:猪CDH16基因包含18个外显子;在中国实验用小型猪上,CDH16基因在肾脏的转录水平最高,同时在肺中也检测到了少量的转录本;双荧光素酶实验证明猪CDH16基因启动子在LLC-PK1细胞上有启动子活性。
     综上所述,Ksp-c-Myc-b转基因小型猪未能表现出常染色体显性多囊肾病的病理症状。成功筛选得到的TALEN和CR1SPR-Cas9靶点为构建PKD2基因错义突变或者PKD2基因敲除小型猪打下了基础。猪CDH16基因启动子能够用于构建CRISPR-Cas9的肾脏表达载体,实现小型猪PKD2基因肾脏特异敲除。
Autosomal dominant polycystic kidney disease (ADPKD) is a common dominant renal disorder caused by mutations in either PKD1or PKD2, with an incidence of1/400~1/1000. Its key feature is fluid-filled cysts in bilateral kidneys, and as the illness deteriorates, both number and volume of cysts increase. Approximately half of ADPKD patients develop end stage renal disease (ESRD) at their fifth or sixth decade of life. Until now, there is no effective therapy for ADPKD except for renal dialysis or kidney transplantation. The research in mouse models of ADPKD has promoted people's understanding about the pathogenesis of ADPKD to a large extent; however, mouse models have not yet brought about an effective therapy. Contrasted to the obvious disparity between mouse and people in kidney, the mini-pig owns more similarities with human in kidney, which makes the mini-pig an excellent model to study renal diseases. Herein, I try to establish the ADPKD mini-pig model in this study, so that it will serve as a novel model faithfully recapitulating human ADPKD, and promote the study of etiology as well as development of effective therapeutic interventions.
     The SBM mice represent a transgenic model of ADPKD by overexpressing c-Myc in kidneys. Therefore, c-Myc was overexpressed in pig's kidneys in an effort to imitate the SBM mice. The pKsp-c-Myc-b transgene vector was constructed using mouse Ksp-cadherin promoter and the cDNA of pig's c-Myc gene. After somatic cell nuclear transfer (SCNT), seven c-Myc transgenic piglets were delivered. Three transgenic piglets died soon after birth, displaying no obvious abnormality in kidneys at necropsy. Western Blot analysis showed that c-Myc was overexpressed in the brain, heart, liver and kidney of c-Myc transgenic piglet (No.3). Immunohistochemical staining of kidney sections revealed high level of c-Myc within the epithelial cells of renal tubules in piglet No.3. However, except for slight dilation of renal tubules, no cysts were observed. When c-Myc transgenic pigs were1,4,6months old, blood sample were collected to measure blood urea nitrogen (BUN) and serum creatinine (Scr). At1month, c-Myc transgenic pigs had significantly higher BUN level than the wild-type littermates, but this difference did not persist to4months or6months. No difference in Scr was detected between transgenic pigs and wild-type pigs at all three time points. When c-Myc transgenic pig No.10turned13months old, kidney sample was collected. Western Blot results revealed that there was no difference in the protein level of c-Myc, total ERK1/2and phosphorylated ERK1/2between transgenic pig No.10and a wild-type pig. No noticeable renal abnormalities were found through H&E staining of kidney sections from transgenic pig No.10. Therefore, c-Myc transgenic pigs did not develop ADPKD, implying the uniqueness of SBM mice.
     In order to introduce a missense mutation (hypomorphic allele) into pig PKD2gene, seven pairs of TALEN targeting the9th exon of pig PKD2gene were screened for changing the658th amino acid of polycystin-2from Leu to Trp. Both sequencing and EcoR V digestion analysis demonstrated that T-93, T-931and T-934were able to cause mutations in target sites, while T-93had the highest efficiency. Upon37℃cell culture condition, T-93yielded mutation frequency of6%~7%, and if cells were applied to transient hypothermia (30℃) after nucleofection, the mutation frequency rose to15%~17%. T-93, T-931and T-934had almost the same target site, except that the binding sites of T-931and T-934was several base pairs longer than those of T-93. The extended binding sites led to decreased mutation frequency. Once T-93and single-stranded DNA (ssDNA) donor template were co-transfected into Chinese experimental mini-pig fetal fibroblasts, the cell viability dropped dramatically, so further optimization was needed to improve cell condition.
     Moreover, CRISPR-Cas9technique was exploited to knock out the pig PKD2gene. Within all11target sites on different exons of PKD2,6targets sites were mutated, while pX330-1had the highest mutation rate of11%. Because the target site of pX330-1was on the first exon, it was expected to end in complete inactivation of polycystin-2.
     As reported in human, mouse and rabbit, CDH16is specifically expressed in the kidney. A kidney-specific promoter is needed to knock out PKD2gene in a kidney specific manner. Therefore, the pig CDH16gene was identified in this study. The pig CDH16gene had18exons, and its transcripts were detected in both the kidney and lung of Chinese experimental mini-pig, with relatively higher transcription level in the kidney. Dual-luciferase assay proved that the pig CDH16promoter was able to drive transcription in LLC-PK1cells.
     In summary, pKsp-c-Myc-b transgenic mini-pig did not develop ADPKD. Screened TALEN and CRISPR-Cas9could be used to introduce hypomorphic PKD2allele or knock out PKD2gene in mini-pig. At the same time, the identified pig CDH16promoter could be utilized to re-construct current CRIPSR-Cas9vector and constrain Cas9expression mainly in the kidney, thus knocking out pig PKD2gene in a kidney specific manner.
引文
Ansai, S., Sakuma, T., Yamamoto, T., Ariga, H., Uemura, N., Takahashi, R., and Kinoshita, M. (2013). Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics 193,739-749.
    Anyatonwu, G.I., Estrada, M., Tian, X., Somlo, S., and Ehrlich, B.E. (2007). Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc Natl Acad Sci U S A 104,6454-6459.
    Aryan, A., Anderson, M.A., Myles, K.M., and Adelman, Z.N. (2013). TALEN-based gene disruption in the dengue vector Aedes aegypti. PLoS One 8, e60082.
    Audrezet, M.P., Cornec-Le Gall, E., Chen, J.M., Redon, S., Quere, I., Creff, J., Benech, C., Maestri, S., Le Meur, Y., and Ferec, C. (2012). Autosomal dominant polycystic kidney disease:comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum Mutat 33,1239-1250.
    Auer, T.O., Duroure, K., De Cian, A., Concordet, J.P., and Del Bene, F. (2014). Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24,142-153.
    Aziz, N. (1995). Animal models of polycystic kidney disease. Bioessays 17,703-712.
    Bacman, S.R., Williams, S.L., Pinto, M., Peralta, S., and Moraes, C.T. (2013). Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19,1111-1113.
    Bagetti Filho, H.J., Pereira-Sampaio, M.A., Favorito, L.A., and Sampaio, F.J. (2008). Pig kidney: anatomical relationships between the renal venous arrangement and the kidney collecting system. J Urol 179,1627-1630.
    Bai, Y., Pontoglio, M., Hiesberger, T., Sinclair, A.M., and Igarashi, P. (2002). Regulation of kidney-specific Ksp-cadherin gene promoter by hepatocyte nuclear factor-1 beta. Am J Physiol Renal Physiol 283, F839-851.
    Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315,1709-1712.
    Bassett, A.R., Tibbit, C., Ponting, C.P., and Liu, J.L. (2013). Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4,220-228.
    Bedell, V.M., Wang, Y., Campbell, J.M., Poshusta, T.L., Starker, C.G., Krug, R.G.,2nd, Tan, W., Penheiter, S.G., Ma, A.C., Leung, A.Y., et al. (2012). In vivo genome editing using a high-efficiency TALEN system. Nature 491,114-118.
    Beurdeley, M., Bietz, F., Li, J., Thomas, S., Stoddard, T., Juillerat, A., Zhang, F., Voytas, D.F., Duchateau, P., and Silva, G.H. (2013). Compact designer TALENs for efficient genome engineering. Nat Commun 4,1762.
    Bhunia, A.K., Piontek, K., Boletta, A., Liu, L., Qian, F., Xu, P.N., Germino, F.J., and Germino, G.G. (2002). PKD1 induces p21(wafl) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109,157-168.
    Bihoreau, M.T., Ceccherini, I., Browne, J., Kranzlin, B., Romeo, G., Lathrop, G.M., James, M.R., and Gretz, N. (1997). Location of the first genetic locus, PKDr1, controlling autosomal dominant polycystic kidney disease in Han:SPRD cy/+ rat. Hum Mol Genet 6,609-613.
    Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., and Marraffini, L.A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41,7429-7437.
    Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors. Science 326,1509-1512.
    Boletta, A., Qian, F., Onuchic, L.F., Bhunia, A.K., Phakdeekitcharoen, B., Hanaoka, K., Guggino, W., Monaco, L., and Germino, G.G. (2000). Polycystin-1, the gene product of PKD1, induces resistance to apoptosis and spontaneous tubulogenesis in MDCK cells. Mol Cell 6,1267-1273.
    Bolker, J. (2012). Model organisms:There's more to life than rats and flies. Nature 491,31-33.
    Bonnet, C.S., Aldred, M., von Ruhland, C., Harris, R., Sandford, R., and Cheadle, J.P. (2009). Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum Mol Genet 18, 2166-2176.
    Bonventre, J.V., Vaidya, V.S., Schmouder, R., Feig, P., and Dieterle, F. (2010). Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol 28,436-440.
    Borovina, A., Superina, S., Voskas, D., and Ciruna, B. (2010). Vang12 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol 12,407-412.
    Brachman, E.E., and Kmiec, E.B. (2004). DNA replication and transcription direct a DNA strand bias in the process of targeted gene repair in mammalian cells. J Cell Sci 117,3867-3874.
    Branda, C.S., and Dymecki, S.M. (2004). Talking about a revolution:The impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6,7-28.
    Brasier, J.L., and Henske, E.P. (1997). Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J Clin Invest 99,194-199.
    Burn, T.C., Connors, T.D., Dackowski, W.R., Petry, L.R., Van Raay, T.J., Millholland, J.M., Venet, M., Miller, G., Hakim, R.M., Landes, G.M., et al. (1995). Analysis of the genomic sequence for the autosomal dominant polycystic kidney disease (PKD1) gene predicts the presence of a leucine-rich repeat. The American PKD1 Consortium (APKD1 Consortium). Hum Mol Genet 4,575-582.
    Bustad, L.K., and McClellan, R.O. (1966). Swine in biomedical research. Science 152,1526-1530.
    Cade, L., Reyon, D., Hwang, W.Y., Tsai, S.Q., Patel, S., Khayter, C., Joung, J.K., Sander, J.D., Peterson, R.T., and Yeh, J.R. (2012). Highly efficient generation of heritable zebrafish gene mutations using homo-and heterodimeric TALENs. Nucleic Acids Res 40,8001-8010.
    Cai, Y., Maeda, Y., Cedzich, A., Torres, V.E., Wu, G., Hayashi, T., Mochizuki, T., Park, J.H., Witzgall, R., and Somlo, S. (1999). Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 274,28557-28565.
    Carlson, D.F., Tan, W., Lillico, S.G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D.F., Long, C.R., Whitelaw, C.B., and Fahrenkrug, S.C. (2012). Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109,17382-17387.
    Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., and Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82.
    Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., and Xi, J.J. (2013). Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23,465-472.
    Chapin, H.C., and Caplan, M.J. (2010). The cell biology of polycystic kidney disease. J Cell Biol 191, 701-710.
    Chauvet, V., Tian, X., Husson, H., Grimm, D.H., Wang, T., Hiesberger, T., Igarashi, P., Bennett, A.M., Ibraghimov-Beskrovnaya, O., Somlo, S., et al. (2004). Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 114,1433-1443.
    Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G.W., Park, J., Blackburn, E.H., Weissman, J.S., Qi, L.S., et al. (2013a). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155,1479-1491.
    Chen, C., Fenk, L.A., and de Bono, M. (2013b). Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination. Nucleic Acids Res 41, e193.
    Cheng, A.W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T.W., Rangarajan, S., Shivalila, C.S., Dadon, D.B., and Jaenisch, R. (2013a). Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23,1163-1171.
    Cheng, Z., Yi, P., Wang, X., Chai, Y., Feng, G., Yang, Y., Liang, X., Zhu, Z., Li, W., and Ou, G. (2013b). Conditional targeted genome editing using somatically expressed TALENs in C. elegans. Nat Biotechnol 31,934-937.
    Cho, S.W., Kim, S., Kim, J.M., and Kim, J.S. (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31,230-232.
    Cho, S.W., Kim, S., Kim, Y., Kweon, J., Kim, H.S., Bae, S., and Kim, J.S. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24,132-141.
    Christian, M., Cermak, T., Doyle, E.L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A.J., and Voytas, D.F. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186,757-761.
    Christian, M.L., Demorest, Z.L., Starker, C.G., Osborn, M.J., Nyquist, M.D., Zhang, Y., Carlson, D.F., Bradley, P., Bogdanove, A.J., and Voytas, D.F. (2012). Targeting G with TAL effectors:a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One 7, e45383.
    Cogswell, C., Price, S.J., Hou, X., Guay-Woodford, L.M., Flaherty, L., and Bryda, E.C. (2003). Positional cloning of jcpk/bpk locus of the mouse. Mamm Genome 14,242-249.
    Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
    Consortium, T.E.P.K.D. (1994). The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16.. Cell 77,881-894.
    Consortium, T.I.P.K.D. (1995). Polycystic kidney disease:the complete structure of the PKD1 gene and its protein. The International Polycystic Kidney Disease Consortium. Cell 81,289-298.
    Cornec-Le Gall, E., Audrezet, M.P., Chen, J.M., Hourmant, M., Morin, M.P., Perrichot, R., Charasse, C., Whebe, B., Renaudineau, E., Jousset, P., et al. (2013). Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol 24,1006-1013.
    Cowley, B.D., Jr., Chadwick, L.J., Grantham, J.J., and Calvet, J.P. (1991). Elevated proto-oncogene expression in polycystic kidneys of the C57BL/6J (cpk) mouse. J Am Soc Nephrol 1,1048-1053.
    Cowley, B.D., Jr., Gudapaty, S., Kraybill, A.L., Barash, B.D., Harding, M.A., Calvet, J.P., and Gattone, V.H.,2nd (1993). Autosomal-dominant polycystic kidney disease in the rat. Kidney Int 43, 522-534.
    Cowley, B.D., Jr., Smardo, F.L., Jr., Grantham, J.J., and Calvet, J.P. (1987). Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease. Proc Natl Acad Sci U S A 84,8394-8398.
    Dalmose, A.L., Hvistendahl, J.J., Olsen, L.H., Eskild-Jensen, A., Djurhuus, J.C., and Swindle, M.M. (2000). Surgically induced urologic models in swine. J Invest Surg 13,133-145.
    Dekel, B., Burakova, T., Arditti, F.D., Reich-Zeliger, S., Milstein, O., Aviel-Ronen, S., Rechavi, G., Friedman, N., Kaminski, N., Passwell, J.H., et al. (2003). Human and porcine early kidney precursors as a new source for transplantation. Nat Med 9,53-60.
    Deng, D., Yan, C., Pan, X., Mahfouz, M., Wang, J., Zhu, J.K., Shi, Y., and Yan, N. (2012). Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335,720-723.
    DiCarlo, J.E., Norville, J.E., Mali, P., Rios, X., Aach, J., and Church, G.M. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41,4336-4343.
    Dickinson, D.J., Ward, J.D., Reiner, D.J., and Goldstein, B. (2013). Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10,1028-1034.
    Ding, Q., Lee, Y.K., Schaefer, E.A., Peters, D.T., Veres, A., Kim, K., Kuperwasser, N., Motola, D.L. Meissner, T.B., Hendriks, W.T., et al. (2013a). A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12,238-251.
    Ding, Q., Regan, S.N., Xia, Y., Oostrom, L.A., Cowan, C.A., and Musunuru, K. (2013b). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12,393-394.
    Distefano, G., Boca, M., Rowe, I., Wodarczyk, C., Ma, L., Piontek, K.B., Germino, G.G., Pandolfi, P.P., and Boletta, A. (2009). Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol 29,2359-2371.
    Dooley, J.J., Paine, K.E., Garrett, S.D., and Brown, H.M. (2004). Detection of meat species using TaqMan real-time PCR assays. Meat Sci 68,431-438.
    Douglas, W.R. (1972). Of pigs and men and research:a review of applications and analogies of the pig, sus scrofa, in human medical research. Space Life Sci 3,226-234.
    Doyon, Y., Choi, V.M., Xia, D.F., Vo, T.D., Gregory, P.D., and Holmes, M.C. (2010). Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods 7,459-460.
    Du, J., Ding, M., Sours-Brothers, S., Graham, S., and Ma, R. (2008). Mediation of angiotensin Ⅱ-induced Ca2+ signaling by polycystin 2 in glomerular mesangial cells. Am J Physiol Renal Physiol 294, F909-918.
    Du, J., and Wilson, P.D. (1995). Abnormal polarization of EGF receptors and autocrine stimulation of cyst epithelial growth in human ADPKD. Am J Physiol 269, C487-495.
    Ebina, H., Misawa, N., Kanemura, Y., and Koyanagi, Y. (2013). Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3,2510.
    Feng, S., Okenka, G.M., Bai, C.X., Streets, A.J., Newby, L.J., DeChant, B.T., Tsiokas, L., Obara, T., and Ong, A.C. (2008). Identification and functional characterization of an N-terminal oligomerization domain for polycystin-2. J Biol Chem 283,28471-28479.
    Feng, Y., Zhang, S., and Huang, X. (2014). A robust TALENs system for highly efficient mammalian genome editing. Sci Rep 4,3632.
    Fick, G.M., Johnson, A.M., Strain, J.D., Kimberling, W.J., Kumar, S., Manco-Johnson, M.L., Duley, I.T., and Gabow, P.A. (1993). Characteristics of very early onset autosomal dominant polycystic kidney disease. J Am Soc Nephrol 3,1863-1870.
    Fischer, E., Legue, E., Doyen, A., Nato, F., Nicolas, J.F., Torres, V., Yaniv, M., and Pontoglio, M. (2006). Defective planar cell polarity in polycystic kidney disease. Nat Genet 38,21-23.
    Flaherty, L., Bryda, E.C., Collins, D., Rudofsky, U., and Montogomery, J.C. (1995). New mouse model for polycystic kidney disease with both recessive and dominant gene effects. Kidney Int 47, 552-558.
    Fogelgren, B., Lin, S.Y., Zuo, X., Jaffe, K.M., Park, K.M., Reichert, R.J., Bell, P.D., Burdine, R.D., and Lipschutz, J.H. (2011). The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes. PLoS Genet 7, e1001361.
    Foy, R.L., Chitalia, V.C., Panchenko, M.V., Zeng, L., Lopez, D., Lee, J.W., Rana, S.V., Boletta, A., Qian, F., Tsiokas, L., et al. (2012). Polycystin-1 regulates the stability and ubiquitination of transcription factor Jade-1. Hum Mol Genet 21,5456-5471.
    Friedland, A.E., Tzur, Y.B., Esvelt, K.M., Colaiacovo, M.P., Church, G.M., and Calarco, J.A. (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10,741-743.
    Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., and Sander, J.D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31,822-826.
    Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M., and Joung, J.K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32,279-284.
    Gabsalilow, L., Schierling, B., Friedhoff, P., Pingoud, A., and Wende, W. (2013). Site-and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats. Nucleic Acids Res 41, e83.
    Gallagher, A.R., Germino, G.G., and Somlo, S. (2010). Molecular advances in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 17,118-130.
    Gallagher, A.R., Hoffmann, S., Brown, N., Cedzich, A., Meruvu, S., Podlich, D., Feng, Y., Konecke, V., de Vries, U., Hammes, H.P., et al. (2006). A truncated polycystin-2 protein causes polycystic kidney disease and retinal degeneration in transgenic rats. J Am Soc Nephrol 17,2719-2730.
    Garneau, J.E., Dupuis, M.E., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadan, A.H., and Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468,67-71.
    Garrick, D., Fiering, S., Martin, D.I., and Whitelaw, E. (1998). Repeat-induced gene silencing in mammals. Nat Genet 18,56-59.
    Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586.
    Geng, L., Boehmerle, W., Maeda, Y., Okuhara, D.Y., Tian, X., Yu, Z., Choe, C.U., Anyatonwu, G.I., Ehrlich, B.E., and Somlo, S. (2008). Syntaxin 5 regulates the endoplasmic reticulum channel-release properties of polycystin-2. Proc Natl Acad Sci U S A 105,15920-15925.
    Giamarchi, A., Feng, S., Rodat-Despoix, L., Xu, Y., Bubenshchikova, E., Newby, L.J., Hao, J., Gaudioso, C., Crest, M., Lupas, A.N., et al. (2010). A polycystin-2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes. EMBO J 29,1176-1191.
    Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154,442-451.
    Gonzalez-Perrett, S., Kim, K., Ibarra, C., Damiano, A.E., Zotta, E., Batelli, M., Harris, P.C., Reisin, I.L. Arnaout, M.A., and Cantiello, H.F. (2001). Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+ -permeable nonselective cation channel. Proc Natl Acad Sci U S A 98,1182-1187.
    Grantham, J.J. (2008). Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med 359,1477-1485.
    Grantham, J.J., Chapman, A.B., and Torres, V.E. (2006a). Volume progression in autosomal dominant polycystic kidney disease:the major factor determining clinical outcomes. Clin J Am Soc Nephrol 1,148-157.
    Grantham, J.J., Torres, V.E., Chapman, A.B., Guay-Woodford, L.M., Bae, K.T., King, B.F., Jr., Wetzel, L.H., Baumgarten, D.A., Kenney, P.J., Harris, P.C., et al. (2006b). Volume progression in polycystic kidney disease. N Engl J Med 354,2122-2130.
    Gratz, S.J., Cummings, A.M., Nguyen, J.N., Hamm, D.C., Donohue, L.K., Harrison, M.M., Wildonger, J., and O'Connor-Giles, K.M. (2013). Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194,1029-1035.
    Guay-Woodford, L.M. (2003). Murine models of polycystic kidney disease:molecular and therapeutic insights. Am J Physiol Renal Physiol 285, F1034-1049.
    Gurushidze, M., Hensel, G., Hiekel, S., Schedel, S., Valkov, V., and Kumlehn, J. (2014). True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS One 9, e92046.
    Hale, C.R., Zhao, P., Olson, S., Duff, M.O., Graveley, B.R., Wells, L., Terns, R.M., and Terns, M.P. (2009). RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139,945-956.
    Happe, H., Leonhard, W.N., van der Wal, A., van de Water, B., Lantinga-van Leeuwen, I.S., Breuning, M.H., de Heer, E., and Peters, D.J. (2009). Toxic tubular injury in kidneys from Pkdl-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways. Hum Mol Genet 18,2532-2542.
    Harris, P.C., and Torres, V.E. (2009). Polycystic kidney disease. Annu Rev Med 60,321-337.
    Hateboer, N., v Dijk, M.A., Bogdanova, N., Coto, E., Saggar-Malik, A.K., San Millan, J.L., Torra, R., Breuning, M., and Ravine, D. (1999). Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353,103-107.
    Hayashi, T., Mochizuki, T., Reynolds, D.M., Wu, G., Cai, Y., and Somlo, S. (1997). Characterization of the exon structure of the polycystic kidney disease 2 gene (PKD2). Genomics 44,131-136.
    Herrmann, F., Garriga-Canut, M., Baumstark, R., Fajardo-Sanchez, E., Cotterell, J., Minoche, A., Himmelbauer, H., and Isalan, M. (2011). p53 Gene repair with zinc finger nucleases optimised by yeast 1-hybrid and validated by Solexa sequencing. PLoS One 6, e20913.
    Hildebrandt, F., Benzing, T., and Katsanis, N. (2011). Ciliopathies. N Engl J Med 364,1533-1543.
    Hockemeyer, D., Wang, H., Kiani, S., Lai, C.S., Gao, Q., Cassady, J.P., Cost, G.J., Zhang, L., Santiago, Y., Miller, J.C., et al. (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29, 731-734.
    Hopp, K., Ward, C.J., Hommerding, C.J., Nasr, S.H., Tuan, H.F., Gainullin, V.G., Rossetti, S., Torres, V.E., and Harris, P.C. (2012). Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest 122,4257-4273.
    Horvath, P., and Barrangou, R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science 327,167-170.
    Hou, Z., Zhang, Y., Propson, N.E., Howden, S.E., Chu, L.F., Sontheimer, E.J., and Thomson, J.A. (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A 110,15644-15649.
    Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., and Schmid, B. (2013). Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140, 4982-4987.
    Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31,827-832.
    Hu, J., Bae, Y.K., Knobel, K.M., and Barr, M.M. (2006). Casein kinase Ⅱ and calcineurin modulate TRPP function and ciliary localization. Mol Biol Cell 17,2200-2211.
    Hu, R., Wallace, J., Dahlem, T.J., Grunwald, D.J., and O'Connell, R.M. (2013). Targeting human microRNA genes using engineered Tal-effector nucleases (TALENs). PLoS One 8, e63074.
    Huan, Y., and van Adelsberg, J. (1999). Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest 104,1459-1468.
    Huang, P., Xiao, A., Tong, X., Zu, Y., Wang, Z., and Zhang, B. (2014). TALEN construction via "Unit Assembly" method and targeted genome modifications in zebrafish. Methods, (doi: 10.1016/j.ymeth.2014.02.010).
    Huang, P., Xiao, A., Zhou, M., Zhu, Z., Lin, S., and Zhang, B. (2011). Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29,699-700.
    Hughes, J., Ward, C.J., Peral, B., Aspinwall, R., Clark, K., San Millan, J.L., Gamble, V., and Harris, P.C. (1995). The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10,151-160.
    Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R., and Joung, J.K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31,227-229.
    Ibraghimov-Beskrovnaya, O., and Natoli, T.A. (2011). mTOR signaling in polycystic kidney disease. Trends Mol Med 17,625-633.
    Igarashi, P., Shashikant, C.S., Thomson, R.B., Whyte, D.A., Liu-Chen, S., Ruddle, F.H., and Aronson, P.S. (1999). Ksp-cadherin gene promoter. Ⅱ. Kidney-specific activity in transgenic mice. Am J Physiol 277, F599-610.
    Jackson, T., Allard, M.F., Sreenan, C.M., Doss, L.K., Bishop, S.P., and Swain, J.L. (1991). Transgenic animals as a tool for studying the effect of the c-myc proto-oncogene on cardiac development. Mol Cell Biochem 104,15-19.
    Jao, L.E., Wente, S.R., and Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110,13904-13909.
    Jiang, W., Bikard, D., Cox, D., Zhang, F., and Marraffini, L.A. (2013a). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31,233-239.
    Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., and Weeks, D.P. (2013b). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41, e188.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
    Jinek, M., Jiang, F., Taylor, D.W., Sternberg, S.H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K., Lin, S., et al. (2014). Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343,1247997.
    Joung, J.K., and Sander, J.D. (2013). TALENs:a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14,49-55.
    Juillerat, A., Dubois, G., Valton, J., Thomas, S., Stella, S., Marechal, A., Langevin, S., Benomari, N., Bertonati, C., Silva, G.H., et al. (2014). Comprehensive analysis of the specificity of transcription activator-like effector nucleases. Nucleic Acids Res 42,5390-5402.
    Kaspareit-Rittinghausen, J., Deerberg, F., and Wcislo, A. (1991). Hereditary polycystic kidney disease. Adult polycystic kidney disease associated with renal hypertension, renal osteodystrophy, and uremic enteritis in SPRD rats. Am J Pathol 139,693-696.
    Kaspareit-Rittinghausen, J., Rapp, K., Deerberg, F., Wcislo, A., and Messow, C. (1989). Hereditary polycystic kidney disease associated with osteorenal syndrome in rats. Vet Pathol 26,195-201.
    Kato, T., Miyata, K., Sonobe, M., Yamashita, S., Tamano, M., Miura, K., Kanai, Y., Miyamoto, S., Sakuma, T., Yamamoto, T., et al. (2013). Production of Sry knockout mouse using TALEN via oocyte injection. Sci Rep 3,3136.
    Katsuyama, T., Akmammedov, A., Seimiya, M., Hess, S.C., Sievers, C., and Paro, R. (2013). An efficient strategy for TALEN-mediated genome engineering in Drosophila. Nucleic Acids Res 41, e163.
    Kay, S., Hahn, S., Marois, E., Hause, G., and Bonas, U. (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318,648-651.
    Kearns, N.A., Genga, R.M., Enuameh, M.S., Garber, M., Wolfe, S.A., and Maehr, R. (2014). Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141,219-223.
    Kel, A.E., Gossling, E., Reuter, I., Cheremushkin, E., Kel-Margoulis, O.V., and Wingender, E. (2003). MATCH:A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 31,3576-3579.
    Kim, E., Arnould, T., Sellin, L., Benzing, T., Comella, N., Kocher, O., Tsiokas, L., Sukhatme, V.P., and Walz, G. (1999). Interaction between RGS7 and polycystin. Proc Natl Acad Sci U S A 96, 6371-6376.
    Kim, H., Jeong, W., Ahn, K., Ahn, C., and Kang, S. (2004). Siah-1 interacts with the intracellular region of polycystin-1 and affects its stability via the ubiquitin-proteasome pathway. J Am Soc Nephrol 15,2042-2049.
    Kim, H., Um, E., Cho, S.R., Jung, C., Kim, H., and Kim, J.S. (2011). Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat Methods 8,941-943.
    Kim, I., Ding, T., Fu, Y., Li, C., Cui, L., Li, A., Lian, P., Liang, D., Wang, D.W., Guo, C., et al. (2009). Conditional mutation of Pkd2 causes cystogenesis and upregulates beta-catenin. J Am Soc Nephrol 20,2556-2569.
    Kim, I., Li, C., Liang, D., Chen, X.Z., Coffy, R.J., Ma, J., Zhao, P., and Wu, G. (2008). Polycystin-2 expression is regulated by a PC2-binding domain in the intracellular portion of fibrocystin. J Biol Chem 283,31559-31566.
    Kim, Y., Kweon, J., Kim, A., Chon, J.K., Yoo, J.Y., Kim, H.J., Kim, S., Lee, C., Jeong, E., Chung, E., et al. (2013a). A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31, 251-258.
    Kim, Y.K., Wee, G., Park, J., Kim, J., Baek, D., Kim, J.S., and Kim, V.N. (2013b). TALEN-based knockout library for human microRNAs. Nat Struct Mol Biol 20,1458-1464.
    Koike-Yusa, H., Li, Y., Tan, E.P., Velasco-Herrera Mdel, C., and Yusa, K. (2014). Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32,267-273.
    Kottgen, M., Buchholz, B., Garcia-Gonzalez, M.A., Kotsis, F., Fu, X., Doerken, M., Boehlke, C, Steffi, D., Tauber, R., Wegierski, T., et al. (2008). TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182,437-447.
    Koupepidou, P., Felekkis, K.N., Kranzlin, B., Sticht, C., Gretz, N., and Deltas, C. (2010). Cyst formation in the PKD2 (1-703) transgenic rat precedes deregulation of proliferation-related pathways. BMC Nephrol 11,23.
    Kuehn, E.W., Hirt, M.N., John, A.K., Muehlenhardt, P., Boehlke, C., Putz, M., Kramer-Zucker, A.G., Bashkurov, M., van de Weyer, P.S., Kotsis, F., et al. (2007). Kidney injury molecule 1 (Kim1) is a novel ciliary molecule and interactor of polycystin 2. Biochem Biophys Res Commun 364, 861-866.
    Kurbegovic, A., Cote, O., Couillard, M., Ward, C.J., Harris, P.C., and Trudel, M. (2010). Pkdl transgenic mice:adult model of polycystic kidney disease with extrarenal and renal phenotypes. Hum Mol Genet 19,1174-1189.
    Kurbegovic, A., and Trudel, M. (2013). Progressive development of polycystic kidney disease in the mouse model expressing Pkdl extracellular domain. Hum Mol Genet 22,2361-2375.
    Lal, M., Song, X., Pluznick, J.L., Di Giovanni, V., Merrick, D.M., Rosenblum, N.D., Chauvet, V., Gottardi, C.J., Pei, Y., and Caplan, M.J. (2008). Polycystin-1 C-terminal tail associates with beta-catenin and inhibits canonical Wnt signaling. Hum Mol Genet 17,3105-3117.
    Lamb, B.M., Mercer, A.C., and Barbas, C.F.,3rd (2013). Directed evolution of the TALE N-terminal domain for recognition of all 5'bases. Nucleic Acids Res 41,9779-9785.
    Lancaster, M.A., and Gleeson, J.G. (2010). Cystic kidney disease:the role of Wnt signaling. Trends Mol Med 16,349-360.
    Lanoix, J., D'Agati, V., Szabolcs, M., and Trudel, M. (1996). Dysregulation of cellular proliferation and apoptosis mediates human autosomal dominant polycystic kidney disease (ADPKD). Oncogene 13, 1153-1160.
    Lantinga-van Leeuwen, I.S., Dauwerse, J.G., Baelde, H.J., Leonhard, W.N., van de Wal, A., Ward, C.J., Verbeek, S., Deruiter, M.C., Breuning, M.H., de Heer, E., et al. (2004). Lowering of Pkdl expression is sufficient to cause polycystic kidney disease. Hum Mol Genet 13,3069-3077.
    Lantinga-van Leeuwen, I.S., Leonhard, W.N., van der Wal, A., Breuning, M.H., de Heer, E., and Peters, D.J. (2007). Kidney-specific inactivation of the Pkdl gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum Mol Genet 16,3188-3196.
    Lei, Y., Guo, X., Liu, Y., Cao, Y., Deng, Y., Chen, X., Cheng, C.H., Dawid, I.B., Chen, Y., and Zhao, H. (2012). Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A 109,17484-17489.
    Li, D., Qiu, Z., Shao, Y., Chen, Y., Guan, Y., Liu, M., Li, Y., Gao, N., Wang, L., Lu, X., et al. (2013a). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31, 681-683.
    Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M., and Sheen, J. (2013b). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31,688-691.
    Li, Q., Montalbetti, N., Wu, Y., Ramos, A., Raychowdhury, M.K., Chen, X.Z., and Cantiello, H.F. (2006). Polycystin-2 cation channel function is under the control of microtubular structures in primary cilia of renal epithelial cells. J Biol Chem 281,37566-37575.
    Li, T., Huang, S., Jiang, W.Z., Wright, D., Spalding, M.H., Weeks, D.P., and Yang, B. (2011). TAL nucleases (TALNs):hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39,359-372.
    Li, T., Liu, B., Spalding, M.H., Weeks, D.P., and Yang, B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30,390-392.
    Li, W., Teng, F., Li, T., and Zhou, Q. (2013c). Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 31,684-686.
    Li, X., Luo, Y., Starremans, P.G., McNamara, C.A., Pei, Y., and Zhou, J. (2005). Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat Cell Biol 7, 1202-1212.
    Li, X., Magenheimer, B.S., Xia, S., Johnson, T., Wallace, D.P., Calvet, J.P., and Li, R. (2008). A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat Med 14,863-868.
    Liang, G., Li, Q., Tang, Y., Kokame, K., Kikuchi, T., Wu, G., and Chen, X.Z. (2008a). Polycystin-2 is regulated by endoplasmic reticulum-associated degradation. Hum Mol Genet 17,1109-1119.
    Liang, G., Yang, J., Wang, Z., Li, Q., Tang, Y., and Chen, X.Z. (2008b). Polycystin-2 down-regulates cell proliferation via promoting PERK-dependent phosphorylation of eIF2alpha. Hum Mol Genet 17,3254-3262.
    Lillico, S.G., Proudfoot, C., Carlson, D.F., Stverakova, D., Neil, C., Blain, C., King, T.J., Ritchie, W.A., Tan, W., Mileham, A.J., et al. (2013). Live pigs produced from genome edited zygotes. Sci Rep 3, 2847.
    Lin, F., Hiesberger, T., Cordes, K., Sinclair, A.M., Goldstein, L.S., Somlo, S., and Igarashi, P. (2003). Kidney-specific inactivation of the KIF3A subunit of kinesin-Ⅱ inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A 100,5286-5291.
    Liu, H., Chen, Y., Niu, Y., Zhang, K., Kang, Y., Ge, W., Liu, X., Zhao, E., Wang, C., Lin, S., et al. (2014). TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14,323-328.
    Liu, J., Li, C., Yu, Z., Huang, P., Wu, H., Wei, C., Zhu, N., Shen, Y., Chen, Y., Zhang, B., et al. (2012). Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics 39,209-215.
    Liu, L., Rice, M.C., Drury, M., Cheng, S.Q., Gamper, H., and Kmiec, E.B. (2002). Strand bias in targeted gene repair is influenced by transcriptional activity. Mol Cell Biol 22,3852-3863.
    Lo, T.W., Pickle, C.S., Lin, S., Ralston, E.J., Gurling, M., Schartner, C.M., Bian, Q., Doudna, J.A., and Meyer, B.J. (2013). Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions. Genetics 195,331-348.
    Loots, G.G., and Ovcharenko, I. (2005). Dcode.org anthology of comparative genomic tools. Nucleic Acids Res 33, W56-64.
    Losekoot, M., Ruivenkamp, C.A., Tholens, A.P., Grimbergen, J.E., Vijfhuizen, L., Vermeer, S., Dijkman, H.B., Cornelissen, E.A., Bongers, E.M., and Peters, D.J. (2012). Neonatal onset autosomal dominant polycystic kidney disease (ADPKD) in a patient homozygous for a PKD2 missense mutation due to uniparental disomy. J Med Genet 49,37-40.
    Lu, W., Fan, X., Basora, N., Babakhanlou, H., Law, T., Rifai, N., Harris, P.C., Perez-Atayde, A.R., Rennke, H.G., and Zhou, J. (1999). Late onset of renal and hepatic cysts in Pkd1-targeted heterozygotes. Nat Genet 21,160-161.
    Lu, W., Peissel, B., Babakhanlou, H., Pavlova, A., Geng, L., Fan, X., Larson, C., Brent, G., and Zhou, J. (1997). Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. Nat Genet 17,179-181.
    Lu, W.N., Shen, X.H., Pavlova, A., Lakkis, M., Ward, C.J., Pritchard, L., Harris, P.C., Genest, D.R., Perez-Atayde, A.R., and Zhou, J. (2001). Comparison of Pkdl-targeted mutants reveals that loss of polycystin-1 causes cystogenesis and bone defects. Hum Mol Genet 10,2385-2396.
    Luyten, A., Su, X., Gondela, S., Chen, Y., Rompani, S., Takakura, A., and Zhou, J. (2010). Aberrant regulation of planar cell polarity in polycystic kidney disease. J Am Soc Nephrol 21,1521-1532.
    Ma, M., Tian, X., Igarashi, P., Pazour, G.J., and Somlo, S. (2013). Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat Genet 45,1004-1012.
    Ma, S., Wang, X., Liu, Y., Gao, J., Zhang, S., Shi, R., Chang, J., Zhao, P., and Xia, Q. (2014a). Multiplex genomic structure variation mediated by TALEN and ssODN. BMC Genomics 15,41.
    Ma, Y., Zhang, X., Shen, B., Lu, Y., Chen, W., Ma, J., Bai, L., Huang, X., and Zhang, L. (2014b). Generating rats with conditional alleles using CRISPR/Cas9. Cell Res 24,122-125.
    Machida, N., Brissie, N., Sreenan, C., and Bishop, S.P. (1997). Inhibition of cardiac myocyte division in c-myc transgenic mice. J Mol Cell Cardiol 29,1895-1902.
    Maeder, M.L., Linder, S.J., Cascio, V.M., Fu, Y., Ho, Q.H., and Joung, J.K. (2013). CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10,977-979.
    Mahfouz, M.M., Li, L., Shamimuzzaman, M., Wibowo, A., Fang, X., and Zhu, J.K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A 108,2623-2628.
    Mak, A.N., Bradley, P., Cernadas, R.A., Bogdanove, A.J., and Stoddard, B.L. (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335,716-719.
    Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L., and Church, G.M. (2013a). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31,833-838.
    Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. (2013b). RNA-guided human genome engineering via Cas9. Science 339,823-826.
    Markoff, A., Bogdanova, N., Knop, M., Ruffer, C., Kenis, H., Lux, P., Reutelingsperger, C., Todorov, V., Dworniczak, B., Horst, J., et al. (2007). Annexin A5 interacts with polycystin-1 and interferes with the polycystin-1 stimulated recruitment of E-cadherin into adherens junctions. J Mol Biol 369, 954-966.
    Mashiko, D., Fujihara, Y., Satouh, Y., Miyata, H., Isotani, A., and Ikawa, M. (2013). Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep 3,3355.
    Meckler, J.F., Bhakta, M.S., Kim, M.S., Ovadia, R., Habrian, C.H., Zykovich, A., Yu, A., Lockwood, S.H., Morbitzer, R., Elsaesser, J., et al. (2013). Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res 41,4118-4128.
    Meyer, N., and Penn, L.Z. (2008). Reflecting on 25 years with MYC. Nat Rev Cancer 8,976-990.
    Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Meng, X., Paschon, D.E., Leung, E., Hinkley, S.J., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29,143-148.
    Mochizuki, T., Tsuchiya, K., and Nitta, K. (2013). Autosomal dominant polycystic kidney disease: recent advances in pathogenesis and potential therapies. Clin Exp Nephrol 17,317-326.
    Mochizuki, T., Wu, G., Hayashi, T., Xenophontos, S.L., Veldhuisen, B., Saris, J.J., Reynolds, D.M., Cai, Y., Gabow, P.A., Pierides, A., et al. (1996). PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272,1339-1342.
    Moghaddassi, S., Eyestone, W., and Bishop, C.E. (2014). TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin. PLoS One 9, e89631.
    Moscou, M.J., and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326,1501.
    Murphy, D.J., Junttila, M.R., Pouyet, L., Karnezis, A., Shchors, K., Bui, D.A., Brown-Swigart, L. Johnson, L., and Evan, G.I. (2008). Distinct thresholds govern Myc's biological output in vivo. Cancer Cell 14,447-457.
    Mussolino, C., Morbitzer, R., Lutge, F., Dannemann, N., Lahaye, T., and Cathomen, T. (2011). A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39,9283-9293.
    Nadasdy, T., Laszik, Z., Lajoie, G., Blick, K.E., Wheeler, D.E., and Silva, F.G. (1995). Proliferative activity of cyst epithelium in human renal cystic diseases. J Am Soc Nephrol 5,1462-1468.
    Nakajima, K., and Yaoita, Y. (2013). Comparison of TALEN scaffolds in Xenopus tropicalis. Biol Open 2,1364-1370.
    Nakayama, T., Fish, M.B., Fisher, M., Oomen-Hajagos, J., Thomsen, G.H., and Grainger, R.M. (2013). Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51,835-843.
    Nauli, S.M., Alenghat, F.J., Luo, Y., Williams, E., Vassilev, P., Li, X., Elia, A.E., Lu, W., Brown, E.M., Quinn, S.J., et al. (2003). Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33,129-137.
    Nilsson, L.M., Forshell, T.Z., Rimpi, S., Kreutzer, C., Pretsch, W., Bornkamm, G.W., and Nilsson, J.A. (2012). Mouse genetics suggests cell-context dependency for Myc-regulated metabolic enzymes during tumorigenesis. PLoS Genet 8, e1002573.
    Nishimasu, H., Ran, F.A., Hsu, P.D., Konermann, S., Shehata, S.I., Dohmae, N., Ishitani, R., Zhang, F., and Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156,935-949.
    Nishio, S., Hatano, M., Nagata, M., Horie, S., Koike, T., Tokuhisa, T., and Mochizuki, T. (2005). Pkdl regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation. J Clin Invest 115,910-918.
    Nishio, S., Tian, X., Gallagher, A.R., Yu, Z., Patel, V., Igarashi, P., and Somlo, S. (2010). Loss of oriented cell division does not initiate cyst formation. J Am Soc Nephrol 21,295-302.
    Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li, W., et al. (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156,836-843.
    Nocarova, E., Opatrny, Z., and Fischer, L. (2010). Successive silencing of tandem reporter genes in potato (Solanum tuberosum) over 5 years of vegetative propagation. Ann Bot 106,565-572.
    Nyquist, M.D., Li, Y., Hwang, T.H., Manlove, L.S., Vessella, R.L., Silverstein, K.A., Voytas, D.F., and Dehm, S.M. (2013). TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Proc Natl Acad Sci U S A 110,17492-11497.
    Ochiai, H., Miyamoto, T., Kanai, A., Hosoba, K., Sakuma, T., Kudo, Y., Asami, K., Ogawa, A., Watanabe, A., Kajii, T., et al. (2014). TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB IB as causative of PCS (MVA) syndrome. Proc Natl Acad Sci U S A 111,1461-1466.
    Oliveira, P.H., and Mairhofer, J. (2013). Marker-free plasmids for biotechnological applications implications and perspectives. Trends Biotechnol 31,539-547.
    Ong, A.C., and Harris, P.C. (2005). Molecular pathogenesis of ADPKD:the polycystin complex gets complex. Kidney Int 67,1234-1247.
    Park, E.Y., Sung, Y.H., Yang, M.H., Noh, J.Y., Park, S.Y., Lee, T.Y., Yook, Y.J., Yoo, K.H., Roh, K.J., Kim, I., et al. (2009). Cyst formation in kidney via B-Raf signaling in the PKD2 transgenic mice. J Biol Chem 284,7214-7222.
    Parnell, S.C., Magenheimer, B.S., Maser, R.L., Zien, C.A., Frischauf, A.M., and Calvet, J.P. (2002). Polycystin-1 activation of c-Jun N-terminal kinase and AP-1 is mediated by heterotrimeric G proteins. J Biol Chem 277,19566-19572.
    Paul, B.M., Consugar, M.B., Ryan Lee, M., Sundsbak, J.L., Heyer, C.M., Rossetti, S., Kubly, V.J., Hopp, K., Torres, V.E., Coto, E., et al. (2014). Evidence of a third ADPKD locus is not supported by re-analysis of designated PKD3 families. Kidney Int 85,383-392.
    Pei, Y., Lan, Z., Wang, K., Garcia-Gonzalez, M., He, N., Dicks, E., Parfrey, P., Germino, G., and Watnick, T. (2012a). A missense mutation in PKD1 attenuates the severity of renal disease. Kidney Int 81,412-417.
    Pei, Y., Moore, C.E., Wang, J., Tewari, A.K., Eroshkin, A., Cho, Y.J., Witt, H., Korshunov, A., Read, T.A., Sun, J.L., et al. (2012b). An animal model of MYC-driven medulloblastoma. Cancer Cell 21, 155-167.
    Pei, Y., Watnick, T., He, N., Wang, K., Liang, Y., Parfrey, P., Germino, G., and St George-Hyslop, P. (1999). Somatic PKD2 mutations in individual kidney and liver cysts support a "two-hit" model of cystogenesis in type 2 autosomal dominant polycystic kidney disease. J Am Soc Nephrol 10, 1524-1529.
    Perez-Pinera, P., Kocak, D.D., Vockley, C.M., Adler, A.F., Kabadi, A.M., Polstein, L.R., Thakore, P.I., Glass, K.A., Ousterout, D.G., Leong, K.W., et al. (2013). RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10,973-976.
    Piganeau, M., Ghezraoui, H., De Cian, A., Guittat, L., Tomishima, M., Perrouault, L., Rene, O., Katibah, G.E., Zhang, L., Holmes, M.C., et al. (2013). Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res 23,1182-1193.
    Piontek, K., Menezes, L.F., Garcia-Gonzalez, M.A., Huso, D.L., and Germino, G.G. (2007). A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkdl. Nat Med 13, 1490-1495.
    Ponce de Leon, V., Merillat, A.M., Tesson, L., Anegon, I., and Hummler, E. (2014). Generation of TALEN-mediated GRdim knock-in rats by homologous recombination. PLoS One 9, e88146.
    Pritchard, L., Sloane-Stanley, J.A., Sharpe, J.A., Aspinwall, R., Lu, W., Buckle, V., Strmecki, L., Walker, D., Ward, C.J., Alpers, C.E., et al. (2000). A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype. Hum Mol Genet 9,2617-2627.
    Puri, S., Magenheimer, B.S., Maser, R.L., Ryan, E.M., Zien, C.A., Walker, D.D., Wallace, D.P., Hempson, S.J., and Calvet, J.P. (2004). Polycystin-1 activates the calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway. J Biol Chem 279,55455-55464.
    Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., and Lim, W.A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152,1173-1183.
    Qian, F., Germino, F.J., Cai, Y., Zhang, X., Somlo, S., and Germino, G.G. (1997). PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16,179-183.
    Qian, F., Watnick, T.J., Onuchic, L.F., and Germino, G.G. (1996). The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87,979-987.
    Qiu, Z., Liu, M., Chen, Z., Shao, Y., Pan, H., Wei, G., Yu, C., Zhang, L., Li, X., Wang, P., et al. (2013). High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res 41, e120.
    Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., et al. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154,1380-1389.
    Ren, X., Sun, J., Housden, B.E., Hu, Y., Roesel, C., Lin, S., Liu, L.P., Yang, Z., Mao, D., Sun, L., et al. (2013). Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci U S A 110,19012-19017.
    Reyon, D., Tsai, S.Q., Khayter, C., Foden, J.A., Sander, J.D., and Joung, J.K. (2012). FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30,460-465.
    Roitbak, T., Surviladze, Z., Tikkanen, R., and Wandinger-Ness, A. (2005). A polycystin multiprotein complex constitutes a cholesterol-containing signalling microdomain in human kidney epithelia. Biochem J 392,29-38.
    Romer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U., and Lahaye, T. (2007). Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318, 645-648.
    Rossetti, S., Burton, S., Strmecki, L., Pond, G.R., San Millan, J.L., Zerres, K., Barratt, T.M., Ozen, S., Torres, V.E., Bergstralh, E.J., et al. (2002). The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severity of renal disease. J Am Soc Nephrol 13,1230-1237.
    Rossetti, S., Consugar, M.B., Chapman, A.B., Torres, V.E., Guay-Woodford, L.M., Grantham, J.J., Bennett, W.M., Meyers, C.M., Walker, D.L., Bae, K., et al. (2007). Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18,2143-2160.
    Rossetti, S., and Harris, P.C. (2007). Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J Am Soc Nephrol 18,1374-1380.
    Rossetti, S., Kubly, V.J., Consugar, M.B., Hopp, K., Roy, S., Horsley, S.W., Chauveau, D., Rees, L., Barratt, T.M., van't Hoff, W.G., et al. (2009). Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease. Kidney Int 75,848-855.
    Sakuma, T., Ochiai, H., Kaneko, T., Mashimo, T., Tokumasu, D., Sakane, Y., Suzuki, K., Miyamoto, T., Sakamoto, N., Matsuura, S., et al. (2013). Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3,3379.
    Sampaio, F.J. (1992). Anatomical background for nephron-sparing surgery in renal cell carcinoma. J Urol 147,999-1005.
    Sampaio, F.J., and Aragao, A.H. (1990). Anatomical relationship between the renal venous arrangement and the kidney collecting system. J Urol 144,1089-1093.
    Sander, J.D., Cade, L., Khayter, C., Reyon, D., Peterson, R.T., Joung, J.K., and Yeh, J.R. (2011). Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29, 697-698.
    Sander, J.D., and Joung, J.K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32,347-355.
    Schmid-Burgk, J.L., Schmidt, T., Kaiser, V., Honing, K., and Hornung, V. (2013). A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 31,76-81.
    Schwank, G., Koo, B.K., Sasselli, V., Dekkers, J.F., Heo, I., Demircan, T., Sasaki, N., Boymans, S., Cuppen, E., van der Ent, C.K., et al. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13,653-658.
    Serra, A.L., Poster, D., Kistler, A.D., Krauer, F., Raina, S., Young, J., Rentsch, K.M., Spanaus, K.S., Senn, O., Kristanto, P., et al. (2010). Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363,820-829.
    Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G., et al. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343,84-87.
    Shan, Q., Wang, Y., Chen, K., Liang, Z., Li, J., Zhang, Y., Zhang, K., Liu, J., Voytas, D.F., Zheng, X., et al. (2013a). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6,1365-1368.
    Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L., et al. (2013b). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31,686-688.
    Shao, X., Somlo, S., and Igarashi, P. (2002). Epithelial-specific Cre/lox recombination in the developing kidney and genitourinary tract. J Am Soc Nephrol 13,1837-1846.
    Sharma, N., Malarkey, E.B., Berbari, N.F., O'Connor, A.K., Vanden Heuvel, G.B., Mrug, M., and Yoder, B.K. (2013). Proximal tubule proliferation is insufficient to induce rapid cyst formation after cilia disruption. J Am Soc Nephrol 24,456-464.
    Shen, B., Zhang, J., Wu, H., Wang, J., Ma, K., Li, Z., Zhang, X., Zhang, P., and Huang, X. (2013). Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23,720-723.
    Shen, B., Zhang, W., Zhang, J., Zhou, J., Wang, J., Chen, L., Wang, L., Hodgkins, A., Iyer, V., Huang, X., et al. (2014). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11,399-402.
    Shen, S.S., Krishna, B., Chirala, R., Amato, R.J., and Truong, L.D. (2005). Kidney-specific cadherin, a specific marker for the distal portion of the nephron and related renal neoplasms. Mod Pathol 18, 933-940.
    Shillingford, J.M., Murcia, N.S., Larson, C.H., Low, S.H., Hedgepeth, R., Brown, N., Flask, C.A., Novick, A.C., Goldfarb, D.A., Kramer-Zucker, A., et al. (2006). The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103,5466-5471.
    Sklar, A.H., Caruana, R.J., Lammers, J.E., and Strauser, G.D. (1987). Renal infections in autosomal dominant polycystic kidney disease. Am J Kidney Dis 10,81-88.
    Smidler, A.L., Terenzi, O., Soichot, J., Levashina, E.A., and Marois, E. (2013). Targeted mutagenesis in the malaria mosquito using TALE nucleases. PLoS One 8, e74511.
    Song, J., Zhong, J., Guo, X., Chen, Y., Zou, Q., Huang, J., Li, X., Zhang, Q., Jiang, Z., Tang, C., et al. (2013). Generation of RAG 1-and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res 23,1059-1062.
    Sorensen, C.B., Krogsdam, A.M., Andersen, M.S., Kristiansen, K., Bolund, L., and Jensen, T.G. (2005). Site-specific strand bias in gene correction using single-stranded oligonucleotides. J Mol Med (Berl) 83,39-49.
    Soucek, L., and Evan, G.I. (2010). The ups and downs of Myc biology. Curr Opin Genet Dev 20,91-95.
    Starremans, P.G., Li, X., Finnerty, P.E., Guo, L., Takakura, A., Neilson, E.G., and Zhou, J. (2008). A mouse model for polycystic kidney disease through a somatic in-frame deletion in the 5'end of Pkdl. Kidney Int 73,1394-1405.
    Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C., and Doudna, J.A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507,62-67.
    Sun, N., Liang, J., Abil, Z., and Zhao, H. (2012). Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst 8,1255-1263.
    Sun, N., and Zhao, H. (2013). Transcription activator-like effector nucleases (TALENs):a highly efficient and versatile tool for genome editing. Biotechnol Bioeng 110,1811-1821.
    Sung, Y.H., Baek, I.J., Kim, D.H., Jeon, J., Lee, J., Lee, K., Jeong, D., Kim, J.S., and Lee, H.W. (2013). Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 31,23-24.
    Sung, Y.H., Kim, J.M., Kim, H.T., Lee, J., Jeon, J., Jin, Y., Choi, J.H., Ban, Y.H., Ha, S.J., Kim, C.H., et al. (2014). Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res 24,125-131.
    Suzuki, K.T., Isoyama, Y., Kashiwagi, K., Sakuma, T., Ochiai, H., Sakamoto, N., Furuno, N., Kashiwagi, A., and Yamamoto, T. (2013). High efficiency TALENs enable FO functional analysis by targeted gene disruption in Xenopus laevis embryos. Biol Open 2,448-452.
    Takakura, A., Contrino, L., Beck, A.W., and Zhou, J. (2008). Pkdl inactivation induced in adulthood produces focal cystic disease. J Am Soc Nephrol 19,2351-2363.
    Takakura, A., Contrino, L., Zhou, X., Bonventre, J.V., Sun, Y., Humphreys, B.D., and Zhou, J. (2009). Renal injury is a third hit promoting rapid development of adult polycystic kidney disease. Hum Mol Genet 18,2523-2531.
    Takasu, Y., Sajwan, S., Daimon, T., Osanai-Futahashi, M., Uchino, K., Sezutsu, H., Tamura, T., and Zurovec, M. (2013). Efficient TALEN construction for Bombyx mori gene targeting. PLoS One 8, e73458.
    Tan, W., Carlson, D.F., Lancto, C.A., Garbe, J.R., Webster, D.A., Hackett, P.B., and Fahrenkrug, S.C. (2013). Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A 110,16526-16531.
    Tesson, L., Usal, C., Menoret, S., Leung, E., Niles, B.J., Remy, S., Santiago, Y., Vincent, A.I., Meng, X., Zhang, L., et al. (2011). Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29,695-696.
    Thivierge, C., Kurbegovic, A., Couillard, M., Guillaume, R., Cote, O., and Trudel, M. (2006). Overexpression of PKD1 causes polycystic kidney disease. Mol Cell Biol 26,1538-1548.
    Thomson, R.B., Igarashi, P., Biemesderfer, D., Kim, R., Abu-Alfa, A., Soleimani, M., and Aronson, P.S. (1995). Isolation and cDNA cloning of Ksp-cadherin, a novel kidney-specific member of the cadherin multigene family. J Biol Chem 270,17594-17601.
    Thomson, R.B., Ward, D.C., Quaggin, S.E., Igarashi, P., Muckler, Z.E., and Aronson, P.S. (1998). cDNA cloning and chromosomal localization of the human and mouse isoforms of Ksp-cadherin. Genomics 51,445-451.
    Tian, Y., Kolb, R., Hong, J.H., Carroll, J., Li, D., You, J., Bronson, R., Yaffe, M.B., Zhou, J., and Benjamin, T. (2007). TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol 27,6383-6395.
    Torra, R., Badenas, C., San Millan, J.L., Perez-Oller, L., Estivill, X., and Darnell, A. (1999). A loss-of-function model for cystogenesis in human autosomal dominant polycystic kidney disease type 2. Am J Hum Genet 65,345-352.
    Torres, V.E., and Harris, P.C. (2009). Autosomal dominant polycystic kidney disease:the last 3 years. Kidney Int 76,149-168.
    Torres, V.E., Harris, P.C., and Pirson, Y. (2007). Autosomal dominant polycystic kidney disease. Lancet 369,1287-1301.
    Torres, V.E., Wilson, D.M., Hattery, R.R., and Segura, J.W. (1993). Renal stone disease in autosomal dominant polycystic kidney disease.. Am J Kidney Dis 22,513-519.
    Treen, N., Yoshida, K., Sakuma, T., Sasaki, H., Kawai, N., Yamamoto, T., and Sasakura, Y. (2014). Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 141,481-487.
    Trudel, M., Barisoni, L., Lanoix, J., and D'Agati, V. (1998). Polycystic kidney disease in SBM transgenic mice:role of c-myc in disease induction and progression. Am J Pathol 152,219-229.
    Trudel, M., Chretien, N., and D'Agati, V. (1994). Disappearance of polycystic kidney disease in revertant c-myc transgenic mice. Mamm Genome 5,149-152.
    Trudel, M., D'Agati, V., and Costantini, F. (1991). C-myc as an inducer of polycystic kidney disease in transgenic mice. Kidney Int 39,665-671.
    Valera, A., Perales, J.C., Hatzoglou, M., and Bosch, F. (1994). Expression of the neomycin-resistance (neo) gene induces alterations in gene expression and metabolism. Hum Gene Ther 5,449-456.
    Valton, J., Dupuy, A., Daboussi, F., Thomas, S., Marechal, A., Macmaster, R., Melliand, K., Juillerat, A., and Duchateau, P. (2012). Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287,38427-38432.
    van der Worp, H.B., Howells, D.W., Sena, E.S., Porritt, M.J., Rewell, S., O'Collins, V., and Macleod, M.R. (2010). Can animal models of disease reliably inform human studies? PLoS Med 7, e1000245.
    Vodicka, P., Smetana, K., Jr., Dvorankova, B., Emerick, T., Xu, Y.Z., Ourednik, J., Ourednik, V., and Motlik, J. (2005). The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci 1049,161-171.
    Vujic, M., Heyer, C.M., Ars, E., Hopp, K., Markoff, A., Orndal, C., Rudenhed, B., Nasr, S.H., Torres, V.E., Torra, R., et al. (2010). Incompletely penetrant PKD1 alleles mimic the renal manifestations of ARPKD. J Am Soc Nephrol 21,1097-1102.
    Walz, G., Budde, K., Mannaa, M., Nurnberger, J., Wanner, C., Sommerer, C., Kunzendorf, U., Banas, B., Horl, W.H., Obermuller, N., et al. (2010). Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363,830-840.
    Wang, F., Ma, S., Xu, H., Duan, J., Wang, Y., Ding, H., Liu, Y., Wang, X., Zhao, P., and Xia, Q. (2013a). Highefficiency system for construction and evaluation of customized TALENs for silkworm genome editing. Mol Genet Genomics 288,683-690.
    Wang, H., Hu, Y.C., Markoulaki, S., Welstead, G.G., Cheng, A.W., Shivalila, C.S., Pyntikova, T., Dadon, D.B., Voytas, D.F., Bogdanove, A.J., et al. (2013b). TALEN-mediated editing of the mouse Y chromosome. Nat Biotechnol 31,530-532.
    Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. (2013c). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153,910-918.
    Wang, T., Wei, J.J., Sabatini, D.M., and Lander, E.S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science 343,80-84.
    Wang, Y., Li, Z., Xu, J., Zeng, B., Ling, L., You, L., Chen, Y., Huang, Y., and Tan, A. (2013d). The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res 23, 1414-1416.
    Watanabe, T., Ochiai, H., Sakuma, T., Horch, H.W., Hamaguchi, N., Nakamura, T., Bando, T., Ohuchi, H., Yamamoto, T., Noji, S., et al. (2012). Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nat Commun 3,1017.
    Watnick, T., He, N., Wang, K., Liang, Y., Parfrey, P., Hefferton, D., St George-Hyslop, P., Germino, G., and Pei, Y. (2000). Mutations of PKD1 in ADPKD2 cysts suggest a pathogenic effect of trans-heterozygous mutations. Nat Genet 25,143-144.
    Wefers, B., Meyer, M., Ortiz, O., Hrabe de Angelis, M., Hansen, J., Wurst, W., and Kuhn, R. (2013). Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proc Natl Acad Sci U S A 110,3782-3787.
    Wei, Q., Shen, Y., Chen, X., Shifman, Y., and Ellis, R.E. (2014). Rapid creation of forward-genetics tools for C. briggsae using TALENs:lessons for nonmodel organisms. Mol Biol Evol 31,468-473.
    Wei, W., Hackmann, K., Xu, H., Germino, G., and Qian, F. (2007). Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J Biol Chem 282,21729-21737.
    Wertz, K., and Herrmann, B.G. (1999). Kidney-specific cadherin (cdh16) is expressed in embryonic kidney, lung, and sex ducts. Mech Dev 84,185-188.
    Whyte, D.A., Li, C., Thomson, R.B., Nix, S.L., Zanjani, R., Karp, S.L., Aronson, P.S., and Igarashi, P. (1999). Ksp-cadherin gene promoter. I. Characterization and renal epithelial cell-specific activity. Am J Physiol 277, F587-598.
    Wiedenheft, B., Sternberg, S.H., and Doudna, J.A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature 482,331-338.
    Wilson, P.D. (2004). Polycystic kidney disease. N Engl J Med 350,151-164.
    Wilson, S.J., Amsler, K., Hyink, D.P., Li, X., Lu, W., Zhou, J., Burrow, C.R., and Wilson, P.D. (2006). Inhibition of HER-2(neu/ErbB2) restores normal function and structure to polycystic kidney disease (PKD) epithelia. Biochim Biophys Acta 1762,647-655.
    Woo, D. (1995). Apoptosis and loss of renal tissue in polycystic kidney diseases. N Engl J Med 333, 18-25.
    Wood, A.J., Lo, T.W., Zeitler, B., Pickle, C.S., Ralston, E.J., Lee, A.H., Amora, R., Miller, J.C., Leung, E., Meng, X., et al. (2011). Targeted genome editing across species using ZFNs and TALENs. Science 333,307.
    Wu, G., D'Agati, V., Cai, Y., Markowitz, G., Park, J.H., Reynolds, D.M., Maeda, Y., Le, T.C., Hou, H., Jr., Kucherlapati, R., et al. (1998). Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93,177-188.
    Wu, G., Markowitz, G.S., Li, L., D'Agati, V.D., Factor, S.M., Geng, L., Tibara, S., Tuchman, J., Cai, Y., Park, J.H., et al. (2000). Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24,75-78.
    Wu, G., Mochizuki, T., Le, T.C., Cai, Y., Hayashi, T., Reynolds, D.M., and Somlo, S. (1997). Molecular cloning, cDNA sequence analysis, and chromosomal localization of mouse Pkd2. Genomics 45,220-223.
    Wu, G., Tian, X., Nishimura, S., Markowitz, G.S., D'Agati, V., Park, J.H., Yao, L., Li, L., Geng, L., Zhao, H., et al. (2002). Trans-heterozygous Pkdl and Pkd2 mutations modify expression of polycystic kidney disease. Hum Mol Genet 11,1845-1854.
    Wu, S., Ying, G., Wu, Q., and Capecchi, M.R. (2008). A protocol for constructing gene targeting vectors:generating knockout mice for the cadherin family and beyond. Nat Protoc 3,1056-1076.
    Wu, Y., Dai, X.Q., Li, Q., Chen, C.X., Mai, W., Hussain, Z., Long, W., Montalbetti, N., Li, G., Glynne, R., et al. (2006). Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin. Hum Mol Genet 15,3280-3292.
    Wu, Y., Gao, T., Wang, X., Hu, Y., Hu, X., Hu, Z., Pang, J., Li, Z., Xue, J., Feng, M., et al. (2014). TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus. Biochem Biophys Res Commun 446,261-266.
    Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D., and Li, J. (2013). Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13,659-662.
    Xiao, A., Wang, Z., Hu, Y., Wu, Y., Luo, Z., Yang, Z., Zu, Y., Li, W., Huang, P., Tong, X., et al. (2013). Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41, e141.
    Xiao, G., Mao, S., Baumgarten, G., Serrano, J., Jordan, M.C., Roos, K.P., Fishbein, M.C., and MacLellan, W.R. (2001). Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circ Res 89,1122-1129.
    Xin, J., Yang, H., Fan, N., Zhao, B., Ouyang, Z., Liu, Z., Zhao, Y., Li, X., Song, J., Yang, Y., et al. (2013). Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One 8, e84250.
    Yang, D., Xu, J., Zhu, T., Fan, J., Lai, L., Zhang, J., and Chen, Y.E. (2014). Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J Mol Cell Biol 6,97-99.
    Yang, H., Wang, H., Shivalila, C.S., Cheng, A.W., Shi, L., and Jaenisch, R. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154,1370-1379.
    Yoder, B.K., Mulroy, S., Eustace, H., Boucher, C., and Sandford, R. (2006). Molecular pathogenesis of autosomal dominant polycystic kidney disease. Expert Rev Mol Med 8,1-22.
    Yoshiba, S., Shiratori, H., Kuo, I.Y., Kawasumi, A., Shinohara, K., Nonaka, S., Asai, Y., Sasaki, G., Belo, J.A., Sasaki, H., et al. (2012). Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338,226-231.
    Yu, W., Kong, T., Beaudry, S., Tran, M., Negoro, H., Yanamadala, V., and Denker, B.M. (2010). Polycystin-1 protein level determines activity of the Galpha12/JNK apoptosis pathway. J Biol Chem 285,10243-10251.
    Yu, W., Ritchie, B.J., Su, X., Zhou, J., Meigs, T.E., and Denker, B.M. (2011). Identification of polycystin-1 and Galphal2 binding regions necessary for regulation of apoptosis. Cell Signal 23, 213-221.
    Yu, Y., Ulbrich, M.H., Li, M.H., Buraei, Z., Chen, X.Z., Ong, A.C., Tong, L., Isacoff, E.Y., and Yang, J. (2009). Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 106,11558-11563.
    Yu, Z., Ren, M., Wang, Z., Zhang, B., Rong, Y.S., Jiao, R., and Gao, G. (2013). Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 195,289-291.
    Yuneva, M.O., Fan, T.W., Allen, T.D., Higashi, R.M., Ferraris, D.V., Tsukamoto, T., Mates, J.M., Alonso, F.J., Wang, C., Seo, Y., et al. (2012). The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 15,157-170.
    Zaidi, A., Schmoeckel, M., Bhatti, F., Waterworth, P., Tolan, M., Cozzi, E., Chavez, G., Langford, G., Thiru, S., Wallwork, J., et al. (1998). Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 65,1584-1590.
    Zatti, A., Chauvet, V., Rajendran, V., Kimura, T., Pagel, P., and Caplan, M.J. (2005). The C-terminal tail of the polycystin-1 protein interacts with the Na,K-ATPase alpha-subunit. Mol Biol Cell 16, 5087-5093.
    Zerres, K., Rudnik-Schoneborn, S., and Deget, F. (1993). Childhood onset autosomal dominant polycystic kidney disease in sibs:clinical picture and recurrence risk. German Working Group on Paediatric Nephrology (Arbeitsgemeinschaft fur Padiatrische Nephrologie. J Med Genet 30, 583-588.
    Zhang, Y., Wada, J., Yasuhara, A., Iseda, I., Eguchi, J., Fukui, K., Yang, Q., Yamagata, K., Hiesberger, T., Igarashi, P., et al. (2007). The role for HNF-1 beta-targeted collectrin in maintenance of primary cilia and cell polarity in collecting duct cells. PLoS One 2, e414.
    Zhang, Y., Zhang, F., Li, X., Baller, J.A., Qi, Y., Starker, C.G., Bogdanove, A.J., and Voytas, D.F. (2013a). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161,20-27.
    Zhang, Z., Xiang, D., Heriyanto, F., Gao, Y., Qian, Z., and Wu, W.S. (2013b). Dissecting the Roles of miR-302/367 Cluster in Cellular Reprogramming Using TALE-based Repressor and TALEN. Stem Cell Reports 1,218-225.
    Zhao, P., Zhang, Z., Ke, H., Yue, Y., and Xue, D. (2014a). Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system. Cell Res 24,247-250.
    Zhao, Y., Dai, Z., Liang, Y., Yin, M., Ma, K., He, M., Ouyang, H., and Teng, C.B. (2014b). Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci Rep 4,3943.
    Zheleznova, N.N., Wilson, P.D., and Staruschenko, A. (2011). Epidermal growth factor-mediated proliferation and sodium transport in normal and PKD epithelial cells. Biochim Biophys Acta 1812, 1301-1313.
    Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., Hu, Y., Luo, Z., Huang, P., Wu, Q., et al. (2013). TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10,329-331.
    北京农业大学实验动物研究所(1991).中国实验用小型猪的培育、开发与应用.中国实验动物学杂志 1,13-17.
    冯媛媛,白雪源,贺津,叶建华,陈香美(2013).中国实验用小型猪血液指标正常参考值分析.中国畜牧兽医40,139-141.
    裴德智(1997).简述中国实验用小型猪.实验动物科学与管理 14,36-37.
    沈珊珊,李旭艳,谢院生,金美玲,崔少远,季佳瑶,万嘉嘉,刘颖,李清刚,白雪源,陈香美(2013).中国实验用小型猪肾小管的发育及各节段标志物的表达.中国中西医结合肾病杂志 14,290-293.
    于书敏,王传武,赵德明,张庆才,裴德智(2003).中国实验小型猪培育和病原净化.实验动物科学与管理20,44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700