用户名: 密码: 验证码:
止血材料开发及其表面功能蛋白研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不可控制的大出血是战争、车祸及其他意外事故死亡的主要原因。开发短时间内止血的紧急救生止血材料,能够有效降低出血导致的死亡。然而大量商业化止血材料都难以满足材料生物相容性好、止血效果快、方便使用等要求。自2002年沸石止血产品Quikclot面世以来,已经在战场上救活了成百上千人,然而Quikclot存在严重的放热效应,降低其放热量会导致止血效果也降低,这大大限制了Quikclot止血材料的应用。因此研究开发止血效果好、副作用低的止血材料是一个迫切需要解决的问题。虽然沸石止血材料有着十几年的应用历史,但是其机理仍然不明。近年来纳米材料-生物体系的相互作用研究表明,当材料进入生物体系时其表面会被生物分子(蛋白质等)覆盖形成“蛋白质环’'(Protein Cronoa),然而“蛋白质环”中功能蛋白与材料生物学效应之间的联系仍然没有阐明,因此研究沸石表面功能蛋白与凝血活性间的关系不仅有利于揭示沸石止血材料的凝血机理,还有利于阐明蛋白质环与材料生物活性之间的关系。
     本论文主要围绕紧急救生止血材料的开发、材料止血机理及其表面功能蛋白的活性研究等展开。
     论文第二章主要围绕止血效果好、放热效应低的止血材料的开发展开。我们研究了离子交换、基团修饰等对浙江缙云天然沸石体外凝血效果的影响,并考察了天然沸石在家兔致命性股动脉出血实验中的止血效果及伤口愈合情况、细胞毒性、全身毒性和放热效应等。结果表明,天然沸石能够大大降低股动脉出血时间,提高动物存活率,降低负效应,并且有利于伤口愈合。同时天然沸石具有良好的生物相容性、无细胞毒性、无全身毒性和过敏性等;因而天然沸石作为外用止血材料具有广阔的商业化应用前景。另一方面,天然矿物止血材料在我国有着上千年的药用历史,因而我们也考察了天然矿物(蒙脱土、膨润土、鹅管石、花蕊石等)的体外凝血时间和放热效应。与Quikclot相比,这些天然矿物都具有相近的体外凝血效果和较低的放热效应。结果表明天然矿物作为紧急救生止血材料具有潜在的市场应用前景。
     论文第三章我们研究了Ca-沸石/血浆复合材料的止血效果及沸石表面功能蛋白。研究发现Ca-沸石进入血液时其表面会被血浆蛋白包裹形成一层具有超高促凝血活性和凝血酶活力的“蛋白质环”,而其他材料及其他离子交换沸石表面蛋白质环促凝血活性很低。免疫分析和生物质谱分析表明,Ca-沸石/蛋白质环中的功能蛋白为凝血酶,凝血酶的活力决定了材料的促凝血活性。当通过EDTA移除沸石中的钙离子,Ca-沸石/蛋白质环中的凝血酶逐渐被抗凝血酶抑制失去活性。稳定性分析表明,Ca-沸石/蛋白质环中的凝血酶能够在室温下稳定保存30个月。通过血友病小鼠(Factor Ⅷ缺乏)止血实验发现蛋白质环包裹的沸石可以有效地用于血友病出血的止血,Ca-沸石/血浆复合材料能够使小鼠在4.5min内止血,而商业化止血产品Quikclot在1h仍不能止血。本章中我们首次从蛋白质水平揭示了沸石止血材料的促凝机理以及蛋白质环中凝血酶与沸石促凝血活性之间的关系,并且发现无机材料(沸石)可以调控其表面蛋白的相互作用。
     中药是我国瑰宝,中药的许多矿物药都具有止血效果,然而关于其机理与影响因素仍然不明。因此在本论文第四章我们研究了具有近千年药用历史的花蕊石的止血效果影响因素及止血机理。研究发现,花蕊石的产地与炮制方法对花蕊石止血效果有重要影响,花蕊石中的碳酸钙在炮制过程中生成的乙酸钙是其炮制后能够快速止血的主要原因;并且在一定范围内,随着炮制过程中乙酸钙生成的增加,碳酸钙表面吸附凝血酶的含量和活性也增加。该研究从分子水平揭示了花蕊石的止血机理,有利于中药的应用推广
     论文第五章我们研究了二氧化硅表面基团对表面蛋白质环中原位产生凝血酶的吸附及其与抗凝血酶相互作用的调控。研究发现负电基团修饰(-OH,-SH,-COOH)的SBA-15可以促进凝血,正电基团(-NH2)修饰的SBA-15抑制凝血,并且基团修饰对材料表面蛋白质环形成及蛋白质环中凝血酶活性有重要影响;-OH和-SH基团修饰的SBA-15与BSA作用较弱,能够吸附较多的凝血酶,因此蛋白质环形成后具有较高的凝血酶活性。-COOH修饰的SBA-15与BSA作用力较强,材料表面与凝血酶作用力较弱,凝血酶被抗凝血酶结合,因此蛋白质环凝血酶活力低。该研究首次揭示了表面基团对蛋白质环中功能蛋白吸附及活性的影响。
     论文第六章我们研究了二氧化钛晶相对表面蛋白质环形成及表面凝血酶活性的影响。研究发现锐钛矿型二氧化钛对血浆蛋白吸附弱,表面蛋白质环中蛋白质少,而金红石相二氧化钛与血浆蛋白作用力强,吸附大量血浆蛋白。进一步研究发现锐钛矿表面吸附凝血酶活性保持不变,金红石表面吸附凝血酶的活性则大量丧失。该研究首次揭示了材料晶相对蛋白质环形成及表面吸附酶活性的影响,对于二氧化钛的生物应用具有重要指导意义。
     最后,在论文第七章我们对全文进行了总结,并对止血材料研究及材料-蛋白质环相互作用研究的发展趋势进行了展望。
Uncontrollable hemorrhage is the leading cause of death in battlefields, vehicle accidents, street violence, wilderness accidents etc. The development of a high-efficiency life-saving hemostatic can effectively reduce the mortality due to hemorrhage. However, large numbers of commercial hemostatic can not meet the requirements of high biocompatibility, quick clotting, ease of use etc. Since2002zeolite hemostatic Quikclot has saved hundreds of lives in battlefields, while there is severe exothermic reaction for Quikclot. The hemostatic efficiency will also decrease when reduce its exothermic reaction by pre-hydration, which greatly limited its application. Therefore, it is an urgent problem to develop a high-efficiency hemostatic with lower side effect. On the other hand, the coagulation mechanism of Quikclot is still unknown although it has been used over ten years. Recently, the development in nanomaterials-biological fluid interaction suggested that the material surface would be covered by a HPC (hard protein corona) after entering into the biological fluid and it was the HPC lead to the main biologic identity of the materials. However, the relationship between the functional proteins in the HPC to the biological impact of the materials is still unclear. The research on the relationships between the functional proteins in the HPC of zeolite surface and the hemostatic efficiency of zeolite not only helps to reveal the underlying procoaglant mechanism of zeolite hemostatic, but also plays critical roles in clarifying the relationship between the HPC and the biological activity of the materials.
     This dissertation mainly focused on the development of life-saving hemostatic materials, hemostatic mechanism and functional proteins in the HPC over the material surface.
     In chapter2, we focused on developing high-efficiency hemostatic with low side effect. We studied the effect of ion exchange and group modification on the in vitro coagulation efficiency of Jinyun natural zeolite, and evaluated its hemostatic efficiency in the lethal groin injury model of rabbit, cell toxicity, body toxicity and exothermic reaction. The results show that the ion exchange and group modification can not significantly improve the coagulation efficiency. The natural zeolite can significantly reduce the bleeding time, increase the survival of animals, reduce the exothermic effect and favor the wound healing process. Meanwhile, natural zeolite has good biocompatibility, non-cytotoxicity, and non-systemic toxicity, which make natural zeolite as a promising hemostatic. At the same time, we also developed other natural hemostatic with good clotting efficiency and low exothermic effect, such as montmorillonite and bentonite.
     In chapter3, we studied the procoagulant activity and thrombin activity of Ca-zeolite/HPC. It was found that there would be formed a HPC with high thrombin activity and high-procoagulant activity on the surface of Ca-zeolite when it was incubated in plasma solution, while limited thrombin activity was observed on other materials or other cations exchange zeolite. Immunoassays and mass spectrometry analysis show that it is the thrombin in the Ca-zeolite/HPC that leads to the high procoagulant activity of Ca-zeolite. The thrombin in the Ca-zeolite/HPC will be inhibited by antithrombin to form a thrombin-antithrombin complex when removing the calcium ions in the zeolite by EDTA. The stability assay of Ca-zeolite/HPC shows that the thrombin activity is stable over a30months storage at room temperature. Finally, we studied the hemostatic efficiency of Ca-zeolite/HPC in a tail bleeding model of hemophilia mouse (Factor VIII deficiency). The results shows that the mice can effectively stop bleeding within4.5min after the application of Ca-zeolite/HPC, but it will still bleed after1h for the Quikclot group. In this chapter we first revealed the underlying procoagulant mechanism of zeolite and clarified the relationship between the procoagulant activity of zeolite and HPC.
     Traditional Chinese medicine (TCM) is a great treasure of our country. Many TCM also have procoagulant effect, however the coagulation mechanism and influencing factors are still unknown. Therefore, we studied the influence factors on the hemostatic efficiency and hemostatic mechanism of ophicalcite in chapter4. The results show that the producing area and processing methods play critical roles in the hemostatic efficiency of ophicalcite. The calcium acetate formed in the processing process contributed to the acceleration of the blood coagulation. In certain range, the thrombin activity and thrombin adsorption on the surface of calcite increase as the increase in the formation of calcium acetate. The study reveals the underlying procoagulant mechanism of ophicalcite and favors the application of TCM.
     In chapter5, we studied the surface group mediated thrombin generation and adsorption in the HPC of SBA-15. It was found that the negatively charged groups (-OH,-SH,-COOH) could promote the blood clotting of SBA-15, while positively charged group (-NH2) inhibit the blood coagulation. More important, the surface groups play critical roles in the HPC formation and thrombin activity in the HPC:-OH and-SH group modified SBA-15show moderate adsorption to BSA and leads to more thrombin absorbed in the HPC, thus the HPC show high thrombin activity.-COOH modified SBA-15show strong adsorption to BSA and leads to the weak interaction between thrombin, thus most of the thrombin in the HPC was inhibited by anti-thrombin. The research reveals the effects of the surface groups on the adsorption of the functional protein in the HPC.
     In Chapter6, we studied the effect of crystal phase of titanium dioxide on the HPC formation and the activity of the adsorbed thrombin. The results show that anatase has weak affinity to the plasma proteins and leads to less protein in the HPC, while rutile has strong affinity to the plasma proteins and forms a HPC with much more proteins. The results of thrombin activity on the titanium dioxide surface reveal that there is a sharp decrease in thrombin activity after adsorption to rutile surface. On the other side, the thrombin activity does not show significant change after adsorption to anatase surface. The research clarified the effect of crystal phase on the HPC formation and the thrombin activity on the surface of titanium dioxide, and played a critical role for the biological applications titanium dioxide.
     Finally, we summarized the dissertation, and made an outlook for the development trend of hemostatic materials and material-HPC interactions in Chapter
引文
1. http://www.who.int/mediacentre/news/releases/2007/pr17/en/index.html.
    2.李继平,杨冬雪:止血性壳聚糖的制备及其凝血效果的研究Liaoning Chemical Industry 2007,36,289-291.
    3.施子禄,林沁,陈建:局部止血药物与材料的临床应用概况.中国药房2007.
    4. Granville-Chapman, J.; Jacobs, N.; Midwinter, M. J.:Pre-hospital haemostatic dressings:A systematic review. Injury 2011,42,447-459.
    5. Gruen, R. L.; Brohi, K.; Schreiber, M.; Balogh, Z. J.; Pitt, V.; Narayan, M.; Maier, R. V.:Haemorrhage control in severely injured patients. Lancet 2012,380, 1099-1108.
    6. Seyednejad, H.; Imani, N.; Jamieson, T.; Seifalian, A. M.:Topical haemostatic agents. British Journal of Surgery 2008,95,1197-1225.
    7. Palm, M. D.; Altman, J. S.:Topical hemostatic agents:A review. Dermatologic Surgery 2008,34,431-445.
    8. Achneck, H. E.; Sileshi, B.; Jamiolkowski, R. M.; Albala, D. M.; Shapiro, M. L.; Lawson, J. H.:A Comprehensive Review of Topical Hemostatic Agents Efficacy and Recommendations for Use. Annals of Surgery 2010,251,217-228.
    9. John G McManus, I. W.:Modern Hemostatic Agents for Hemorrhage Control-A Review and Discussion of Use in Current Combat Operations. Emergency Medicine Critical Care 2005,76-79
    10. Alam, H. B.; Burris, D.; DaCorta, J. A.; Rhee, P.:Hemorrhage control in the battlefield:Role of new hemostatic agents. Military Medicine 2005,170,63-69.
    11. Kheirabadi, B. S.; Arnaud, F.; McCarron, R.; Murdock, A. D.; Hodge, D. L.; Ritter, B.; Dubick, M. A.; Blackbourne, L. H.:Development of a Standard Swine Hemorrhage Model for Efficacy Assessment of Topical Hemostatic Agents. Journal of Trauma- Injury, Infection, and Critical Care 2011,71,139-146.
    12. Lundblad, R. L.; Bradshaw, R. A.; Gabriel, D.; Ortel, T. L.; Lawson, J.; Mann, K. G.:A review of the therapeutic uses of thrombin. Thromb. Haemost.2004,91, 851-860.
    13. Schwartz, M.; Madariaga, J.; Hirose, R.; Shaver, T. R.; Sher, L.; Chari, R.; Colonna, J. O.; Heaton, N.; Mirza, D.; Adams, R.; Rees, M.; Lloyd, D.: Comparison of a new fibrin sealant with standard topical hemostatic agents. Arch. Surg.2004,139,1148-1154.
    14. Spotnitz, W. D.:Fibrin Sealant:Past, Present, and Future:A Brief Review. World J.Surg.2010,34,632-634.
    15. Jackson, M. R.:Fibrin sealants in surgical practice:An overview. The American Journal of Surgery 2001,182,1-7.
    16. Spotnitz, W. D.:Commercial fibrin sealants in surgical care. The American Journal of Surgery 2001,182,8-14.
    17. Martinowitz, U.; Saltz, R.:Fibrin sealant. Curr. Opin. Hematol.1996,3,395-402.
    18. Ahuja, N.; Ostomel, T. A.; Rhee, P.; Stucky, G. D.; Conran, R.; Chen, Z.; Al-Mubarak, G. A.; Velmahos, G.; deMoya, M.; Alam, H. B.:Testing of modified zeolite hemostatic dressings in a large animal model of lethal groin injury.Journal of Trauma-Injury Infection and Critical Care 2006,61,1312-1320.
    19. Alam, H. B.; Uy, G. B.; Miller, D.; Koustova, E.; Hancock, T.; Inocencio, R.; Anderson, D.; Llorente, O.; Rhee, P.:Comparative analysis of hemostatic agents in a swine model of lethal groin injury. Journal of Trauma-Injury Infection and Critical Care 2003,54,1077-1082.
    20. Alam, H. B.; Chen, Z.; Jaskille, A.; Querol, R.; Koustova, E.; Inocencio, R.; Conran, R.; Seufert, A.; Ariaban, N.; Toruno, K.; Rhee, P.:Application of a zeolite hemostatic agent achieves 100% survival in a lethal model of complex groin injury in swine. Journal of Trauma-Injury Infection and Critical Care 2004, 56,974-983.
    21. Arnaud, F.; Tomori, T.; Carr, W.; McKeague, A.; Teranishi, K.; Prusaczyk, K.; McCarron, R.:Exothermic reaction in zeolite hemostatic dressings:QuikClot ACS and ACS+(R). Annals of Biomedical Engineering 2008,36,1708-1713.
    22. Ostomel, T. A.; Stoimenov, P. K.; Holden, P. A.; Alam, H. B.; Stucky, G. D.: Host-guest composites for induced hemostasis and therapeutic healing in traumatic injuries. Journal of Thrombosis and Thrombolysis 2006,22,55-67.
    23. Baker, S. E.; Sawvel, A. M.; Zheng, N.; Stucky, G. D.:Controlling bioprocesses with inorganic surfaces:Layered clay hemostatic agents. Chemistry of Materials 2007,19,4390-4392.
    24. Ward, K. R.; Tiba, M. H.; Holbert, W. H.; Blocher, C. R.; Draucker, G. T.; Proffitt, E. K.; Bowlin, G. L.; Ivatury, R. R.; Diegelmann, R. F.:Comparison of a new hemostatic agent to current combat hemostatic agents in a swine model of lethal extremity arterial hemorrhage. Journal of Trauma-Injury Infection and Critical Care 2007,63,276-283.
    25. Kheirabadi, B. S.; Edens, J. W.; Terrazas, I. B.; Estep, J. S.; Klemcke, H. G.; Dubick, M. A.; Holcomb, J. B.:Comparison of New Hemostatic Granules/Powders With Currently Deployed Hemostatic Products in a Lethal Model of Extremity Arterial Hemorrhage in Swine. Journal of Trauma-Injury Infection and Critical Care 2009,66,316-328.
    26. Carraway, J. W.; Kent, D. N.; Young, K.; Cole, A.; Friedman, R.; Ward, K. R.: Comparison of a new mineral based hemostatic agent to a commercially available granular zeolite agent for hemostasis in a swine model of lethal extremity arterial hemorrhage. Resuscitation 2008,78,230-235.
    27. Arnaud, F.; Parreno-Sadalan, D.; Tomori, T.; Delima, M. G.; Teranishi, K.; Carr, W.; McNamee, G.; McKeague, A.; Govindaraj, K.; Beadling, C.; Lutz, C.; Sharp, T.; Mog, S.; Burris, D.; McCarron, R.:Comparison of 10 Hemostatic Dressings in a Groin Transection Model in Swine. Journal of Trauma-Injury Infection and Critical Care 2009,67,848-855.
    28. Littlejohn, L. F.; Devlin, J. J.; Kircher, S. S.; Lueken, R.; Melia, M. R.; Johnson, A. S.:Comparison of Celox-A, ChitoFlex, WoundStat, and Combat Gauze Hemostatic Agents Versus Standard Gauze Dressing in Control of Hemorrhage in a Swine Model of Penetrating Trauma. Academic Emergency Medicine 2011,18, 340-350.
    29. Arnaud, F.; Teranishi, K.; Tomori, T.; Carr, W.; McCarron, R.:Comparison of 10 hemostatic dressings in a groin puncture model in swine. Journal of Vascular Surgery 2009,50,632-639.
    30. Kheirabadi, B. S.; Mace, J. E.; Terrazas, I. B.; Fedyk, C. G.; Estep, J. S.; Dubick, M. A.; Blackbourne, L. H.:Safety Evaluation of New Hemostatic Agents, Smectite Granules, and Kaolin-Coated Gauze in a Vascular Injury Wound Model in Swine. Journal of Trauma-Injury Infection and Critical Care 2010,68, 269-277.
    31. Sudarshan, N. R.; Hoover, D. G.; Knorr, D.:Antibacterial action of chitosan. Food Biotechnology 1992,6,257-272.
    32. Casettari, L.; Vllasaliu, D.; Lam, J. K. W.; Soliman, M.; Illum, L.:Biomedical applications of amino acid-modified chitosans:A review. Biomaterials 2012,33, 7565-7583.
    33. Riva, R.; Ragelle, H.; des Rieux, A.; Duhem, N.; Jerome, C.; Preat, V.:Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering. In Chitosan for Biomaterials Ii; Jayakumar, R., Prabaharan, M., Muzzarelli, R. A. A., Eds., 2011; Vol.244; pp 19-44.
    34. Ramya, R.; Venkatesan, J.; Kim, S. K.; Sudha, P. N.:Biomedical Applications of Chitosan:An Overview. Journal of Biomaterials and Tissue Engineering 2012,2, 100-111.
    35. Liu, X. F.; Guan, Y. L.; Yang, D. Z.; Li, Z.; De Yao, K.:Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science 2001,79,1324-1335.
    36. No, H. K.; Park, N. Y.; Lee, S. H.; Meyers, S. P.:Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology 2002,74,65-72.
    37. Qi, L. F.; Xu, Z. R.; Jiang, X.; Hu, C. H.; Zou, X. F.:Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research 2004,339, 2693-2700.
    38. Jayakumar, R.; Prabaharan, M.; Kumar, P. T. S.; Nair, S. V.; Tamura, H.: Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances 2011,29,322-337.
    39. Kunio, N. R.; Riha, G. M.; Watson, K. M.; Differding, J. A.; Schreiber, M. A.; Watters, J. M.:Chitosan based advanced hemostatic dressing is associated with decreased blood loss in a swine uncontrolled hemorrhage model. American Journal of Surgery 2013,205,505-509.
    40. Gegel, B.; Burgert, J.; Cooley, B.; MacGregor, J.; Myers, J.; Calder, S.; Luellen, R.; Loughren, M.; Johnson, D.:The Effects of BleedArrest, Celox, and TraumaDex on Hemorrhage Control in a Porcine Model. Journal of Surgical Research 2010,164,125-129.
    41. Peng, H. T.:Thromboelastographic study of biomaterials. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2010,94B,469-485.
    42. Muller, F.; Mutch, N. J.; Schenk, W. A.; Smith, S. A.; Esterl, L.; Spronk, H. M.; Schmidbauer, S.; Gahl, W. A.; Morrissey, J. H.; Renne, T.:Platelet Polyphosphates Are Proinflammatory and Procoagulant Mediators In Vivo. Cell 2009,139,1143-1156.
    43. Smith, S. A.; Mutch, N. J.; Baskar, D.; Rohloff, P.; Docampo, R.; Morrissey, J. H.:Polyphosphate modulates blood coagulation and fibrinolysis. Proc. Natl. Acad Sci. U. S. A.2006,103,903-908.
    44.Smith,S.A.;Choi,S.H.;Davis-Harrison,R.;Huyck,J.;Boettcher,J.;Rienstra, C.M.;Morrissey,J.H.:Polyphosphate exerts differential effects on blood clotting,depending on polymer size.Blood 2010,116,4353-4359.
    45.Jonathan Galownia,J.M.,Mark E.Davis:Aluminophosphate-based,microporous materials for blood clotting.Microporous and Mesoporous Materials 2006,92 61-63.
    46.X.X.Yan,H.X.D.,X.H.Huang,G.Q.Lu,S.Z.Qiao,D.Y.Zhao and C.Z.Yu: Mesoporous bioactive glasses.I.Synthesis and structural characterization. Journal of Non-Crystalline Solids 2005,351,3209-3217.
    47.余承忠,严晓霞,赵东元:新型介孔分子筛止血材料及其制备方法.申请号 200510026838.9申请日2005.6.16.
    48.Li,X.S.;Liu,C.S.;Yuan,Y.;Wang,L.J.;Wang,Q.Y.:Preparation and hemostatic properties of mesoporous silica-based xerogels. Journal of inorganic Materials 2008,23,327-331.
    49.Ostomel,T.A.;Shi,Q.H.;Stucky,G.D.:Oxide hemostatic activity.Journal of the American Chemical Society 2006,128,8384-8385.
    50.Ostomel,T.A.;Shi,Q.H.;Tsung,C.K.;Liang,H.J.;Stucky,G.D.:Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity.Small 2006,2,1261-1265.
    51.Wu,X.H.;Wei,J.;Lu,X.;Lv,Y.;Chen,F.P.;Zhang,Y.L,;Liu,C.S.: Chemical characteristics and hemostatic perform.ances of ordered mesoporous calcium-doped silica xerogels.Biomedical Materials 2010,5,035006.
    52.Li,X.S.;Lin,W.;Xin,F.L.;Yuan,Y.;Liu,C.S.;Da,C.L.:Development of a Novel CaP-Containing Mesoporous Silica-Based Xerogels Used as Hemostatic Material with Good Biodegradability and Low Heat Generation.In Mechanical Properties of Materials and Information Technology;Tan,H.H.,Ed.,2012;Vol. 340;pp 222-228.
    53.Dai,C.L.;Yuan,Y.;Liu,C.S.;Wei,J.;Hong,H.;Li,X.S.;Pan,X.H.: Degradable,antibacterial silver exchanged mesoporous silica spheres for hemorrhage control.Biomaterials 2009,30,5364-5375.
    54.Hu,G.F.;Xiao,L.W.;Tong,P.J.;Bi,D.W.;Wang,H.;Ma,H.T.;Zhu,G.;Liu, H.:Antibacterial hemostatic dressings with nanoporous bioglass containing silver. International Journal of Nanomedicine 2012,7,2613-2620.
    55. Dai, C. L.; Liu, C. S.; Wei, J.; Hong, H.; Zhao, Q. H.:Molecular imprinted macroporous chitosan coated mesoporous silica xerogels for hemorrhage control. Biomaterials 2010,31,7620-7630.
    56. Englehart, M. S.; Cho, S. D.; Tieu, B. H.; Morris, M. S.; Underwood, S. J.; Karahan, A.; Muller, P. J.; Differding, J. A.; Farrell, D. H.; Schreiber, M. A.:A Novel Highly Porous Silica and Chitosan-Based Hemostatic Dressing Is Superior to HemCon and Gauze Sponges. Journal of Trauma-Injury Infection and Critical Care 2008,65,884-890.
    57. Sambasivan, C. N.; Cho, D.; Zink, K. A.; Differding, J. A.; Schreiber, M. A.:A highly porous silica and chitosan-based hemostatic dressing is superior in controlling hemorrhage in a severe groin injury model in swine. American Journal of Surgery 2009,197,576-580.
    58. Baker, S. E.; Sawvel, A. M.; Fan, J.; Shi, Q.; Strandwitz, N.; Stucky, G. D.:Blood Clot Initiation by Mesocellular Foams:Dependence on Nanopore Size and Enzyme Immobilization. Langmuir 2008,24,14254-14260.
    59. Wu, J.; Lemarie, C. A.; Barralet, J.; Blostein, M. D.:Amphiphilic peptide-loaded nanofibrous calcium phosphate microspheres promote hemostasis in vivo. Acta Biomaterialia 2013,9,9194-9200.
    60. Dahlback, B.:Blood coagulation. Lancet 2000,355,1627-1632.
    61. Wolberg, A. S.:Thrombin generation and fibrin clot structure. Blood Reviews 2007,21,131-142.
    62. Monroe, D.; Hoffman, M.; Roberts, H. R.:Platelets and thrombin generation. Arteriosclerosis Thrombosis and Vascular Biology 2002,22,1381-1389.
    63. Roberts, H. R.; Hoffman, M.; Monroe, D. M.:A cell-based model of thrombin generation. Seminars in Thrombosis and Hemostasis 2006,32,32-38.
    64. Thor, A.; Rasmusson, L.; Wennerberg, A.; Thomsen, P.; Hirsch, J. M.; Nilsson, B.; Hong, J.:The role of whole blood in thrombin generation in contact with various titanium surfaces. Biomaterials 2007,28,966-974.
    65. Todd A. Ostomel, Q. S., Peter K. Stoimenov, and Galen D. Stucky:Metal Oxide Surface Charge Mediated Hemostasis. Langmuir 2007,23,11233-11238.
    66. Rhee, P.; Brown, C.; Martin, M.; Salim, A.; Plurad, D.; Green, D.; Chambers, L.; Demetriades, D.; Velmahos, G.; Alam, H.:QuikClot use in trauma for hemorrhage control:Case series of 103 documented uses. Journal of Trauma-Injury Infection and Critical Care 2008,64,1093-1099.
    67. Barnard, J.; Millner, R.:A Review of Topical Hemostatic Agents for Use in Cardiac Surgery. Annals of Thoracic Surgery 2009,88,1377-1383.
    68. Covey, Dana C.:Combat Orthopaedics:A View From the Trenches. Journal of the American Academy of Orthopaedic Surgeons 2006,14,10-17.
    69. Li, J.; Cao, W.; Lv, X. X.; Jiang, L.; Li, Y. J.; Li, W. Z.; Chen, S. Z.; Li, X. Y.: Zeolite-based hemostat QuikClot releases calcium into blood and promotes blood coagulation in vitro. Acta Pharmacologica Sinica 2013,34,367-372.
    70. Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S.:Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 2007,104,2050-2055.
    71. Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M.:Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials 2009,8,543-557.
    72. Sanfins, E.; Dairou, J.; Rodrigues-Lima, F.; Dupret, J.-M.:Nanoparticle-protein interactions:from crucial plasma proteins to key enzymes. Journal of Physics: Conference Series 2011,304,012039.
    73. Kane, R. S.; Takayama, S.; Ostuni, E.; Ingber, D. E.; Whitesides, G. M.: Patterning proteins and cells using soft lithography. Biomaterials 1999,20, 2363-2376.
    74. Prime, K. L.; Whitesides, G. M.:Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide):a model system using self-assembled monolayers. Journal of the American Chemical Society 1993,115,10714-10721.
    75. Mrksich, M.; Chen, C. S.; Xia, Y. N.; Dike, L. E.; Ingber, D. E.; Whitesides, G. M.:Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proceedings of the National Academy of Sciences of the United States of America 1996,93,10775-10778.
    76. Niemeyer, C. M.:Nanoparticles, proteins, and nucleic acids:Biotechnology meets materials science. Angewandte Chemie-International Edition 2001,40, 4128-4158.
    77. Vertegel, A. A.; Siegel, R. W.; Dordick, J. S.:Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 2004,20, 6800-6807.
    78. Shang, W.; Nuffer, J. H.; Muniz-Papandrea, V. A.; Colon, W.; Siegel, R. W.; Dordick, J. S.:Cytochrome c on Silica Nanoparticles:Influence of Nanoparticle Size on Protein Structure, Stability, and Activity. Small 2009,5,470-476.
    79. Wang, J.; Jensen, U. B.; Jensen, G. V.; Shipovskov, S.; Balakrishnan, V. S.; Otzen, D.; Pedersen, J. S.; Besenbacher, F.; Sutherland, D. S.:Soft Interactions at Nanoparticles Alter Protein Function and Conformation in a Size Dependent Manner. Nano Letters 2011,11,4985-4991.
    80. Leroux, J. C.; Dejaeghere, F.; Anner, B.; Doelker, E.; Gurny, R.:An Investigation on the Role of Plasma and Serum Opsonins on the Internalization of Biodegradable Poly(D,L-Lactic Acid) Nanoparticles by Human Monocytes. Life Sciences 1995,57,695-703.
    81. Luck, M.; Paulke, B. R.; Schroder, W.; Blunk, T.; Muller, R. H.:Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. Journal of Biomedical Materials Research 1998,39,478-485.
    82. Gref, R.; Luck, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Muller, R. H.:'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG):influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B-Biointerfaces 2000,18,301-313.
    83. Holmlin, R. E.; Chen, X. X.; Chapman, R. G.; Takayama, S.; Whitesides, G. M.: Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001,17,2841-2850.
    84. Ladd, J.; Zhang, Z.; Chen, S.; Hower, J. C.; Jiang, S.:Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 2008,9,1357-1361.
    85. Fields, S.:Proteomics - Proteomics in genomeland. Science 2001,291, 1221-1224.
    86. Aebersold, R.; Mann, M.:Mass spectrometry-based proteomics. Nature 2003, 422,198-207.
    87. Moreau, J. W.; Weber, P. K.; Martin, M. C.; Gilbert, B.; Hutcheon, I. D.; Banfield, J. F.:Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 2007,316,1600-1603.
    88. Domon, B.; Aebersold, R.:Review - Mass spectrometry and protein analysis. Science 2006,312,212-217.
    89. Lynch, I.; Dawson, K. A.; Linse, S.:Detecting Cryptic Epitopes Created by Nanoparticles. Science,2006; Vol.327; pp 14.
    90. Lynch, I.; Dawson, K. A.:Protein-nanoparticle interactions. Nano Today 2008,3, 40-47.
    91. Lynch, I.; Salvati, A.; Dawson, K. A.:Protein-nanoparticle interactions:What does the cell see? Nature Nanotechnology 2009,4,546-547.
    92. Lynch, I.; Cedervall, T.; Lundqvist, M.; Cabaleiro-Lago, C.; Linse, S.; Dawson, K. A.:The nanoparticle - protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Advances in Colloid and Interface Science 2007,134-35,167-174.
    93. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences of the United States of America 2008,105,14265-14270.
    94. Cedervall, T.; Lynch, I.; Foy, M.; Berggad, T.; Donnelly, S. C.; Cagney, G.; Linse, S.; Dawson, K. A.:Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angewandte Chemie-International Edition 2007,46, 5754-5756.
    95. Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggard, T.; Flanagan, M. B.; Lynch, I.; Elia, G.; Dawson, K.:The Evolution of the Protein Corona around Nanoparticles: A Test Study. Acs Nano 2011,5,7503-7509.
    96. Jedlovszky-Hajdu, A.; Bombelli, F. B.; Monopoli, M. P.; Tombacz, E.; Dawson, K. A.:Surface Coatings Shape the Protein Corona of SPIONs with Relevance to Their Application in Vivo. Langmuir 2012,28,14983-14991.
    97. Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F. B.; Dawson, K. A.:Physical-Chemical Aspects of Protein Corona:Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. Journal of the American Chemical Society 2011,133,2525-2534.
    98. Tenzer, S.; Docter, D.; Rosfa, S.; Wlodarski, A.; Kuharev, J.; Rekik, A.; Knauer, S. K.; Bantz, C.; Nawroth, T.; Bier, C.; Sirirattanapan, J.; Mann, W.; Treuel, L.; Zellner, R.; Maskos, M.; Schild, H.; Stauber, R. H.:Nanoparticle Size Is a Critical Physicochemical Determinant of the Human Blood Plasma Corona:A Comprehensive Quantitative Proteomic Analysis. Acs Nano 2011,5,7155-7167.
    99. Ghavami, M.; Saffar, S.; Abd Emamy, B.; Peirovi, A.; Shokrgozar, M. A.; Serpooshan, V.; Mahmoudi, M.:Plasma concentration gradient influences the protein corona decoration on nanoparticles. Rsc Advances 2013,3,1119-1126.
    100. Oslakovic, C.; Cedervall, T.; Linse, S.; Dahlback, B.:Polystyrene nanoparticles affecting blood coagulation. Nanomedicine:Nanotechnology, Biology and Medicine 2012,8,981-986.
    101. Pitek, A. S.; O'Connell, D.; Mahon, E.; Monopoli, M. P.; Bombelli, F. B.; Dawson, K. A.:Transferrin Coated Nanoparticles:Study of the Bionano Interface in Human Plasma. PLoS One 2012,7,14.
    102. Lesniak, A.; Campbell, A.; Monopoli, M. P.; Lynch, I.; Salvati, A.; Dawson, K. A.:Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 2010,31,9511-9518.
    103. Milani, S.; Bombelli, F. B.; Pitek, A. S.; Dawson, K. A.; Radler, J.:Reversible versus Irreversible Binding of Transferrin to Polystyrene Nanoparticles:Soft and Hard Corona. Acs Nano 2012,6,2532-2541.
    104. Guarnieri, D.; Guaccio, A.; Fusco, S.; Netti, P. A.:Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells. Journal of Nanoparticle Research 2011,13,4295-4309.
    105. Clift, M. J. D.; Bhattacharjee, S.; Brown, D. M.; Stone, V.:The effects of serum on the toxicity of manufactured nanoparticles. Toxicol. Lett.2010,198,358-365.
    106. Deng, Z. J.; Mortimer, G.; Schiller, T.; Musumeci, A.; Martin, D.; Minchin, R. F.: Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 2009,20.
    107. Lesniak, A.; Fenaroli, F.; Monopoli, M. R.; Aberg, C.; Dawson, K. A.; Salvati, A.:Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells. Acs Nano 2012,6,5845-5857.
    108. Drescher, D.; Orts-Gil, G.; Laube, G.; Natte, K.; Veh, R. W.; Osterle, W.; Kneipp, J.:Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Analytical and Bioanalytical Chemistry 2011,400,1367-1373.
    109. Deng, Z. J.; Liang, M. T.; Monteiro, M.; Toth, I.; Minchin, R. F.: Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotechnology 2010,6,39-44.
    110. Deng, Z. J.; Liang, M. T.; Toth, I.; Monteiro, M. J.; Minchin, R. F.:Molecular Interaction of Poly(acrylic acid) Gold Nanoparticles with Human Fibrinogen. Acs Nano 2012,6,8962-8969.
    111. Dobrovolskaia, M. A.; Patri, A. K.; Zheng, J. W.; Clogston, J. D.; Ayub, N.; Aggarwal, P.; Neun, B. W.; Hall, J. B.; McNeil, S. E.:Interaction of colloidal gold nanoparticles with human blood:effects on particle size and analysis of plasma protein binding profiles. Nanomed.-Nanotechnol. Biol. Med.2009,5,106-117.
    112. Gagner, J. E.; Qian, X.; Lopez, M. M.; Dordick, J. S.; Siegel, R. W.:Effect of gold nanoparticle structure on the conformation and function of adsorbed proteins. Biomaterials 2012,33,8503-8516.
    113. Mahmoudi, M.; Serpooshan, V.:Large Protein Absorptions from Small Changes on the Surface of Nanoparticles. Journal of Physical Chemistry C 2011,115, 18275-18283.
    114. Gagner, J. E.; Lopez, M. D.; Dordick, J. S.; Siegel, R. W.:Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 2011,32,7241-7252.
    115. Schaffler, M.; Semmler-Behnke, M.; Sarioglu, H.; Takenaka, S.; Wenk, A.; Schleh, C.; Hauck, S. M.; Johnston, B. D.; Kreyling, W. G.:Serum protein identification and quantification of the corona of 5,15 and 80 nm gold nanoparticles. Nanotechnology 2013,24.
    116. Hu, W. B.; Peng, C.; Lv, M.; Li, X. M.; Zhang, Y. J.; Chen, N.; Fan, C. H.; Huang, Q.:Protein Corona-Mediated Mitigation of Cytotoxicity of Graphene Oxide. Acs Nano 2011,5,3693-3700.
    117. Casals, E.; Pfaller, T.; Duschl, A.; Oostingh, G. J.; Puntes, V. F.:Hardening of the Nanoparticle-Protein Corona in Metal (Au, Ag) and Oxide (Fe3O4, CoO, and CeO2) Nanoparticles. Small 2011,7,3479-3486.
    118. Monopoli, M. P.; Aberg, C.; Salvati, A.; Dawson, K. A.:Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology 2012,7,779-786.
    119. Casals, E.; Pfaller, T.; Duschl, A.; Oostingh, G. J.; Puntes, V.:Time Evolution of the Nanoparticle Protein Corona. Acs Nano 2010,4,3623-3632.
    120. Albanese, A.; Chan, W. C. W.:Effect of Gold Nanoparticle Aggregation on Cell Uptake and Toxicity. Acs Nano 2011,5,5478-5489.
    121. Franca, A.; Aggarwal, P.; Barsov, E. V.; Kozlov, S. V.; Dobrovolskaia, M. A.; Gonzalez-Fernandez, A.:Macrophage scavenger receptor A mediates the uptake of gold colloids by macrophages in vitro. Nanomedicine 2011,6,1175-1188.
    122. Walkey, C. D.; Olsen, J. B.; Guo, H. B.; Emili, A.; Chan, W. C. W.: Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake. Journal of the American Chemical Society 2012,134, 2139-2147.
    123. Salvati, A.; Pitek, A. S.; Monopoli, M. P.; Prapainop, K.; Bombelli, F. B.; Hristov, D. R.; Kelly, P. M.; Aberg, C.; Mahon, E.; Dawson, K. A.: Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology 2013,8, 137-143.
    124. Mirshafiee, V.; Mahmoudi, M.; Lou, K. Y.; Cheng, J. J.; Kraft, M. L.:Protein corona significantly reduces active targeting yield. Chemical Communications 2013,49,2557-2559.
    125. Sen, T.; Mandal, S.; Haldar, S.; Chattopadhyay, K.; Patra, A.:Interaction of Gold Nanoparticle with Human Serum Albumin (HSA) Protein Using Surface Energy Transfer. Journal of Physical Chemistry C 2011,115,24037-24044.
    126. Gebauer, J. S.; Malissek, M.; Simon, S.; Knauer, S. K.; Maskos, M.; Stauber, R. H.; Peukert, W.; Treuel, L.:Impact of the Nanoparticle-Protein Corona on Colloidal Stability and Protein Structure. Langmuir 2012,28,9673-9679.
    127. Colvin, V. L.; Kulinowski, K. M.:Nanoparticles as catalysts for protein fibrillation. Proceedings of the National Academy of Sciences of the United States of America 2007,104,8679-8680.
    128. Linse, S.; Cabaleiro-Lago, C.; Xue, W. F.; Lynch, I.; Lindman, S.; Thulin, E.; Radford, S. E.; Dawson, K. A.:Nucleation of protein fibrillation by nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 2007,104,8691-8696.
    129. Mahmoudi, M.; Kalhor, H. R.; Laurent, S.; Lynch, I.:Protein fibrillation and nanoparticle interactions:opportunities and challenges. Nanoscale 2013,5, 2570-2588.
    130. Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J.; Chong, H. C.; Tan, S. M.; Loo, S. C. J.; Ng, K. W.; Xie, J. P.; Ong, C. N.; Tan, N. S.; Leong, D. T.:Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nature Communications 2013,4.
    131. Shaw, S. Y.; Westly, E. C.; Pittet, M. J.; Subramanian, A.; Schreiber, S. L.; Weissleder, R.:Perturbational profiling of nanomaterial biologic activity. Proceedings of the National Academy of Sciences of the United States of America 2008,105,7387-7392.
    132. Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X. K.; Dasari, T. P.; Michalkova, A.; Hwang, H. M.; Toropov, A.; Leszczynska, D.; Leszczynski, J.:Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nature Nanotechnology 2011,6,175-178.
    133. Zhang, H. Y.; Ji, Z. X.; Xia, T.; Meng, H.; Low-Kam, C.; Liu, R.; Pokhrel, S.; Lin, S. J.; Wang, X.; Liao, Y. P.; Wang, M. Y.; Li, L. J.; Rallo, R.; Damoiseaux, R.; Telesca, D.; Madler, L.; Cohen, Y.; Zink, J. I.; Nel, A. E.:Use of Metal Oxide Nanoparticle Band Gap To Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation. Acs Nano 2012,6,4349-4368.
    134. Albanese, A.; Tang, P. S.; Chan, W. C. W.:The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 2012,14,1-16.
    135. Laurent, S.; Ng, E. P.; Thirifays, C.; Lakiss, L.; Goupil, G. M.; Mintova, S.; Burtea, C.; Oveisi, E.; Hebert, C.; de Vries, M.; Motazacker, M. M.; Rezaee, F.; Mahmoudi, M.:Corona protein composition and cytotoxicity evaluation of ultra-small zeolites synthesized from template free precursor suspensions. Toxicology Research 2013,2,270-279.
    136. Mortensen, N. P.; Hurst, G. B.; Wang, W.; Foster, C. M.; Nallathamby, P. D.; Retterer, S. T.:Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity. Nanoscale 2013,5,6372-6380.
    137. Shannahan, J. H.; Brown, J. M.; Chen, R.; Ke, P. C.; Lai, X. Y.; Mitra, S.; Witzmann, F. A.:Comparison of Nanotube-Protein Corona Composition in Cell Culture Media. Small 2013,9,2171-2181.
    138. Wills, J.; Summers, H.; Fish, D.; Hondow, N.; Sooresh, A.; Meissner, K.; Jenkins, G.; Brown, A.; Doak, S.:Protein Corona Dependent Agglomeration Defines Cell Uptake and Toxicity of Size-Differentiated Nanoparticles. Environmental and Molecular Mutagenesis 2013,54.
    1. Fernand J. Dechene, F. X. H.:Method of treating wounds. US 4822349 A 1989.
    2. Hursey, F. X.:Blood-clotting composition for promoting formation of clots in blood to control bleeding, comprises zeolite having adjusted calcium content. WO2005027808-A1; US2005074505-A1; EP1663090-A1; US7595429-B2.
    3. Hursey, F. X.; Dechene, F. J.:Zeolite molecular sieve material - for reducing flow of blood from external wound or other opening in heart, vein, artery or other Organ. US4822349-A.
    4. Hursey, F. X.:Blood coagulation promoting comprises applying wound dressing, covering, or application system to bleeding area, which comprises clay material, and gauze pad, layer cover(s), or permeable bandage. US2009299253-A1.
    5. Huey, R. J.; Lo, D.; Burns, D. J.; Basadonna, G.; Hursey, F. X.:Device for providing hemostatic effect on bleeding comprises gauze substrate; clay material disposed on the gauze substrate; and glycerol binder disposed on the gauze substrate to bind the clay material to the gauze substrate. US2010233248-A1.
    6. Hursey, F. X.:Device, useful for treating wound, comprises a gas permeable pad configured to be placed in proximity to a wound, and a gas dispenser disposed adjacent to the gas permeable pad. WO2011008711-A1 WOUS04174112 Jul 2010 US2011015565-A1 US50348115 Jul 2009.
    7. Ran, Y.; Hadad, E.; Daher, S.; Ganor, O.; Kohn, J.; Yegorov, Y.; Bartal, C.; Ash, N.; Hirschhorn, G.:QuikClot Combat Gauze use for hemorrhage control in military trauma:January 2009 Israel Defense Force experience in the Gaza Strip--a preliminary report of 14 cases. Prehospital and disaster medicine 2010, 25,584-8.
    8. Alam, H. B.; Uy, G. B.; Miller, D.; Koustova, E.; Hancock, T.; Inocencio, R.; Anderson, D.; Llorente, O.; Rhee, P.:Comparative analysis of hemostatic agents in a swine model of lethal groin injury. Journal of Trauma-Injury Infection and Critical Care 2003,54,1077-1082.
    9. Alam, H. B.; Chen, Z.; Jaskille, A.; Querol, R.; Koustova, E.; Inocencio, R.; Conran, R.; Seufert, A.; Ariaban, N.; Toruno, K.; Rhee, P.:Application of a zeolite hemostatic agent achieves 100% survival in a lethal model of complex groin injury in swine. Journal of Trauma-Injury Infection and Critical Care 2004, 56,974-983.
    10. Alam, H. B.; Burris, D.; DaCorta, J. A.; Rhee, P.:Hemorrhage control in the battlefield:Role of new hemostatic agents. Military Medicine 2005,170,63-69.
    11. Hurtado, T. R.; Wisenbaugh, T.:Superficial partial-thickness (2nd-degree) burn from zeolite mineral hemostatic agent (QuickClot). Annals of Emergency Medicine 2005,46,297.
    12. Baker, S. E.; Sawvel, A. M.; Zheng, N.; Stucky, G. D.:Controlling bioprocesses with inorganic surfaces:Layered clay hemostatic agents. Chemistry of Materials 2007,19,4390-4392.
    13. Ahuja, N.; Ostomel, T. A.; Rhee, P.; Stucky, G. D.; Conran, R.; Chen, Z.; Al-Mubarak, G. A.; Velmahos, G.; deMoya, M.; Alam, H. B.:Testing of modified zeolite hemostatic dressings in a large animal model of lethal groin injury. Journal of Trauma-Injury Infection and Critical Care 2006,61,1312-1320.
    14. Hursey, F. X.:Composition for promoting clots in blood, comprising binder and zeolite with moisture content adjusted by drying and re-hydrating. US2005058721-A1; WO2005027834-A2; EP1667623-A2; EP1667623-B1; DE602004030264-E; WO2005027834-A3; US8252344-B2.
    15. Mumpton, F. A.:La roca magica:Uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Sciences of the United States of America 1999,96,3463-3470.
    16. Pavelic, K.; Hadzija, M.; Bedrica, L.; Pavelic, J.; Dikic, I.; Katic, M.; Kralj, M.; Bosnar, M. H.; Kapitanovic, S.; Poljak-Blazi, M.; Krizanac, S.; Stojkovic, R.; Jurin, M.; Subotic, B.; Colic, M.:Natural zeolite clinoptilolite:new adjuvant in anticancer therapy. Journal of Molecular Medicine-Jmm 2001,78,708-720.
    17. Ivkovic, S.; Deutsch, U.; Silberbach, A.; Walraph, E.; Mannel, M.:Dietary supplementation with the tribomechanically activated zeolite clinoptilolite in immunodeficiency:Effects on the immune system. Advances in Therapy 2004, 21,135-147.
    18. RodriguezFuentes, G.; Barrios, M. A.; Iraizoz, A.; Perdomo, I.; Cedre, B.: Enterex:Anti-diarrheic drug based on purified natural clinoptilolite. Zeolites 1997,19,441-448.
    19. Hotta, M.; Nakajima, H.; Yamamoto, K.; Aono, M.:Antibacterial temporary filling materials:the effect of adding various ratios of Ag-Zn-Zeolite. Journal of Oral Rehabilitation 1998,25,485-489.
    20.Li,Z.H.;Roy,S.J.;Zou,Y.Q.;Bowman,R.S.:Long-term chemical and biological stability of surfactant modified zeolite.Environmental Science & Technology 1998,32,2628-2632.
    21.Ohta,M.;Nakamura,K.;Tsuchiya,H.;Takama,K.;Suzuki,T.:Effect of several solutions including mineral-encaging zeolites on the restoration of cell motility of tributyltin-intoxicated Euglena gracilis Z. Bioscience Biotechnology and Biochemistry 1999,63,1691-1696.
    22.Parlat,S.S.;Yildiz,A.O.;Oguz,H.:Effect of clinoptilolite on performance of Japanese quail(Coturnix coturnix japonica)during experimental aflatoxicosis. British Poultry Science 1999,40,495-500.
    23.Chen,B.P.;Wang,Z.P.;Liu,J.J.;Wang,J.C.;Yu,J.H.:Applications and Related Mechanisms of Moleculaar Sieves in Medicine.Chemical Journal of Chinese Universities-Chinese 2011,32,485-493.
    24.蔡惠兰:浙江开发天然沸石矿的前景.中国地质1984.
    25.陈方明,曹李靖,于吉顺:天然沸石的加工技术及其在水处理中的应用.安 全与环境工程2004.
    26.Huey,R.J.;Lo,D.;Burns,D.J.;Basadonna,G.;Hursey, F.X.:Manufacturing a hemostatic device,comprises applying a clay material and a binder to a gauze substrate comprising strands,and subjecting the substrate to a drying process. US2012259262-A1 US526431 18 Jun 2012.
    27.The effect of the zeolite clinoptilolite on serum chemistry and hematopoiesis in mice.Food Chem Toxicol.2001,39,717-727.
    28.Rhee,P.;Brown,C.;Martin,M.;Salim,A.;Plurad,D.;Green,D.;Chambers,L.; Demetriades,D.;Velmahos,G.;Alam,H.:QuikClot use in trauma for hemorrhage control:Case series of 103 documented uses. Journal of Trauma-Injury Infection and Critical Care 2008,64,1093-1099.
    29.Pusateri,A.E.;Delgado,A.V.;Dick,E.J.;Martinez,R S.;Holcomb,J.B.; Ryan,K.L.:Application of a granular mineral-based hemostatic agent(QuikClot) to reduce blood loss after grade V liver injury in swine.Journal of Trauma-Injury Infection and Critical Care 2004,57,555-562.
    30.Mahajna,A.;Hirsh,M.;K.rausz,M.M.:Use of the hemostatic agent QuikClot(R) for the treatment of massive splenic injury in a rat model.European Surgical Research 2007,39,251-257.
    31. Feng, X.; Fryxell, G. E.; Wang, L. Q.; Kim, A. Y.; Liu, J.; Kemner, K. M.: Functionalized monolayers on ordered mesoporous supports. Science 1997,276, 923-926.
    32.Yiu, H. H. P.; Wright, P. A.; Botting, N. P.:Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. Journal of Molecular Catalysis B-Enzymatic 2001,15,81-92.
    33. Ostomel, T. A.; Shi, Q.; Stoimenov, P. K.; Stucky, G. D.:Metal oxide surface charge mediated Hemostasis. Langmuir 2007,23,11233-11238.
    34. Baker, S. E.; Sawvel, A. M.; Fan, J.; Shi, Q.; Strandwitz, N.; Stucky, G. D.: Blood Clot Initiation by Mesocellular Foams:Dependence on Nanopore Size and Enzyme Immobilization. Langmuir 2008,24,14254-14260.
    35. Todd A. Ostomel, Q. S., Peter K. Stoimenov, and Galen D. Stucky:Metal Oxide Surface Charge Mediated Hemostasis. Langmuir 2007,23,11233-11238.
    36. Ostomel, T. A.; Stoimenov, P. K.; Holden, P. A.; Alam, H. B.; Stucky, G. D.: Host-guest composites for induced hemostasis and therapeutic healing in traumatic injuries. Journal of Thrombosis and Thrombolysis 2006,22,55-67.
    37. Huey, R. J.; Lo, D.; Burns, D. J.; Basadonna, G.; Hursey, F. X.:Device for promoting clotting of blood comprises clay material disposed on gauze substrate; and binder having a material that is distinct from gauze/clay, that adheres portion of clay to surface of gauze so that device is free of loose clay. US2011268784-A1; US8257732-B2.
    38. Stucky, G. D.; Ostomel, T. A.; Shi, Q.; Stoimenov, P. K.; Holden, P. A.:Inorganic materials for hemostatic modulation and therapeutic wound healing. The Regents of the University of California,2010.
    39. Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O.:A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research 2000,52, 662-668.
    40. Griffin, J. H.:Role of surface in surface-dependent activation of hageman-factor (blood-coagulation factor-XII). Proceedings of the National Academy of Sciences of the United States of America 1978,75,1998-2002.
    41. Mishin, I. V.; Kalinin, V. P.; Nissenbaum, V. D.; Beyer, H. K.; Karge, H. G.:The thermal-stability of the framework, hydroxyl-groups, and active-sites of faujasites. Kinetics and Catalysis 1994,35,584-590.
    42. Carraway, J. W.; Kent, D. N.; Young, K.; Cole, A.; Friedman, R.; Ward, K. R.: Comparison of a new mineral based hemostatic agent to a commercially available granular zeolite agent for hemostasis in a swine model of lethal extremity arterial hemorrhage. Resuscitation 2008,78,230-235.
    43.Ward, K. R.; Tiba, M. H.; Holbert, W. H.; Blocher, C. R; Draucker, G. T.; Proffitt, E. K.; Bowlin, G. L.; Ivatury, R. R.; Diegelmann, R. F.:Comparison of a new hemostatic agent to current combat hemostatic agents in a swine model of lethal extremity arterial hemorrhage. Journal of Trauma-Injury Infection and Critical Care 2007,63,276-283.
    44. Ishihara, M.; Nakanishi, K.; Ono, K.; Sato, M.; Kikuchi, M.; Saito, Y.; Yura, H.; Matsui, T.; Hattori, H.; Uenoyama, M.; Kurita, A.:Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 2002,23,833-840.
    45. Ziv-Polat, O.; Topaz, M.; Brosh, T.; Margel, S.:Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials 2010,31,741-747.
    46.Pruitt, B. A.; McManus, A. T.; Kim, S. H.; Goodwin, C. W.:Burn wound infections:Current status. World Journal of Surgery 1998,22,135-145.
    47. Li, Y. L.; Li, H.; Xiao, L. P.; Zhou, L.; Shentu, J. Z.; Zhang, X. M.; Fan, J.: Hemostatic Efficiency and Wound Healing Properties of Natural Zeolite Granules in a Lethal Rabbit Model of Complex Groin Injury. Materials 2012,5,2586-2596.
    48. Huey, R. J.; Lo, D.; Burns, D. J.; Basadonna, G.; Hursey, F. X.:Hemostatic device used as e.g. bandage for promoting blood clotting comprises clay disposed on substrate; and calcium alginate binder that adheres clay material to substrate, in a region configured to contact blood from bleeding wound. US2013267923-A1.
    49. Huey, R. J.; Lo, D.; Burns, D. J.; Basadonna, G.; Hursey, F. X.:Device for promoting clotting of blood comprises clay material disposed on gauze substrate; and binder having a material that is distinct from gauze/clay, that adheres portion of clay to surface of gauze so that device is free of loose clay. US2011268784-A1 US11569925May2011.
    50. Huey, R. J.; Lo, D.; Burns, D. J.; Basadonna, G.; Hursey, F. X.:Hemostatic device, useful for promoting hemostasis, comprises a clay material, and a release agent disposed on a discontinuous surface of the device. US2010228174-A1; US8202532-B2.
    51. Huey, R.; Lo, D.; Burns, D. J.; Burns, D.; Raut, D.; Basadonna, G.; Hursey, F. X.; Hesi, F. K.:Blood clotting device used as e.g. bandage for promoting hemostatic effect in bleeding wound, has clay material arranged on gauze substrate, and polyol provided on substrate for binding clay material. US2007276345-A1; WO2008109160-A2; US7604819-B2; WO2008109160-A3; CA2677606-A1; EP2142220-A2; MX2009009453-A1; CN101687056-A; IN200905656-P1; JP2010520783-W; MX284126-B; RU2009136576-A; RU2453339-C2; EP2142220-B1; EP2508209-A1; CA2677606-C; HK1136227-A1; ES2394232-T3; JP2013212412-A.
    52.范杰;李云龙;肖丽萍;胡笑月;马桂岑:外用天然蒙脱土紧急救生止血剂的制备方法.ZL 200810122045.0.
    53.范杰;李云龙;肖丽萍;杨靖;胡笑月:外用天然膨润土止血剂的制备方法.ZL200810122048.4.
    54.范杰;李云龙;肖丽萍;过军芳:外用天然无名异紧急救生止血剂的制备方法.ZL 200810122049.9
    55.范杰;李云龙;肖丽萍;王晓娟;戴翼虎;杨靖:外用天然碳酸盐紧急救生止血剂的制备方法.ZL 200810162238.9.
    56. Hattori, H.; Amano, Y.; Nogami, Y.; Takase, B.; Ishihara, M.:Hemostasis for Severe Hemorrhage with Photocrosslinkable Chitosan Hydrogel and Calcium Alginate. Ann Biomed Eng 2010,38,3724-3732.
    57. Englehart, M. S.; Cho, S. D.; Tieu, B. H.; Morris, M. S.; Underwood, S. J.; Karahan, A.; Muller, P. J.; Differding, J. A.; Farrell, D. H.; Schreiber, M. A.:A Novel Highly Porous Silica and Chitosan-Based Hemostatic Dressing Is Superior to HemCon and Gauze Sponges. Journal of Trauma-Injury Infection and Critical Care 2008,65,884-890.
    58. Renz, E.; Englehart, M.; Malcynski, J. T.; Santry, H.:A Novel Highly Porous Silica and Chitosan-Based Hemostatic Dressing Is Superior to HemCon and Gauze Sponges DISCUSSION. Journal of Trauma-Injury Infection and Critical Care 2008,65,890-892.
    59. Dai, C. L.; Liu, C. S.; Wei, J.; Hong, H.; Zhao, Q. H.:Molecular imprinted macroporous chitosan coated mesoporous silica xerogels for hemorrhage control. Biomaterials 2010,31,7620-7630.
    60.范杰;李云龙:外用花蕊石复合物紧急救生止血剂的制备方法. ZL200810120379.4
    61. Sarah E. Baker, A. M. S., Nanfeng Zheng, and Galen D. Stucky:Controlling Bioprocesses with Inorganic Surfaces:Layered Clay Hemostatic Agents. Chem. Mater.2007,19,4390-4392.
    62. Sarah E. Baker, A. M. S., Jie Fan, Qihui Shi, Nicholas Strandwitz and Galen D. Stucky:Blood Clot Initiation by Mesocellular Foams:Dependence on Nanopore Size and Enzyme Immobilization. Langmuir 2008,24,14254-14260.
    63. Li, J.; Cao, W.; Lv, X. X.; Jiang, L.; Li, Y. J.; Li, W. Z.; Chen, S. Z.; Li, X. Y.: Zeolite-based hemostat QuikClot releases calcium into blood and promotes blood coagulation in vitro. Acta Pharmacologica Sinica 2013,34,367-372.
    1. Ran, Y.; Hadad, E.; Daher, S.; Ganor, O.; Kohn, J.; Yegorov, Y.; Bartal, C.; Ash, N.; Hirschhorn, G.:QuikClot Combat Gauze use for hemorrhage control in military trauma:January 2009 Israel Defense Force experience in the Gaza Strip--a preliminary report of 14 cases. Prehospital and disaster medicine 2010, 25,584-588.
    2. Marris, E.:Four years in Iraq-The war against wounds. Nature 2007,446, 369-371.
    3. Alam, H. B.; Burris, D.; DaCorta, J. A.; Rhee, P.:Hemorrhage control in the battlefield:Role of new hemostatic agents. Military Medicine 2005,170,63-69.
    4. Gruen, R. L.; Brohi, K.; Schreiber, M.; Balogh, Z. J.; Pitt, V.; Narayan, M.; Maier, R. V.:Haemorrhage control in severely injured patients. Lancet 2012,380, 1099-1108.
    5. Suh, W. H.; Suslick, K. S.; Stucky, G. D.; Suh, Y. H.:Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology 2009,87,133-170.
    6. Baker, S. E.; Sawvel, A. M.; Zheng, N.; Stucky, G. D.:Controlling bioprocesses with inorganic surfaces:Layered clay hemostatic agents. Chemistry of Materials 2007,19,4390-4392.
    7. Ostomel, T. A.; Shi, Q.; Stoimenov, P. K.; Stucky, G. D.:Metal oxide surface charge mediated Hemostasis. Langmuir 2007,23,11233-11238.
    8. Li, J.; Cao, W.; Lv, X. X.; Jiang, L.; Li, Y. J.; Li, W. Z.; Chen, S. Z.; Li, X. Y.: Zeolite-based hemostat QuikClot releases calcium into blood and promotes blood coagulation in vitro. Acta Pharmacologica Sinica 2013,34,367-372.
    9. Arnaud, F.; Tomori, T.; Carr, W.; McKeague, A.; Teranishi, K.; Prusaczyk, K.; McCarron, R.:Exothermic reaction in zeolite hemostatic dressings:QuikClot ACS and ACS+(R). Annals of Biomedical Engineering 2008,36,1708-1713.
    10. Ahuja, N.; Ostomel, T. A.; Rhee, P.; Stucky, G. D.; Conran, R.; Chen, Z.; Al-Mubarak, G. A.; Velmahos, G.; deMoya, M.; Alam, H. B.:Testing of modified zeolite hemostatic dressings in a large animal model of lethal groin injury. Journal of Trauma-Injury Infection and Critical Care 2006,61,1312-1320.
    11. Recinos, G.; Inaba, K.; Dubose, J.; Demetriades, D.; Rhee, P.:Local and systemic hemostatics in trauma:a review. Ulusal Travma Ve Acil Cerrahi Dergisi-Turkish Journal of Trauma & Emergency Surgery 2008,14,175-181.
    12. Sileshi, B.; Achneck, H. E.; Lawson, J. H.:Management of surgical hemostasis: Topical agents. Vascular 2008,16,22-28.
    13. Shukla, A.; Fang, J. C.; Puranam, S.; Jensen, F. R.; Hammond, P. T.:Hemostatic Multilayer Coatings. Advanced Materials 2012,24,492-496.
    14. Samudrala, S.:Topical hemostatic agents in surgery:a surgeon's perspective. AORN journal 2008,88,2-11.
    15. Lynch, I.; Salvati, A.; Dawson, K. A.:Protein-nanoparticle interactions:What does the cell see? Nature Nanotechnology 2009,4,546-547.
    16. Lynch, I.; Dawson, K. A.:Protein-nanoparticle interactions. Nano Today 2008,3, 40-47.
    17. Monopoli, M. P.; Aberg, C.; Salvati, A.; Dawson, K. A.:Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology 2012,7,779-786.
    18. Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S.:Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 2007,104,2050-2055.
    19. Tenzer, S.; Docter, D.; Rosfa, S.; Wlodarski, A.; Kuharev, J,; Rekik, A.; Knauer, S. K.; Bantz, C.; Nawroth, T.; Bier, C.; Sirirattanapan, J.; Mann, W.; Treuel, L.; Zellner, R.; Maskos, M.; Schild, H.; Stauber, R. H.:Nanoparticle Size Is a Critical Physicochemical Determinant of the Human Blood Plasma Corona:A Comprehensive Quantitative Proteomic Analysis. Acs Nano 2011,5,7155-7167.
    20. Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F. B.; Dawson, K. A.:Physical-Chemical Aspects of Protein Corona:Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. Journal of the American Chemical Society 2011,133,2525-2534.
    21. Casals, E.; Pfaller, T.; Duschl, A.; Oostingh, G. J.; Puntes, V.:Time Evolution of the Nanoparticle Protein Corona. Acs Nano 2010,4,3623-3632.
    22. Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggard, T.; Flanagan, M. B.; Lynch, I.; Elia, G.; Dawson, K.:The Evolution of the Protein Corona around Nanoparticles: A Test Study. Acs Nano 2011,5,7503-7509.
    23. Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M.:Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials 2009,8,543-557.
    24. Deng, Z. J.; Liang, M. T.; Monteiro, M.; Toth, I.; Minchin, R. F.: Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotechnology 2010,6,39-44.
    25. Dahlback, B.:Blood coagulation. Lancet 2000,355,1627-1632.
    26. Esmon, C. T.:Regulation of blood coagulation. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology 2000,1477,349-360.
    27. Heemskerk, J. W. M.; Bevers, E. M.; Lindhout, T.:Platelet activation and blood coagulation. Thrombosis and Haemostasis 2002,88,186-193.
    28. Mann, K. G.:Thrombin formation. Chest 2003,124,4-10.
    29. Mann, K. G.; Brummel-Ziedins, K.; Orfeo, T.; Butenas, S.:Models of blood coagulation. Blood Cells Molecules and Diseases 2006,36,108-117.
    30. Tanaka, K. A.; Key, N. S.; Levy, J. H.:Blood Coagulation:Hemostasis and Thrombin Regulation. Anesthesia and Analgesia 2009,108,1433-1446.
    31. Peng, H. T.:Thromboelastographic study of biomaterials. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2010,94B,469-485.
    32. Cedervall, T.; Lynch, I.; Foy, M.; Berggad, T.; Donnelly, S. C.; Cagney, G.; Linse, S.; Dawson, K. A.:Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angewandte Chemie-International Edition 2007,46, 5754-5756.
    33. Divani, A. A.; Rasmussen, K.; Vazquez, G.; Rao, G. H. R.:Effect of Blood Soluble Clotting Factors on Coagulation Profile. Clinical and Applied Thrombosis-Hemostasis2010,16,475-479.
    34. Baker, S. E.; Sawvel, A. M.; Fan, J.; Shi, Q.; Strandwitz, N.; Stucky, G. D.: Blood Clot Initiation by Mesocellular Foams:Dependence on Nanopore Size and Enzyme Immobilization. Langmuir 2008,24,14254-14260.
    35. Gong, Y.; Xi, G.; Hu, H.; Gu, Y.; Huang, F.; Keep, R. F.; Hua, Y.:Increase in brain thrombin activity after experimental intracerebral hemorrhage, In Cerebral Hemorrhage; Zhou, L. F., Xi, G., Chen, X. C., Keep, R. F., Huang, F. P., Hua, Y., Lu, Y. C., Muraszko, K. M., Eds.,2008; Vol.105; pp 47-50.
    36. Shevchenko, A.; Tomas, H.; Havlis, J.; Olsen, J. V.; Mann, M.:In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols 2006,1,2856-2860.
    37. White, C. M.; Fan, C. D.; Chow, M.:An evaluation of the hemostatic effect of externally applied notoginseng and notoginseng total saponins. Journal of Clinical Pharmacology 2000,40,1150-1153.
    38. White, C. M.; Fan, C. D.; Song, J.; Tsikouris, J. P.; Chow, M.:An evaluation of the hemostatic effects of hydrophilic, alcohol, and lipophilic extracts of notoginseng. Pharmacotherapy 2001,21,773-777.
    39. Schwartz, M.; Madariaga, J.; Hirose, R.; Shaver, T. R.; Sher, L.; Chari, R.; Colonna, J. O.; Heaton, N.; Mirza, D.; Adams, R.; Rees, M.; Lloyd, D.: Comparison of a new fibrin sealant with standard topical hemostatic agents. Archives of Surgery 2004,139,1148-1154.
    40. Spotnitz, W. D.:Fibrin Sealant:Past, Present, and Future:A Brief Review. World Journal of Surgery 2010,34,632-634.
    41. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences of the United States of America 2008,105,14265-14270.
    42. Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C.; Landfester, K.; Schild, H.; Maskos, M.; Knauer, S. K.; Stauber, R. H.:Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnology 2013,8,772.
    43. Rock, G.; Neurath, D.; Semple, E.; Harvey, M.; Freedman, M.:Preparation and characterization of human thrombin for use in a fibrin glue. Transfusion Medicine 2007,17,187-191.
    44. Hauck, S. M.; Dietter, J.; Kramer, R. L.; Hofmaier, F.; Zipplies, J. K.; Amann, B.; Feuchtinger, A.; Deeg, C. A.; Ueffing, M.:Deciphering Membrane-Associated Molecular Processes in Target Tissue of Autoimmune Uveitis by Label-Free Quantitative Mass Spectrometry. Molecular & Cellular Proteomics 2010,9, 2292-2305.
    45. Lane, D. A.; Caso, R.:Antithrombin:Structure, genomic organization, function and inherited deficiency. Bailliere's Clinical Haematology 1989,2,961-998.
    46. Sommeijer, D.; van Oerle, R.; Reitsma, P.; Timmerman, J.; Meijers, J.; Spronk, H.; ten Cate, H.:Analysis of blood coagulation in mice:pre-analytical conditions and evaluation of a home-made assay for thrombin-antithrombin complexes.2005; Vol.3; pp 12.
    47. Frigola, A.:Standardisation of a simple method for the determination of antithrombin activity. Journal of clinical pathology 1977,30,881-883.
    48. Pusateri, A. E.; Holcomb, J. B.; Kheirabadi, B. S.; Alam, H. B.; Wade, C. E.; Ryan, K. L.:Making sense of the preclinical literature on advanced hemostatic products. Journal of Trauma-Injury Infection and Critical Care 2006,60,674-682.
    49. Huey, R. J. B., Giacomo:Method of providing hemostasis in anti-coagulated blood. United States Patent 2008, Publication Date:10/16/2008
    50. Lundblad, R. L.; Bradshaw, R. A.; Gabriel, D.; Ortel, T. L.; Lawson, J.; Mann, K. G.:A review of the therapeutic uses of thrombin. Thrombosis and Haemostasis 2004,91,851-860.
    51. Ziv-Polat, O.; Topaz, M.; Brosh, T.; Margel, S.:Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials 2010,31,741-747.
    52. Faunce, T. A.; White, J.; Matthael, K. I.:Integrated research into the nanoparticle-protein corona:a new focus for safe, sustainable and equitable development of nanomedicines. Nanomedicine 2008,3,859-866.
    53. Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J.; Chong, H. C.; Tan, S. M.; Loo, S. C. J.; Ng, K. W.; Xie, J. P.; Ong, C. N.; Tan, N. S.; Leong, D. T.:Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nature Communications 2013,4.
    1. Li, S.:Compendium of Materia Medica 1578.
    2. Zhang, Y.:JiaYouBenCao 1059.
    3. 丁望,李大同,周洪雷:花蕊石止血作用的实验研究.实用医药杂志2006,22.
    4.高锦飚,李祥:花蕊石止血作用物质基础的研究.吉林中医药2007,27,47-48.
    5. Ravn, H. B.; Vissinger, H.; Kristensen, S. D.; Wennmahn, A.; Thygesen, K.; Husted, S. E.:Magnesium inhibits platelet activity-An infusion study in healthy volunteers. Thrombosis and Haemostasis 1996,75,939-944.
    6.陈昕:影响中药疗效的因素.按摩与康复医学2011,62,1.
    7.邬清明:中药产地和炮制对功效影响举隅.中国中医药现代远程教育2012,10,2.
    8.李宏斌:浅谈中药炮制对临床疗效的影响.Anhui Medical and Pharmaceutical Journal 2006,10,1.
    9.何立巍,杨海军,高锦彪,李祥:中药花蕊石炮制前后宏微量元素分析.亚太传统医药2008,4,2.
    10.杨美华:花蕊石炮制前后的矿物组分及微量元素分析.江西中医学院学报1997,9,1.
    11.丁望,李大同,周红雷:花蕊石止血作用的实验研究.实用医药杂志2005,22,1.
    12.彭智聪,张少文,康重阳,谢文:花蕊石炮制前后止血作用的比较.中国中药杂志1995,20,1.
    13.高锦彪,李祥,陈健伟:花蕊石炮制前后红外光谱分析.时珍国医国药2007,5,2.
    14. Ge, K.:ShiYaoShenShu 1348.
    15.Su,S.:BenCaoTuJing 1061.
    16.常琳,朱传静,康琛,李曼玲:花蕊石炮制沿革的研究.中国实用医药2010,5,4.
    17. Qiu, J.:Traditional medicine-A culture in the balance. Nature 2007,448, 126-128.
    18.张公耀:张公耀《告别中医中药》内容摘录.中国新闻周刊2007.
    19.张功耀:告别中医中药.医学与哲学:人文社会医学版2006.
    20. Qiu, J.:China plans to modernize traditional medicine. Nature 2007,446, 590-591.
    21. Alam, H. B.; Burris, D.; DaCorta, J. A.; Rhee, P.:Hemorrhage control in the battlefield:Role of new hemostatic agents. Military Medicine 2005,170,63-69.
    22. Achneck, H. E.; Sileshi, B.; Jamiolkowski, R. M.; Albala, D. M.; Shapiro, M. L.; Lawson, J. H.:A Comprehensive Review of Topical Hemostatic Agents Efficacy and Recommendations for Use. Annals of Surgery 2010,251,217-228.
    23.郭新刚:2006~2008年我国止血药市场分析.中国药房2010,21,3.
    24. Kong, D. X.; Li, X. J.; Zhang, H. Y.:Where is the hope for drug discovery? Let history tell the future. Drug Discov. Today 2009,14,115-119.
    25.朱天琪,董艳芬,张萱,刘永富,周红涛:花蕊石煅制方法的研究.中国中药杂志1998,23.
    26.赵晶,包永睿,郭小瑞:花蕊石煅制后结构变化与元素溶出量差异研究.医药导报2010,29,4.
    27. Niu, S. L.; Han, K. H.; Lu, C. M.; Sun, R. Y.:Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate. Applied Energy 2010,87,2237-2242.
    28. Musumeci, A. W.; Frost, R. L.; Waclawik, E. R.:A spectroscopic study of the mineral paceite (calcium acetate). Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2007,67,649-661.
    29. Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M.:Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials 2009,8,543-557.
    30. Monopoli, M. P.; Aberg, C.; Salvati, A.; Dawson, K. A.:Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology 2012,7,779-786.
    31. Walkey, C. D.; Chan, W. C. W.:Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chemical Society Reviews 2012,41,2780-2799.
    32.Wang, F.; Yu, L.; Monopoli, M. P.; Sandin, P.; Mahon, E.; Salvati, A.; Dawson, K. A.:The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine:Nanotechnology, Biology and Medicine 2013,9, 1159-1168.
    33. Rock, G.; Neurath, D.; Semple, E.; Harvey, M.; Freedman, M.:Preparation and characterization of human thrombin for use in a fibrin glue. Transfusion Medicine 2007,17,187-191.
    1. Hudson, S. P.; Padera, R. F.; Langer, R.; Kohane, D. S.:The biocompatibility of mesoporous silicates. Biomaterials 2008,29,4045-4055.
    2. Ma, G. C.; Yan, X. Q.; Li, Y. L.; Xiao, L. P.; Huang, Z. J.; Lu, Y. P.; Fan, J.: Ordered Nanoporous Silica with Periodic 30-60 nm Pores as an Effective Support for Gold Nanoparticle Catalysts with Enhanced Lifetime. Journal of the American Chemical Society 2010,132,9596-9597.
    3. Dai, C. L.; Yuan, Y.; Liu, C. S.; Wei, J.; Hong, H.; Li, X. S.; Pan, X. H.: Degradable, antibacterial silver exchanged mesoporous silica spheres for hemorrhage control. Biomaterials 2009,30,5364-5375.
    4. Dai, C. L.; Liu, C. S.; Wei, J.; Hong, H.; Zhao, Q. H.:Molecular imprinted macroporous chitosan coated mesoporous silica xerogels for hemorrhage control. Biomaterials 2010,31,7620-7630.
    5. Wu, X. H.; Wei, J.; Lu, X.; Lv, Y.; Chen, F. P.; Zhang, Y. L.; Liu, C. S.: Chemical characteristics and hemostatic performances of ordered mesoporous calcium-doped silica xerogels. Biomedical Materials 2010,5.
    6. Ostomel, T. A.; Shi, Q. H.; Stucky, G. D.:Oxide hemostatic activity. Journal of the American Chemical Society 2006,128,8384-8385.
    7. Slowing, II; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Y.:Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews 2008,60,1278-1288.
    8. Davis, M. E.:Ordered porous materials for emerging applications. Nature 2002, 417,813-821.
    9. Baker, S. E.; Sawvel, A. M.; Fan, J.; Shi, Q.; Strandwitz, N.; Stucky, G. D.: Blood Clot Initiation by Mesocellular Foams:Dependence on Nanopore Size and Enzyme Immobilization. Langmuir 2008,24,14254-14260.
    10. Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M.:Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials 2009,8,543-557.
    11. Lesniak, A.; Fenaroli, F.; Monopoli, M. R.; Aberg, C.; Dawson, K. A.; Salvati, A.: Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells. Acs Nano 2012,6,5845-5857.
    12. Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C.; Landfester, K.; Schild, H.; Maskos, M.; Knauer, S. K.; Stauber, R. H.:Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnology 2013,8,772-781.
    13. Monopoli, M. P.; Aberg, C.; Salvati, A.; Dawson, K. A.:Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology 2012,7,779-786.
    14. Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F. B.; Dawson, K. A.:Physical-Chemical Aspects of Protein Corona:Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. Journal of the American Chemical Society 2011,133,2525-2534.
    15. Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggard, T.; Flanagan, M. B.; Lynch, I.; Elia, G.; Dawson, K.:The Evolution of the Protein Corona around Nanoparticles: A Test Study. Acs Nano 2011,5,7503-7509.
    16. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences of the United States of America 2008,105,14265-14270.
    17. Tenzer, S.; Docter, D.; Rosfa, S.; Wlodarski, A.; Kuharev, J.; Rekik, A.; Knauer, S. K.; Bantz, C.; Nawroth, T.; Bier, C.; Sirirattanapan, J.; Mann, W.; Treuel, L.; Zellner, R.; Maskos, M.; Schild, H.; Stauber, R. H.:Nanoparticle Size Is a Critical Physicochemical Determinant of the Human Blood Plasma Corona:A Comprehensive Quantitative Proteomic Analysis. Acs Nano 2011,5,7155-7167.
    18. Casals, E.; Puntes, V. F.:Inorganic nanoparticle biomolecular corona:formation, evolution and biological impact. Nanomedicine 2012,7,1917-1930.
    19. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D.:Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998,279,548-552.
    20. Yu, C. Z.; Fan, J.; Tian, B. Z.; Zhao, D. Y.; Stucky, G. D.:High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Advanced Materials 2002,14,1742-1745.
    21. Szegedi, A.; Popova, M.; Goshev, I.; Mihaly, J.:Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. Journal of Solid State Chemistry 2011,184,1201-1207.
    22. Hiyoshi, N.; Yogo, K.; Yashima, T.:Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous and Mesoporous Materials 2005,84,357-365.
    23. Yiu, H. H. P.; Wright, P. A.; Botting, N. P.:Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. Journal of Molecular Catalysis B-Enzymatic 2001,15,81-92.
    24. Faxalv, L.; Tengvall, P.; Lindahl, T. L.:Imaging of blood plasma coagulation and its propagation at surfaces. Journal of Biomedical Materials Research Part A 2008, 85A,1129-1134.
    25. Oslakovic, C.; Cedervall, T.; Linse, S.; Dahlback, B.:Polystyrene nanoparticles affecting blood coagulation. Nanomedicine:Nanotechnology, Biology and Medicine 2012.
    26. Orfeo, T.; Brummel-Ziedins, K. E.; Gissel, M.; Butenas, S.; Mann, K. G.:The nature of the stable blood clot procoagulant activities. Journal of Biological Chemistry 2008,283,9776-9786.
    27. Smadja, D. M.; Basire, A.; Amelot, A.; Conte, A.; Bieche, I.; Le Bonniec, B. F.; Aiach, M.; Gaussem, P.:Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells. Journal of Cellular and Molecular Medicine 2008,12,975-986.
    28. Rock, G.; Neurath, D.; Semple, E.; Harvey, M.; Freedman, M.:Preparation and characterization of human thrombin for use in a fibrin glue. Transfusion Medicine 2007,17,187-191.
    29. Sommeijer, D.; van Oerle, R.; Reitsma, P.; Timmerman, J.; Meijers, J.; Spronk, H.; ten Cate, H.:Analysis of blood coagulation in mice:pre-analytical conditions and evaluation of a home-made assay for thrombin-antithrombin complexes.2005; Vol.3; pp 12.
    30. Lane, D. A.; Caso, R.:Antithrombin:Structure, genomic organization, function and inherited deficiency. Bailliere's Clinical Haematology 1989,2,961-998.
    31. Jesty, J.:The Kinetics of Inhibition of Alpha-Thrombin in Human-Plasma. Journal of Biological Chemistry 1986,261,313-318.
    32. Dahlback, B.:Blood coagulation. Lancet 2000,355,1627-1632.
    33. Lundblad, R. L.; Bradshaw, R. A.; Gabriel, D.; Ortel, T. L.; Lawson, J.; Mann, K. G.:A review of the therapeutic uses of thrombin. Thrombosis and Haemostasis 2004,91,851-860.
    34. Ziv-Polat, O.; Topaz, M.; Brosh, T.; Margel, S.:Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials 2010,31,741-747.
    35. Ziv-Polat, O.; Skaat, H.; Shahar, A.; Margel, S.:Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. International Journal of Nanomedicine 2012, 7,1259-1274.
    36. Myles, T.; Nishimura, T.; Yun, T. H.; Nagashima, M.; Morser, J.; Patterson, A. J.; Pearl, R. G.; Leung, L. L. K.:Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation. Journal of Biological Chemistry 2003,278,51059-51067.
    37. Panettieri, R. A.; Hall, I. P.; Maki, C. S.; Murray, R. K.:Alpha-thrombin increases cytosolic calcium and induces human airway smooth-muscle cell-proliferation. American Journal of Respiratory Cell and Molecular Biology 1995,13,205-216.
    38. Turgeon, V. L.; Houenou, L. J.:The role of thrombin-like (serine) proteases in the development, plasticity and pathology of the nervous system. Brain Research Reviews 1997,25,85-95.
    1. Cho, K. J.; Wang, X.; Nie, S. M.; Chen, Z.; Shin, D. M.:Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res.2008,14,1310-1316.
    2. O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L.:Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letters 2004,209,171-176.
    3. Cognet, L.; Tardin, C.; Boyer, D.; Choquet, D.; Tamarat, P.; Lounis, B.:Single metallic nanoparticle imaging for protein detection in cells. Proceedings of the National Academy of Sciences of the United States of America 2003,100, 11350-11355.
    4. Nath, N.; Chilkoti, A.:A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem.2002,74, 504-509.
    5. Portney, N. G.; Ozkan, M.:Nano-oncology:drug delivery, imaging, and sensing. Anal. Bioanal. Chem.2006,384,620-630.
    6. Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S.:Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 2007,104,2050-2055.
    7. Deng, Z. J.; Liang, M. T.; Monteiro, M.; Toth, I.; Minchin, R. F.: Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotechnology 2010,6,39-44.
    8. Deng, Z. J.; Liang, M. T.; Toth, I.; Monteiro, M. J.; Minchin, R. F.:Molecular Interaction of Poly(acrylic acid) Gold Nanoparticles with Human Fibrinogen. Acs Nano 2012,6,8962-8969.
    9. Lesniak, A.; Fenaroli, F.; Monopoli, M. R.; Aberg, C.; Dawson, K. A.; Salvati, A.: Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells. Acs Nano 2012,6,5845-5857.
    10. Wang, J.; Jensen, U. B.; Jensen, G. V.; Shipovskov, S.; Balakrishnan, V. S.; Otzen, D.; Pedersen, J. S.; Besenbacher, F.; Sutherland, D. S.:Soft Interactions at Nanoparticles Alter Protein Function and Conformation in a Size Dependent Manner. Nano Letters 2011,11,4985-4991.
    11. Ji, Z. X.; Jin, X.; George, S.; Xia, T. A.; Meng, H. A.; Wang, X.; Suarez, E.; Zhang, H. Y.; Hoek, E. M. V.; Godwin, H.; Nel, A. E.; Zink, J. I.:Dispersion and Stability Optimization of TiO2 Nanoparticles in Cell Culture Media. Environmental Science & Technology 2010,44,7309-7314.
    12. Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M.:Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials 2009,8,543-557.
    13. Cedervall, T.; Lynch, I.; Foy, M.; Berggad, T.; Donnelly, S. C.; Cagney, G.; Linse, S.; Dawson, K. A.:Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angewandte Chemie-International Edition 2007,46, 5754-5756.
    14. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences of the United States of America 2008,105,14265-14270.
    15. Lynch, I.; Dawson, K. A.:Protein-nanoparticle interactions. Nano Today 2008,3, 40-47.
    16. Deng, Z. J.; Mortimer, G.; Schiller, T.; Musumeci, A.; Martin, D.; Minchin, R. F.: Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 2009,20.
    17. Dobrovolskaia, M. A.; Patri, A. K.; Zheng, J. W.; Clogston, J. D.; Ayub, N.; Aggarwal, P.; Neun, B. W.; Hall, J. B.; McNeil, S. E.:Interaction of colloidal gold nanoparticles with human blood:effects on particle size and analysis of plasma protein binding profiles. Nanomed.-Nanotechnol. Biol. Med.2009,5,106-117.
    18. Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggard, T.; Flanagan, M. B.; Lynch, I.; Elia, G.; Dawson, K.:The Evolution of the Protein Corona around Nanoparticles: A Test Study. Acs Nano 2011,5,7503-7509.
    19. Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F. B.; Dawson, K. A.:Physical-Chemical Aspects of Protein Corona:Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. Journal of the American Chemical Society 2011,133,2525-2534.
    20. Tenzer, S.; Docter, D.; Rosfa, S.; Wlodarski, A.; Kuharev, J.; Rekik, A.; Knauer, S. K.; Bantz, C.; Nawroth, T.; Bier, C.; Sirirattanapan, J.; Mann, W.; Treuel, L.; Zellner, R.; Maskos, M.; Schild, H.; Stauber, R. H.:Nanoparticle Size Is a Critical Physicochemical Determinant of the Human Blood Plasma Corona:A Comprehensive Quantitative Proteomic Analysis. Acs Nano 2011,5,7155-7167.
    21. Suzuki, M.; Saruwatari, K.; Kogure, T.; Yamamoto, Y.; Nishimura, T.; Kato, T.; Nagasawa, H.:An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation. Science 2009,325,1388-1390.
    22. Diebold, U.:The surface science of titanium dioxide. Surface Science Reports 2003,48,53-229.
    23. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T.:Photocatalysis on TiO2 surfaces -principles, mechanisms, and selected results. Chemical Reviews 1995,95, 735-758.
    24. Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N.:Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environmental Science & Technology 2012,46,2242-2250.
    25. Gamer, A. O.; Leibold, E.; van Ravenzwaay, B.:The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicology in Vitro 2006,20,301-307.
    26. Wolfrum, E. J.; Huang, J.; Blake, D. M.; Maness, P. C.; Huang, Z.; Fiest, J.; Jacoby, W. A.:Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environmental Science & Technology 2002,36,3412-3419.
    27. Perkas, N.; Lipovsky, A.; Amirian, G.; Nitzan, Y.; Gedanken, A.:Biocidal properties of TiO2 powder modified with Ag nanoparticles. Journal of Materials Chemistry B 2013,1,5309-5316.
    28. Jin, C. Y.; Zhu, B. S.; Wang, X. F.; Lu, Q. H.:Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chemical Research in Toxicology 2008, 21,1871-1877.
    29. Chen, E. Y.; Garnica, M.; Wang, Y. C.; Mintz, A. J.; Chen, C. S.; Chin, W. C:A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells. Particle and Fibre Toxicology 2012,9.
    30. Jin, C.; Tang, Y.; Yang, F. G.; Li, X. L.; Xu, S.; Fan, X. Y.; Huang, Y. Y.; Yang, Y. J.:Cellular Toxicity of TiO2 Nanoparticles in Anatase and Rutile Crystal Phase. Biological Trace Element Research 2011,141,3-15.
    31. Gerloff, K.; Fenoglio, I.; Carella, E.; Kolling, J.; Albrecht, C.; Boots, A. W.; Forster, I.; Schins, R. P. F.:Distinctive Toxicity of TiO2 Rutile/Anatase Mixed Phase Nanoparticles on Caco-2 Cells. Chemical Research in Toxicology 2012,25, 646-655.
    32. Ruh, H.; Kuhl, B.; Brenner-Weiss, G.; Hopf, C.; Diabate, S.; Weiss, C.: Identification of serum proteins bound to industrial nanomaterials. Toxicology Letters 2012,208,41-50.
    33. Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J.; Chong, H. C.; Tan, S. M.; Loo, S. C. J.; Ng, K. W.; Xie, J. P.; Ong, C. N.; Tan, N. S.; Leong, D. T.:Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nature Communications 2013,4.
    34. Sund, J.; Alenius, H.; Vippola, M.; Savolainen, K.; Puustinen, A.:Proteomic Characterization of Engineered Nanomaterial-Protein Interactions in Relation to Surface Reactivity. Acs Nano 2011,5,4300-4309.
    35. Zhang Zhaohong, Wang Dongmei, Xu Danping, Deng Yingqiao, Chen Zhonglin, Gao Wei:Damage of Bovine Serum Albumin Catalyzed by Heat-Treated Anatase Titanium Dioxide under Visible Light Irradiation. Chinese Journal of Applied Chemistry 2010,27,6.
    36. Gurr, J. R.; Wang, A. S. S.; Chen, C. H.; Jan, K. Y.:Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2005,213,66-73.
    37. Hu, W. B.; Peng, C.; Lv, M.; Li, X. M.; Zhang, Y. J.; Chen, N.; Fan, C. H.; Huang, Q.:Protein Corona-Mediated Mitigation of Cytotoxicity of Graphene Oxide. Acs Nano 2011,5,3693-3700.
    1. Behrens, A. M.; Sikorski, M. J.; Kofinas, P.:Hemostatic strategies for traumatic and surgical bleeding. Journal of Biomedical Materials Research Part A 2013.
    2. Shukla, A.; Fang, J. C.; Puranam, S.; Jensen, F. R.; Hammond, P. T.:Hemostatic Multilayer Coatings. Advanced Materials 2012,24,492-496.
    3. Devaraja, S.; Girish, K. S.; Gowtham, Y. N. J.; Kemparaju, K.:The Hag-protease-Ⅱ is a fibrin(ogen)ase from Hippasa agelenoides spider venom gland extract:Purification, characterization and its role in hemostasis. Toxicon 2011,57,248-258.
    4. Rouse, J. G.; Van Dyke, M. E.:A Review of Keratin-Based Biomaterials for Biomedical Applications. Materials 2010,3,999-1014.
    5. Burnett, L. R.; Rahmany, M. B.; Richter, J. R.; Aboushwareb, T. A.; Eberli, D.; Ward, C. L.; Orlando, G.; Hantgan, R. R.; Van Dyke, M. E.:Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials 2013,34,2632-2640.
    6. Burnett, L. R.; Richter, J. G.; Rahmany, M. B.; Soler, R.; Steen, J. A.; Orlando, G.; Abouswareb, T.; Van Dyke, M. E.:Novel keratin (KeraStat (TM)) and polyurethane (Nanosan (R)-Sorb) biomaterials are hemostatic in a porcine lethal extremity hemorrhage model. Journal of Biomaterials Applications 2014,28, 869-879.
    7. Aboushwareb, T.; Eberli, D.; Ward, C.; Broda, C.; Holcomb, J.; Atala, A.; Van Dyke, M.:A Keratin Biomaterial Gel Hemostat Derived from Human Hair: Evaluation in a Rabbit Model of Lethal Liver Injury. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2009,90B,45-54.
    8. Ellis-Behnke, R. G.; Liang, Y.-X.; Tay, D. K. C.; Kau, P. W. F.; Schneider, G. E.; Zhang, S.; Wu, W.; So, K.-F.:Nano hemostat solution:immediate hemostasis at the nanoscale. Nanomedicine:Nanotechnology, Biology and Medicine 2006,2, 207-215.
    9. Luo, Z.; Wang, S.; Zhang, S.:Fabrication of self-assembling d-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis. Biomaterials 2011,32, 2013-2020.
    10. Bertram, J. P.; Williams, C. A.; Robinson, R.; Segal, S. S.; Flynn, N. T.; Lavik, E. B.:Intravenous Hemostat:Nanotechnology to Halt Bleeding. Science Translational Medicine 2009,1.
    11. Shoffstall, A. J.; Atkins, K. T.; Groynom, R. E.; Varley, M. E.; Everhart, L. M.; Lashof-Sullivan, M. M.; Martyn-Dow, B.; Butler, R. S.; Ustin, J. S.; Lavik, E. B.: Intravenous Hemostatic Nanoparticles Increase Survival Following Blunt Trauma Injury. Biomacromolecules 2012,13,3850-3857.
    12. Shoffstall, A. J.; Everhart, L. M.; Varley, M. E.; Soehnlen, E. S.; Shick, A. M.; Ustin, J. S.; Lavik, E. B.:Tuning Ligand Density on Intravenous Hemostatic Nanoparticles Dramatically Increases Survival Following Blunt Trauma. Biomacromolecules 2013,14,2790-2797.
    13. Lashof-Sullivan, M.; Shoffstall, A.; Lavik, E.:Intravenous hemostats:challenges in translation to patients. Nanoscale 2013,5,10719-10728.
    14. Doshi, N.; Orje, J. N.; Molins, B.; Smith, J. W.; Mitragotri, S.; Ruggeri, Z. M.: Platelet Mimetic Particles for Targeting Thrombi in Flowing Blood. Advanced Materials 2012,24,3864-3869.
    15. von Maltzahn, G.; Park, J. H.; Lin, K. Y.; Singh, N.; Schwoppe, C.; Mesters, R.; Berdel, W. E.; Ruoslahti, E.; Sailor, M. J.; Bhatia, S. N.:Nanoparticles that communicate in vivo to amplify tumour targeting. Nature Materials 2011,10, 545-552.
    16. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences of the United States of America 2008,105,14265-14270.
    17. Lynch, I.; Dawson, K. A.; Linse, S.:Detecting Cryptic Epitopes Created by Nanoparticles. Science,2006; Vol.327; pp 14.
    18. Monopoli, M. P.; Aberg, C.; Salvati, A.; Dawson, K. A.:Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology 2012,7,779-786.
    19. Holmlin, R. E.; Chen, X. X.; Chapman, R. G.; Takayama, S.; Whitesides, G. M.: Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001,17,2841-2850.
    20. Lowe, A. B.; McCormick, C. L.:Synthesis and solution properties of zwitterionic polymers. Chemical Reviews 2002,102,4177-4189.
    21. Salvati, A.; Pitek, A. S.; Monopoli, M. P.; Prapainop, K.; Bombelli, F. B.; Hristov, D. R.; Kelly, P. M.; Aberg, C.; Mahon, E.; Dawson, K. A.: Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology 2013,8, 137-143.
    22. Yildirim, A.; Ozgur, E.; Bayindir, M.:Impact of mesoporous silica nanoparticle surface functionality on hemolytic activity, thrombogenicity and non-specific protein adsorption. Journal of Materials Chemistry B 2013,1,1909-1920.
    23. Yang, S.-T.; Liu, Y.; Wang, Y.-W.; Cao, A.:Biosafety and Bioapplication of Nanomaterials by Designing Protein-Nanoparticle Interactions. Small 2013,9, 1635-1653.
    24. Wang, F. J.; Yu, L.; Monopoli, M. P.; Sandin, P.; Mahon, E.; Salvati, A.; Dawson, K. A.:The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine-Nanotechnology Biology and Medicine 2013,9,1159-1168.
    25. Roach, P.; Farrar, D.; Perry, C. C.:Interpretation of protein adsorption: Surface-induced conformational changes. Journal of the American Chemical Society 2005,127,8168-8173.
    26. Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C.; Landfester, K.; Schild, H.; Maskos, M.; Knauer, S. K.; Stauber, R. H.:Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnology 2013,8,772.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700