用户名: 密码: 验证码:
不同剂量血液滤过对内毒素休克猪炎症状态和免疫功能的影响和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     1.研究不同剂量血液滤过对内毒素休克猪生存率、血流动力学、氧合作用和炎症的影响,探讨相应的机制,包括对血浆细胞因子(TNF-α、IL-6、IL-10和IL-18)水平、单核细胞功能和中性粒细胞凋亡和NK-κB的作用;
     2.研究连续性血液滤过治疗sepsis的合适剂量。
     研究方法
     1.动物模型的建立
     采用静脉注射内毒素(E.coli O111:B4,15.7μg/kg)的方法诱导内毒素休克猪模型,当平均动脉压(MAP)下降30%时,标志内毒素休克猪模型建立。
     2.建立体外循环
     行左侧股静脉和左侧颈外静脉穿刺术,分别置入8F单腔导管,作为CVVH时的动脉端以及静脉回血端,连接百特BM 25床旁CRRT机,采用Gambro Filtral12聚丙烯腈膜滤器(AN69,1.2 m~2),血流量为150 ml/min。
     3.分组
     将18只内毒素休克猪(28.1±5.1kg)随机分成三组:对照组(n=6)、CVVH组(n=6,置换液速度为55 ml/kg·h,前稀释法,相当于后稀释法的45 ml/kg·h)和高容量血液滤过(HVHF)组(n=6,置换液速度为100 ml/kg·h,前稀释法,相当于后稀释法的70 ml/kg·h),治疗24h后处死动物。
     4.观察指标
     1)血流动力学指标:
     每小时监测内毒素休克猪心率(HR)、平均动脉压(MAP)、体温(T)、呼吸(P)、脉搏氧饱和度(SpO_2)、平均肺动脉压(Mean Pulmonary Arterial Pressure,mPAP)、肺动脉楔压(Pulmonary Artery Wedge Pressure,PAWP)、中心静脉压(Central Venous Pressure,CVP)、心排出量(Cardial Output,CO)、心脏指数(CardialIndex,CI)、每搏量(Stroke Volume,SV)、每搏指数(Stroke Index,SI)、体循环阻力指数(Systemic Vascular Resistance Index,SVRI)、肺循环阻力指数(PulmonaryVascular Resistance Index,PVRI)和左室每搏作功指数(Left Ventricular Stroke WorkIndex,LVSWI)。
     2)氧合作用相关指标:
     每2小时送检血气,测定动脉血pH值、动脉氧分压(PaO_2)、动脉二氧化碳分压(PaCO_2)、动脉血氧饱和度(SaO_2)、碱剩余(BE)、HCO_3~-和氧合指数(oxygenation index,OI=PaO_2/FIO_2)。
     3)生存时间、血常规和肾功能:
     记录内毒素休克猪的生存时间和尿量,测定造模前(Baseline)、成模时(TO)、成模后6h(T6)、12h(T12)、24h(T24)血常规和肾功能。
     4)细胞因子:
     ELISA法测定Baseline、T1、T0、T6、T12、T24各时点血浆细胞因子(TNF-α、IL-6、IL-10、IL-18)的水平。
     5)单核细胞功能和中性粒细胞凋亡:
     流式细胞术测定Baseline、T0、T6、T12、T24各时点单核细胞MHCⅡ的表达和中性粒细胞凋亡的水平,予LPS(10μg/ml)刺激各时点单核细胞24h,ELISA法测定上清中TNF-α的含量。
     6)肺和肾组织病理:
     肺和肾组织行HE染色,免疫组化法观察p65和细胞间粘附分子-1(intercellular adhesion molecule-1,ICAM-1)在肺和肾的表达,ELISA法测定肺和肾组织的NF-κB活性。
     结果
     1.第一部分
     内毒素休克猪成模时HR、mPAP、PAWP和PVRI升高,MAP、SVRI、SV、SI、LVSWI、OI和BE下降(P<0.05),其余指标无明显变化。治疗24h后,CVVH组和HVHF组的LVSWI和OI较对照组明显升高(P<0.05),但两组之间无显著性差异。
     2.第二部分
     对照组动物平均生存时间为(15.4±5.2)h,CVVH组为(21.4±4.1)h,HVHF组为(22±6.7)h,CVVH组和HVHF组的生存时间显著高于对照组(P<0.05)。对照组Scr和BUN分别从成模后6h和12h开始升高,后进行性恶化。HVHF组和CVVH组的BUN分别于成模后12h和24h开始低于对照组(P<0.05),两组的Scr分别于成模后6h和12h开始低于对照组(P<0.05),三组动物成模后血小板进行性下降,各组之间的红细胞、血红蛋白、红细胞压积、血小板数量均无显著性差异(P>0.05)。成模后各组尿量均下降,治疗后12h HVHF组尿量高于另外两组(P<0.05),治疗后18h、24h,CVVH组和HVHF组尿量高于对照组,两组之间无显著差异。
     3.第三部分
     对照组TNF-α和IL-6水平在T1达最高峰,IL-10水平在T0达最高峰,随后不断下降,IL-18水平在成模后上升,后无明显变化。CVVH组血浆IL-10(T6、T12、T24)水平低于对照组(P<0.05),HVHF组TNF-α(T6)和IL-10(T6、T12、T24)水平低于对照组和CVVH组(P<0.05),三组的IL-6和IL-18水平无显著性差异(P>0.05),IL-6(T6、T12)水平与动物生存时间呈负相关(P<0.05)。
     4.第四部分
     成模时三组单核细胞分泌的TNF-α水平较成模前无明显变化(P>0.05),成模后6h TNF-α水平最低,后逐步回升,三组之间无显著差异(P>0.05)。成模时三组MHCⅡ表达较成模前无明显变化(P>0.05),成模后MHCⅡ表达呈进行性下降,三组之间无显著性差异(P>0.05)。成模时各组中性粒细胞(PMN)凋亡较成模前减少(P<0.05),治疗后24h HVHF组PMN凋亡高于对照组和CVVH组,差异有统计学意义(P<0.05)。成模时,各组PMN数量均下降,但百分比无明显变化,成模后各时点PMN数量和百分比均大于成模前(P<0.05),治疗12h、24h后HVHF组PMN数量和百分比较对照组和CVVH组显著下降(P<0.05)。
     5.第五部分
     CVVH组和HVHF组肺组织的水肿、间质浸润、透明膜和肺不张病变较对照组减轻(P<0.05),CVVH组和HVHF组肾小球和肾小管病变较对照组显著减轻(P<0.05),两组之间肺和肾的改变均无显著性差异。p65和ICAM-1在内毒素休克猪肺、肾组织中的表达均增加,CVVH组与HVHF组肺、肾组织中NF-κB活性、p65表达和ICAM-1表达较对照组均显著下降(P<0.05),两组之间无显著性差异(P>0.05)。
     结论
     1.CVVH和HVHF治疗均能一定程度地改善内毒素休克猪的心脏泵血功能和氧合作用,增加置换液剂量对血流动力学和氧合作用无额外的作用。
     2.CVVH和HVHF治疗能显著延长内毒素休克猪的生存时间。内毒素休克猪出现急性肾损伤(acute kidney injury,AKI),且肾功能进行性恶化,连续性血液滤过治疗能有效改善肾功能,增加实验动物的尿量。
     3.CVVH治疗能有效清除IL-10,HVHF治疗能清除TNF-α和IL-10,但CVVH和HVHF对IL-6和IL-18水平无明显影响。IL-6水平是预测内毒素休克预后的独立指标。
     4.内毒素休克猪成模后出现免疫抑制,表现为单核细胞MHCⅡ表达下降、分泌TNF-α水平的下降和中性粒细胞凋亡的减少。CVVH和HVHF治疗对单核细胞抗原递呈功能和分泌功能均无影响,但HVHF能抑制PMN凋亡的减少,减少外周PMN的数量和百分比。
     5.CVVH和HVHF通过抑制NF-κB的机制来减轻肾和肺组织损伤和减少ICAM-1的表达。
Objective
     1.To study the impact of continuous veno-venous hemofiltration(CVVH) in different ultrafiltmtion rate on survival time,hemodynamics,arterial oxygenation and inflammation in porcine endotoxemic shock;To investigate the mechanism, including the impact of CVVH and high volume hemofiltration(HVHF) on plasma cytokines,monocyte function,neutrophil apoptosis and nuclear factor-κB (NF-κB).
     2.To study the adequate dose of CVVH in sepsis.
     Methods
     1.Animal preparation and hemofiltration treatment
     Eighteen anesthetized mechanically ventilated pigs weighing(28.1±5.1) kg received a 15.7μg/kg endotoxin(E.coli O111:B4) infusion over 60 min.When mean arterial pressure(MAP) dropped 30%,they were randomized into three groups. Control group(n = 6) received no further intervention,CVVH group(n = 6) and HVHF group(n = 6) received pre-dilution continuous veno-venous hemofiltration for 24 hours with an ultrafiltration rate of 55 ml/kg·h and an ultrafiltration rate of 100 ml/kg·h respectively,the blood flow was 150 ml/min.A 1.2-m~2 polyacrylonitrile membrane(AN69) and a Baxter BM 25 hemofiltration device were used.
     2.Measurements
     1) Monitoring heart rate(HR),mean arterial pressure(MAP),body temperature,pulse, Mean Pulmonary Arterial Pressure(mPAP),Pulmonary Artery Wedge Pressure (PAWP),Central Venous Pressure(CVP),Cardial Output(CO),Cardial Index(CI), Stroke Volume(SV),Stroke Index(SI),Systemic Vascular Resistance Index(SVRI), Pulmonary Vascular Resistance Index(PVRI) and Left Ventricular Stroke Work Index (LVSWI).
     2) Monitoring PaO_2,SaO_2,FiO_2,oxygenation index(OI= PaO_2/FiO_2),BE,PaCO_2 and HCO_3~-.
     3) Monitoring survival time and urine output.Renal function and the complete blood count were measured before endotoxin infusion(Baseline) and at 0h(T0),6h(T6), 12h(T12),24h(T24) after the establishment of endotoxic shock model.
     4) Blood were taken before endotoxin infusion(Baseline) and at 0h(T0),1h(T1), 6h(T6),12h(T12),24h(T24) after the establishment of endotoxic shock model.The plasma levels of TNF-α,IL-6,IL-10 and IL-18 were tested by ELISA.
     5) At T0,T6,T12,T24 during CVVH,peripheral monocytes were isolated and stimulated with LPS(10μg/ml )to detect the ability of production of TNF-α.MHCⅡexpression on rnonocytes was assessed to evaluate the antigen presenting function of monocytes.Apoptotic changes in PMNs were measured by flow cytometry.
     6) Wedge-shaped sections from kidneys and lungs were stained with H&E.The expressions of intercellular adhesion molecule-1(ICAM-1) and p65 were assessed by immunohistochemistry.Moreover,NF-κB/DNA binding activity was analyzed by ELISA.
     Results
     1.Part One
     The natural course of endotoxemic shock in our study was characterized by increases of HR,mPAP,PAWP,SVRI and PVRI,and decreases of MAP,SVRI,SV,SI, LVSWI,OI and BE.LVSWI and OI were improved significantly in HVHF group and CVVH group at T24(P<0.05 ).No significant differences between HVHF group and CVVH group were found.
     2.Part Two
     The survival time in control group was(15.4±5.2) h,CVVH group was(21.4±4.1) h,HVHF group was(22±6.7) h.The survival time in CVVH and HVHF group were significantly longer than that of control group(P<0.05 ).The urine output in CVVH and HVHF group was obviously higher than that in control group at T18 and T24(P<0.05).Platelet decreased progressively after the infusion of LPS.
     3.Part Three
     Plasma TNF-αand IL-6 peaked at T1,while IL-10 peaked at T0,then they declined gradually.While IL-18 increased and did not decline after T0.A significant decrease of plasma IL-10 levels was observed at T6,T12 and T24 in CVVH group compared with control groups(P<0.05).HVHF group accomplished a greater decrease in plasma TNF-α(T6) and IL-10(T6、T12、T24) levels compared with control group and CVVH group(P<0.05 ).The level of IL-6 and IL-18 showed no significant difference among three groups(P>0.05 ).There was a significant negative correlation between IL-6 and survival time(P<0.05).
     4.Part Four
     MHCⅡexpression of monocyte and the level of TNF-αwere markedly decreased in porcine endotoxemic shock(P<0.05).CVVH and HVHF had no effect on them.The infusion of endotoxin was followed by decrease ofPMN apoptosis. HVHF increased PMN apoptosis and decreased the number of peripheral PMN(P<0.05).
     5.Part Five
     CVVH and HVHF resulted in significantly lower scores for hyaline membranes, interstitial infiltration,edema and atelectasis in lung compared with control group(P<0.05).CVVH and HVHF mitigated significantly severe tubular damage and glomerular damage compared with control group(P<0.05).The expression of ICAM-1 and p65,the degree of NF-κB/DNA binding activity in lung and kidney were reduced in CVVH group and HVHF group(P<0.05),there was no significant difference between them(P>0.05 ).
     Conclusions
     1.HVHF and CVVH can improve blood pumping and arterial oxygenation of porcine endotoxemic shock in some degree.
     2.HVHF and CVVH can prolong survival time and improve urine output compared with control group.
     3.IL-10 can be removed effectively with CVVH and HVHF in porcine endotoxemic shock and HVHF can also remove TNF-αeffectively.IL-6 was a powerful independent predictive factor for survival time in porcine endotoxemic shock.
     4.HVHF can alleviate the decrease of PMN apoptosis which may result from removal of TNF-αand IL-10.CVVH and HVHF can not improve monocyte function.
     5.CVVH and HVHF can offer both renal and lung protection,which may be related to suppression of inflammation and NF-κB.
引文
1 Bone R C, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992, 101 (6): 1644-1655.
    2 Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003, 348 (16): 1546 -1554.
    3 Hicks P, Cooper DJ, Webb S, et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008, 34: 17-60.
    4 Bellomo R, Honore PM, Matson J, et al. Extracorporeal blood treatment (EBT) methods in SIRS/Sepsis. Int J Artif Organs. 2005, 28(5): 450- 458.
    5 Claudio Ronco, Rinaldo Bellomo, Peter Homel, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. THE LANCET. 2000, 356: 26-30.
    6 Li W, Yan X, Wang H, et al. Effects of continuous high-volume hemofiltration on experimental severe acute pancreatitis in pigs. Pancreas. 2007, 34(1): 112-119.
    7 Ghani RA, Zainudin S, Ctkong N, et al. Serum IL-6 and IL-1-ra with sequential organ failure assessment scores in septic patients receiving high-volume haemofiltration and continuous venovenous haemofiltration. Nephrology. 2006, 11:386-393.
    8 Bouman CS, Oudemans-Van Straaten HM, Tijssen JG, et al. Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med. 2002, 30(10): 2205-2211.
    9 Patrick M Honore, Olivier Joannes-Boyau, Benjamin Gressens. Blood and Plasma Treatments: The Rationale of High-Volume Hemofiltration. Contrib Nephrol. 2007, 156: 387-395.
    10 Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med. 1996, 24(7): 1125-1128.
    11 Cavaillon JM, Fitting C, Adib-Conquy M. Mechanisms of Immunodysregulation in Sepsis. Contrib Nephrol. 2004, 144: 76-93.
    12 Yekebas EF, Eisenberger CF, Ohnesorge H, et al. Attenuation of sepsis-related immunopamlysis by continuous veno-venous hemofiltration in experimental porcine pancreatitis,Crit Care Med.2001,29(7):1423-1430.
    13 余晨,刘志红,郭啸华,等.连续性血液净化治疗全身炎症反应综合征及脓毒症对机体免疫功能的影响.肾脏病与透析肾移植杂志.2003,12(1):2-9
    14 Himno T,Hirasawa H,Asai T,et al.Modulation ofpolymorphonuclear leukocyte apoptosis in the critically ill by removal of cytokines with continuous hemodiafiltration.Blood Purif.2004,22(2):188-197.
    15 杜成辉,方国恩,赵为国,等.中性粒细胞凋亡在高容量血液滤过防治多器官功能障碍中的变化及意义.中华实验外科杂志.2005,22(7):879.
    16 Abraham E.Nuclear factor-kappaB and it s role in sepsis-associated organ failure,J Infect Dis.2003,187(Suppl 2):S364-369.
    17 Liu SF,Malik AB.NF-kappa B activation as a pathological mechanism of septic shock and inflammation.Am J Physiol Lung Cell Mol Physiol.2006,290(4):L622-L645.
    18 John A.Kellum,Mingchen Song,Ramesh Venkataraman.Hemoadsorption removes tumor necrosis factor,interleukin-6,and interleukin-10,reduces nuclear factor-κB DNA binding,and improves short-term survival in lethal endotoxemia,Crit Care Med.2004,32(3):801-806.
    1 Baron RM, Baron MJ, Perrella MA. Pathobiology of sepsis: are we still asking the same questions? Am J Respir Cell Mol Biol. 2006, 34(2): 129-134.
    2 Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov. 2005, 4(10): 854 -865.
    3 Freise H, Bruckner UB, Spiegel HU. Animal models of sepsis. J Invest Surg. 2001, 14(4): 195-212.
    4 Noshima S, Noda H, Herndon DN, et al. Left ventricular performance during continuous endotoxin-induced hyperdynamic endotoxemia in sheep. J Appl Physiol .1993, 74(4): 1528 - 1533.
    5 Joannes-Boyau O, Rapaport S, Bazin R, et al. Impact of high volume hemofiltration on hemodynamic disturbance and outcome during septic shock. ASAIO J. 2004, 50(1): 102-109.
    6 Piccinni P, Dan M, Barbacini S, et al. Early isovolaemic haemofiltration in oliguric patients with septic shock. Intensive Care Med. 2006, 32(1): 80-86.
    7 Veenman JN, Dujardint CL, Hoek A, et al. High volume continuous venovenous haemofiltration (HV-CWH) in an equine endotoxaemic shock model. Equine Vet J. 2002, 34(5): 516-522.
    8 Fein AM, Calalang-Colucci MG. Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock. Crit Care Clin. 2000, 16(2): 289-317.
    9 Kabir K, Gelinas JP, Chen M, et al. Characterization of a murine model of endotoxin-induced acute lung injury. Shock. 2002, 17(4): 300-303.
    10 Gullo A. Spectrum of acute lung injury, ARDS, sepsis. Minerva Anestesiol. 2002, 68(1-2): 45-53.
    11 Ullrich R, Roeder G, Lorber C, at al. Continuous venovenous hemofiltration improves arterial oxygenation in endotoxin-induced lung injury in pigs. Anesthesiology. 2001, 95(2): 428-436.
    12 Vatazin AV, Fomin AM, Koshelev RV,et al. Effectiveness of hemofiltration in patients with peritonitis and acute respiratory distress syndrome. Vestn Ross Akad Med Nauk. 2005, (6): 18-23.
    13 Su X, Bai C, Hong Q, et al. Effect of continuous hemofiltration on hemodynamics, lung inflammation and pulmonary edema in a canine model of acute lung injury. Intensive Care Med. 2003, (11): 2034-2042.
    1 Hicks P, Cooper DJ, Webb S, et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008, 34: 17-60.
    2 House AA, Ronco C. Extracorporeal blood purification in sepsis and sepsis-related acute kidney injury. Blood Purif. 2008, 26(1): 30-35.
    3 Claudio Ronco, Rinaldo Bellomo, Peter Homel, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. THE LANCET. 2000, 356: 26-30.
    4 Honore PM, Jamez J, Wauthier M, et al. Very high volume hemofiltration: A Comprehend- sive review. International Symposium on Critical Care Nephrology (ISCCN).Melbourne 2001, Nov. 1-3.
    5 Huang Z, Letteri JJ, Clark WR,et al. Ultrafiltration rate as a dose surrogate in pre-dilution hemofiltration. Int J Artif Organs. 2007, 30 (2): 124-132.
    6 Clark WR, Turk JE, Kraus MA, et al. Dose determinants in continuous renal replacement therapy. Artif Organs. 2003, 27(9): 815-820.
    7 Li W, Yan X, Wang H, et al. Effects of continuous high-volume hemofiltration on experimental severe acute pancreatitis in pigs. Pancreas. 2007, 34(1): 112-119.
    8 Honore PM, Joannes-Boyau O. The IVOIRE study: Impact of high volume hemofiltration in early septic shock with acute renal injury. A prospective multicentric randomized study. Design presented for the Stoutenbeek award of the 18th annual Congress of ESICM Society. Berlin 10-13 October 2004.
    9 Vanderschueren S, Weerdt A, Malbrain M, et al. Thromcytopenia and prognosis in intensive care. Crit Care Med. 2000, 28 (6): 1871-1876.
    10 Akca S, Haji-Michael P, de Mendonca A, et al. The time course of platelet counts in critically ill patients. Crit Care Med. 2002, 30(4): 753-756.
    11 Li W, Yan X, Wang H, et al. Effects of continuous high-volume hemofiltration on experimental severe acute pancreatitis in pigs. Pancreas. 2007, 34(1): 112-111.
    1 Copeland S, Warren HS, Lowry SF, et al. Acute inflammatory response to endotoxin in mice and humans. Clin Diagn Lab Immunol. 2005, 12(1): 60-67.
    2 Dahaba AA, Elawady GA, Rehak PH, et al. Procalcitonin and proinflammatory cytokine clearance during continuous venovenous haemofiltration in septic patients. Anaesth Intensive Care. 2002, 30 (3): 269-274.
    3 Bellomo R, Tipping P, Boyce N. Continuous veno-venous hemofiltration with dialysis removes cytokines from the circulation of septic patients. Crit Care Med. 1993, 21 (4): 522-526.
    4 Rogiers P, Zhang H, Pauwels D, et al. Comparison of polyacrylonitrile (AN69) and polysulphone membrane during hemofiltration in canine endotoxic shock. Crit Care Med. 2003, 31 (4): 1219-1225.
    5 Cole L, Bellomo R, Tipping P. A phase II randomized, controlled trial of continuous hemofiltration in sepsis. Crit Care Med. 2002, 30 (1): 100-106.
    6 Cavaillon JM, Adib-Conquy M, Fitting C, et al. Cytokine cascade in sepsis. Scand J Infect Dis. 2003, 35(9): 535-544.
    7 Ghani RA, Zainudin S, Ctkong N, et al. Serum IL-6 and IL-1-ra with sequential organ failure assessment scores in septic patients receiving high-volume haemofiltration and continuous venovenous haemofiltration. Nephrology. 2006, 11:386-393.
    8 Heering P, Morgera S, Schmitz FJ, et al. Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration. Intensive Care Med. 1997, 23 (3): 288-296.
    9 Veenman JN, Dujardint CL, Hoek A, et al. High volume continuous venovenous haemofiltration (HV-CWH) in an equine endotoxaemic shock model. Equine Vet J. 2002, 34(5): 516-522.
    10 Andreas Oberholzer, Caroline Oberholzer, Lyle L Moldawer. Interleukin-10: A complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Crit Care Med. 2002, 30 (1 Supp): S58-S63.
    11 Kellum JA, Johnson JP, Kramer D . Diffusive vs. convective therapy: effects on mediators of inflammation in patient with severe systemic inflammatory response syndrome. Crit Care Med. 1998, 26 (12): 1995-2000.
    12 De Vriese AS, Colardyn FA, Philippe JJ, et al. Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol. 1999, 10 (4): 846-853.
    13 Bernard Lambermont, Pierre Delanaye, Jean-Michel Dogne, et al. Large-pore membrane hemofiltration increases cytokine clearance and improves right ventricular-vascular coupling during endotoxic shock in pigs. Artif Organs. 2006, 30 (7): 560-564.
    14 Tschoeke SK, Oberholzer A, Moldawer LL. Interleukin-18: a novel prognostic cytokine in bacteria-induced sepsis. Crit Care Med. 2006, 34(4): 1225-1233.
    15 Nakamura T, Kawagoe Y, Suzuki T, et al. Changes in plasma interleukin-18 by direct hemoperfusion with polymyxin B-immobilized fiber in patients with septic shock. Blood Purif. 2005, 23(6): 417-420.
    16 Oberholzer A, Steckholzer U, Kurimoto M, et al. Interleukin-18 plasma levels are increased in patients with sepsis compared to severely injured patients. Shock. 2001, 16(6): 411-414.
    17 Grobmyer SR, Lin E, Lowry SF, et al. Elevation of IL-18 in human sepsis. J Clin Immunol. 2000, 20(3): 212-215.
    18 Haase M, Silvester W, Uchino S, et al. A pilot study of high-adsorption hemofiltration in human septic shock. Int J Artif Organs. 2007, 30(2): 108-117.
    19 Patrick M Honore, Olivier Joannes-Boyau, Benjamin Gressens. Blood and Plasma Treatments: The Rationale of High-Volume Hemofiltration. Contrib Nephrol. 2007, 156: 387-395.
    20 Ronco C, Tetta C, Mariano F, et al. Interpreting the Mechanisms of Continuous Renal Replacement Therapy in Sepsis: The Peak Concentration Hypothesis. Artificial Organs. 2003, 27(9):792-801.
    21 Honore PM, Joannes-Boyau O. High volume hemofiltration (HVHF) in sepsis: a comprehensive review of rationale, clinical applicability, potential indications and recommendations for future research. Int J Artif Organs. 2004, 27(12): 1077-1182.
    22 Di Carlo JV, Alexander SR. Hemofiltration for cytokine-driven illnesses: the mediator delivery hypothesis. Int J Artif Organs. 2005, 28(8): 777-786.
    23 Smeby LC, Charlton B, Schindhelm K. Kinetics of intravenous saline infusion and selective IgG removal in rabbits. Am J Physiol. 1984, 247(5 Pt 2): R816-826.
    24 Onarheim H, Missavage AE, Gunther RA, et al. Marked increase of plasma hyaluronan after major thermal injury and infusion therapy. J Surg Res. 1991, 50: 259-265.
    25 Simmons EM, Himmelfarb J, Sezer MT,et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004, 65(4): 1357-1365.
    1 Wiersinga WJ,van der Poll T.Is the septic response good or bad? Curr Infect Dis Rep.2007,9(5):366-373.
    2 Judith J.pathophysiology of sepsis.Am J Health-Syst Pharm.2002,59:S3-8.
    3 Adelais G,George H,George A,et al.Septic shock:current pathogenetic concepts from a clinical perspective.Med Sci Monit.2005,11(3):RA76-85.
    4 Cavaillon JM,Fitting C,Adib-Conquy M.Mechanisms of Immunodysregulation in Sepsis.Contrib Nephrol.2004,144:76-93.
    5 Vincent JL,Abraham E.The last 100 years of sepsis.Am J Respir Crit Care Med.2006,173(3):256-263.
    6 Yoshida S.Monocyte HLA-DR expression as predictors of clinical outcome for patients with sepsis,Nippon Rinsho.2004,62(12):2281-2284.
    7 Volk HD,Reinke P,Krausch D,et al.Monocyte deactivation-rationale for a new therapeutic strategy in sepsis,Intensive Care Med,1996,22(4):S474-481.
    8 Ditschkowski M,Kreuzfelder E,Rebmann V,et al.HLA-DR expression and soluble HLA-DR levels in septic patients after trauma,Ann Surg,1999,229:246-254.
    9 Silva S,de Cal M,Cruz D,et al.Oxidative stress and 'monocyte reprogramming'in septic patients with acute kidney injury requiring CRRT.Blood Purif.2008,26(2):188-192.
    10 Perry SE,Mostafa SM,Wenstone R,et al.Is low monocyte HLA-DR expression helpful to predict outcome in severe sepsis? Intensive Care Med.2003,29(8):1245-1252.
    11 余晨,刘志红,郭啸华,等.连续性血液净化治疗全身炎症反应综合征及脓毒症对机体免疫功能的影响.肾脏病与透析肾移植杂志.2003,12(1):2-9
    12 Yekebas EF,Eisenberger CF,Ohnesorge H,et al.Attenuation of sepsis-related immunopamlysis by continuous veno-venous hemofiltmtion in experimental porcine pancreatitis,Crit Care Med.2001,29(7):1423-1430.
    13 Ono S,Tsujimoto H,Matsumoto A,et al.Modulation of human leukocyte antigen-DR on monocytes and CD 16 on granulocytes in patients with septic shock using hemoperfusion with polymyxin B-immobilized fiber.Am J Surg.2004,88(2):150-156.
    14 Hirasawa H,Oda S,Matsuda K.Continuous hemodiafiltration with cytokine-adsorbing hemofilter in the treatment of severe sepsis and septic shock.Contrib Nephrol.2007,156:365-370.
    15 Ting JP,Trowsdale J.Genetic control of MHC class Ⅱ expression.Cell.2002,Suppl:S21-33.
    16 Lonnemann G,Bechstein M,Linnenweber S,et al.Tumor necrosis factor-alpha during continuous high-flux hemodialysis in sepsis with acute renal failure.Kidney Int Suppl.1999,(72):S84-87.
    17 K A Brown,S D Brain,J D Pearson,et al.Neutrophils in development of multiple organ failure in sepsis,The Lancet,2006,368(8):157-169.
    18 Power C,Fanning N,Redmond HP.Cellular apoptosis and organ injury in sepsis:a review.Shock.2002,18(3):197-211.
    19 Doreen E.Wesche,Joanne L.Lomas-Neira,Mario Perl,et al.Leukocyte apoptosis and its significance in sepsis and shock,Journal of Leukocyte Biology.2005,78:325-337.
    20 Moulding DA,Akgul C,Derouet M,et al.BCL-2 family expression in human neutrophils during delayed and accelerated apoptosis,J Leukoc Biol.2001,70(5):783-792.
    21 Harter L,Mica L,Stocker R,et al.Mcl-1 correlates with reduced apoptosis in neutrophils from patients with sepsis,J Am Coil Surg.200,197(6):964-973.
    22 Hirano T,Hirasawa H,Asai T,et al.Modulation ofpolymorphonuclear leukocyte apoptosis in the critically ill by removal of cytokines with continuous hemodiafiltration.Blood Purif.2004,22(2):188-197.
    23 杜成辉,方国恩,赵为国,等.中性粒细胞凋亡在高容量血液滤过防治多器官功能障碍中的变化及意义.中华实验外科杂志.2005,22(7):879.
    1 Brigham KL, Meyrick B. Endotoxin and lung injury. Am Rev Respir Dis. 1986, 133(5): 913-927.
    2 Czermak BJ, Breckwoldt M, Ravage ZB, et al. Mechanisms of enhanced lung injury during sepsis. Am J Pathol. 1999, 154 (4): 1057-1065.
    3 Heyman SN, Rosen S, Darmon D, et al. Endotoxin-induced renal failure. II. A role for tubular hypoxic damage. Exp Nephrol. 2000, 8(4-5): 275-282.
    4 Heyman SN, Darmon D, Goldfarb M, et al. Endotoxin-induced renal failure. I. A role for altered renal microcirculation. Exp Nephrol. 2000, 8(4-5): 266-274.
    5 Chatterjee PK, Patel NS, Kvale EO , et al. Inhibition of inducible nitric oxide synthase reduces renal ischemia/ reperfusion injury. Kidney Int. 2002, 61 (3): 862 -871.
    6 Shindo T, Kurihara H, Maemura K, et al. Renal damage and salt - dependent hypertension in aged transgenic mice overexpressing endothelin - 1. J Mol Med. 2002,80(2): 105-116.
    7 Loberas N, Cruzado JM, Torras J, et al . Protective effect of UR-12670 on chronic nephropathy induced by warm ischemia in ageing uninephrectomized rats. Nephrol Dial Transplant. 2001, 16 (4): 735 - 741.
    8 Pishak VP, Rohovyi IuIe, Filipova LO, et al. Pathogenetic role of prostanoids in disorders of sodium reabsorption during development of acute renal insufficiency. Fiziol Zh. 2002, 48(1): 30 - 34.
    9 Sethi G, Sung B, Aggarwal BB. Nuclear factor-kappaB activation: from bench to bedside. Exp Biol Med (Maywood). 2008, 233(1): 21-31.
    10 Abraham E. Nuclear factor-kappaB and it s role in sepsis-associated organ failure, J Infect Dis. 2003, 187 (Suppl 2): S364-369.
    11 Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol. 2006, 290(4): L622-L645.
    12 John A. Kellum, Mingchen Song, Ramesh Venkataraman. Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-KB DNA binding, and improves short-term survival in lethal endotoxemia, Crit Care Med. 2004, 32(3): 801-806.
    13 Seminara P, Passaniti M, Urna G, et al. Inhibition of nuclear factor-kappaB activation by IRFI 042 protects against endotoxin-induced shock. Cardiovasc Res. 2002, 54: 684-693.
    14 Lauzurica P, Martinez-Martinez S, Marazuela M, et al. Pyrrolidine dithiocarbamate protects mice from lethal shock induced by LPS or TNF-alpha. EurJ Immunol. 1999,29: 1890-1900.
    15 Beck-Schimmer B, Madjdpour C, Kneller S, et al. Role of alveolar epithelial ICAM-1 in lipopolysaccharide-induced lung inflammation. Eur Respir J. 2002, 19(6): 1142-1150.
    16 Tsokos M. Postmortem diagnosis of sepsis. Forensic Sci Int. 2007, 165(2-3): 155-164.
    17 Kamochi M, Kamochi F, Kim YB, et al .P-selectin and ICAM-1 mediate endotoxin-induced neutrophil recruitment and injury to the lung and liver. Am J Physiol. 1999, 277(2 Pt 1): L310-319.
    18 Hildebrand F, Pape HC, Harwood P, et al. Role of adhesion molecule ICAM in the pathogenesis of polymicrobial sepsis. Exp Toxicol Pathol. 2005, 56(4-5): 281-290.
    19 Wu X, Guo R, Wang Y, et al. The role of ICAM-1 in endotoxin-induced acute renal failure. Am J Physiol Renal Physiol. 2007, 293(4): F1262- 1271.
    20 Rahman A, Anwar KN, True AL, et al. Thrombin-induced p65 homodimer binding to downstream NF-kappa B site of the promoter mediates endothelial ICAM-1 expression and neutrophil adhesion. J Immunol. 1999, 162(9): 5466-7546.
    21 Chen CC, Manning AM. Transcriptional regulation of endothelial cell adhesion molecules: a dominant role for NF-kappa B. Agents Actions Suppl. 1995, 47: 135-141.
    22 Roebuck KA, Finnegan A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol. 1999, 66: 876-889.
    1 Bone RC,Balk RA,Cerra FB,et al.Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis.Chest,1992,101(6):1644-1655.
    2 Charles M.Robertson,Craig M.Coopersmith.The systemic inflammatory response syndrome.Microbes and Infection,2006,8:1382-1389.
    3 邹建洲,丁小强,滕杰,等.急性肾功能衰竭伴全身炎症反应综合征临床分析.复旦学报(医学版),2002,29(5):414-417.
    4 Dahaba AA,Elawady GA,Rehak PH,et al.Procalcitonin and proinflammatory cytokine clearance during continuous venovenous haemofiltmtion in septic patients.Anaesth Intensive Care,2002,30(3):269-274.
    5 Bellomo R,Tipping P,Boyce N.Continuous veno-venous hemofiltration with dialysis removes cytokines from the circulation of septic patients.Crit Care Med,1993,21(4):522-526.
    6 Peng Y,Yuan Z,Li H.Removal of inflammatory cytokines and endotoxin by veno-venous continuous renal replacement therapy for burned patients with sepsis.Bums,2005,31:623-628.
    7 Rogiers P,Zhang H,Pauwels D,et al.Comparison of polyacrylonitrile(AN69)and polysulphone membrane during hemofiltration in canine endotoxic shock.Crit Care Med,2003,31(4):1219-1225.
    8 Cole L,Bellomo R,Tipping P.A phase Ⅱ randomized,controlled trial of continuous hemofiltration in sepsis.Crit Care Med,2002,30(1):100-106.
    9 Johannes N.Hoffmann,Eugen Faist.Removal of Mediators by Continuous Hemofiltration in Septic Patients.World J.Surg,2001,25:651-659.
    10 Ghani RA,Zainudin S,Ctkong N,et al.Serum IL-6 and IL-1-ra with sequential organ failure assessment scores in septic patients receiving high-volume haemofiltration and continuous venovenous haemofiltration.Nephrology,2006,11:386-393.
    11 Matsnno N,Ikeda T,Ikeda K,et al.Changes of cytokines in direct endotoxin adsorption treatment on postoperative multiple organ failure.Ther Apher.2001,5(1):36-39.
    12 Heering P,Morgera S,Schmitz FJ,et al.Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration.Intensive Care Med,1997,23(3):288-296.
    13 Veenman JN,Dujardint CL,Hoek A,et al.High volume continuous venovenous haemofiltration(HV-CVVH) in an equine endotoxaemic shock model.Equine Vet J.2002 Jul,34(5):516-522.
    14 Heering P,Grabensee M.Cytokine removal in septic patients with continous venovenous hemofiltmtian.Kidney blood press res,2003,26:128-134.
    15 Oberholzer A,Oberholzer C,Moldawer LL.Interleukin-10:A complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Crit Care Med,2002,30(1 Supp):S58-S63.
    16 Kellum JA,Johnson JP,Kramer D.Diffusive vs.convective therapy:effects on mediators of inflammation in patient with severe systemic inflammatory response syndrome.Crit Care Med.1998,26(12):1995-2000.
    17 De Vriese AS,Colardyn FA,Philippe JJ,et al.Cytokine removal during continuous hemofiltration in septic patients.J Am Soc Nephrol,1999,10(4):846-853.
    18 Lambermont B,Delanaye P,Dogne JM,et al.Large-pore membrane hemofiltration increases cytokine clearance and improves right ventricular-vascular coupling during endotoxic shock in pigs.Artif Organs,2006,30(7):560-564.
    19 Hussein MH,Kato T,Sugiura T,et al.Effect of hemoperfusion using polymyxin B-immobilized fiber on IL-6,HMGB-1,and IFN gamma in a neonatal sepsis model.Pediatr Res,2005,58(2):309-314.
    20 Meisner M,Huttemann E,Lohs T,et al.Plasma concentrations and clearance of procalcitonin during continuous veno-venous hemofiltmtion in septic patients.Shock,2001,15(3):171-175.
    21 Yoshida S.Monocyte HLA-DR expression as predictors of clinical outcome for patients with sepsis.Nippon Rinsho,2004,62(12):2281-2284.
    22 Volk HD,Reinke P,Krausch D,et al.Monocyte deactivation -rationale for a new therapeutic strategy in sepsis.Intensive Care Med,1996,22(4):S474-481.
    23 Ditschkowski M,Kreuzfelder E,Rebmann V,et al.HLA-DR expression and soluble HLA-DR levels in septic patients after trauma.Ann Surg,1999,229:246-254.
    24 Yekebas EF,Eisenberger CF,Ohnesorge H,et al.Attenuation of sepsis-related immunopamlysis by continuous veno-venous hemofiltmtion in experimental porcine pancreatitis.Crit Care Med,2001,29(7):1423-1430.
    25 余晨,刘志红,郭啸华,等.连续性血液净化治疗全身炎症反应综合征及脓毒症对机体免疫功能的影响.肾脏病与透析肾移植杂志,2003,12(1):2-9.
    26 Morgera S,Haase M,Rocktaschel J,et al.High permeability haemofiltmtion improves peripheral blood mononuclear cell proliferation in septic patients with acute renal failure.Nephrol Dial Transplant,2003,18:2570-2576.
    27 Brown KA,Brain SD,Pearson JD,et al.Neutrophils in development of multiple organ failure in sepsis.The Lancet,2006,368(8):157-169.
    28 Doreen E.Wesche,Joanne L.Lomas-Neira,Mario Perl,et al.Leukocyte apoptosis and its significance in sepsis and shock.Journal of Leukocyte Biology, 2005, 78: 325-337.
    29 Moulding DA, Akgul C, Derouet M, et al. BCL-2 family expression in human neutrophils during delayed and accelerated apoptosis. J Leukoc Biol. 2001, 70 (5): 783-792.
    30 Harter L, Mica L, Stacker R, et al. Mcl-1 correlates with reduced apoptosis in neutrophils from patients with sepsis. J Am Coll Surg. 2003, 197 (6): 964-973.
    31 Leuenroth SJ, Grutkokski PS, Ayala A, et al. The loss of Mcl-1 expression in human polymorphonuclear leukocytes promotes apopto-sis. J Leukoc Biol, 2000, 68: 158-166.
    32 Nolan B, Kim R, Duffy A, et al. Inhibited neutrophil apoptosis: proteasome dependent NF-kappaB translocation is required for TRAF-1 synthesis. Shock, 2000, 14 (3): 290-294.
    33 Hirano T, Hirasawa H, Asai T,et al. Modulation of polymorphonuclear leukocyte apoptosis in the critically ill by removal of cytokines with continuous hemodiafiltration. Blood Purif. 2004, 22 (2): 188-197.
    34 Mariano F, Tetta C, Guida G, et al. Hemofiltration reduces the serum priming activity on neutrophil chemiluminescence in septic patients. Kidney Int.2001, 60 (4): 1598-1605.
    35 Toshio Naka, Masahiro Shinozaki, Tadao Akizawa, et al. The Effect of Continuous Veno-Venous Hemofiltration or Direct Hemoperfusion With Polymyxin B-Immobilized Fiber on Neutrophil Respiratory Oxidative Burst in Patients With Sepsis and Septic Shock. Therapeutic Apheresis and Dialysis, 2006, 10(1): 7-11.
    36 Shu Fang Liu, Asrar B. Malik. NF-κB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol, 2006, 290: L622- L645.
    37 Nakamori Y, Koh T, Ogura H, et al. Enhanced expression of intranuclear NF-kappa B in primed polymorphonuclear leukocytes in systemic inflammatory response syndrome patients. J Trauma, 2003, 54 (2): 253-260.
    38 Abraham E. Nuclear factor-kappaB and it s role in sepsis-associated organ failure. J Infect Dis, 2003, 187 (Suppl 2): S364-369.
    39 John A. Kellum, Mingchen Song, Ramesh Venkataraman. Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-KB DNA binding, and improves short-term survival in lethal endotoxemia. Crit Care Med, 2004, 32 (3): 801-806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700