用户名: 密码: 验证码:
形貌、结构及修饰对纳米TiO_2光催化性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术、信息技术及生物技术将成为世纪社会经济发展的三大支柱。纳米材料是纳米技术的基础,功能纳米材料是纳米材料科学中最富有活力的领域,它对信息、生物、能源、环境、宇航等高科技领域,将产生深远的影响并具有广阔的应用前景。光催化是光化学反应的一个前沿领域,它能使许多在通常情况下难以实现的反应可以在比较温和的条件下进行,而光催化材料的开发则是通过光催化技术实现各种光催化化学反应的关键之一。纳米TiO_2光催化材料是当前最有潜力的一种光催化剂,它的优点是:光照后不发生光腐蚀,耐酸碱性好,化学性质稳定,对生物无毒性,来源丰富,能隙较大,有很强的氧化性和还原性。
     本文采用不同方法制备了不同形貌与结构的纳米TiO_2材料,分别用碳纳米管(CNTs)负载和用Cu~(2+)掺杂两种方法来对TiO_2进行修饰,研究了光催化剂形貌、结构及修饰对其光催化性能的影响。具体总结如下:
     1.用五种方法制备了纳米TiO_2粉体材料,包括气相法、溶胶-凝胶法、MgO沉淀法、超声法和水热法,选择活性艳红为降解对象研究了所制备纳米TiO_2的光催化性能,得到如下结论:
     (1)用改进气相法制备了纯度较高的锐钛矿型TiO_2微球。反应温度越高,TiO_2颗粒越致密,尺寸均匀性越差。载气流量对产物形貌和结构的影响较小,对产量影响较大,最佳载气流量为200sccm。该方法制备的TiO_2尺寸较大,大部分为微米球,且结构致密,光催化效果差。
     (2)用传统的溶胶-凝胶法得到无定形小颗粒TiO_2,为提高其结晶度,改善其稳定性,需对其进行高温烧结。但烧结后TiO_2小颗粒发生了团聚,光催化效果较差。
     (3)对传统的溶胶-凝胶法进行改进,用MgO沉淀法制备了颗粒状的纳米TiO_2。其粒径小、分布均匀,颗粒间的团聚有所改善,光催化活性优于溶胶-凝胶法制备的TiO_2。
     (4)以TiCl_4为前驱体,用超声法,通过调整TiCl_4的浓度和超声时间制备了束状和棒状的金红石型纳米TiO_2。产物均匀分散,比表面积较大,热稳定性能好,束状TiO_2的光催化效率比棒状TiO_2的高。
     (5)采用水热法,通过调整TiCl_4的浓度、反应温度和初始压强,制备了不同形貌和结构的纳米TiO_2粉体材料。80℃加压和不加压时得到的分别是棒状锐钛矿型和颗粒状无定形TiO_2;160℃时得到的是花状锐钛矿型TiO_2;320℃时得到的是片状金红石型TiO_2。锐钛矿型TiO_2的光催化活性比金红石型TiO_2高;花状TiO_2的光催化活性比颗粒状TiO_2高,棒状TiO_2的光催化活性低于颗粒状TiO_2但高于片状TiO_2。
     总结上述方法制备的不同形貌和结构的TiO_2及其光催化结果,可以得出如下结论:(1)TiO_2的形貌决定其分散性和稳定性。颗粒状的产物虽然尺寸很小,表面活性高,但是易团聚;花状、束状和棒状TiO_2的分散性较好,表面积较高;片状的产物最稳定,分散性最好。(2)TiO_2的结构影响其光催化性能,锐钛矿型TiO_2的光催化活性比金红石型TiO_2高;溶胶-凝胶法制备的无定形TiO_2基本不具有光催化活性,必须经过450℃高温烧结后形成锐钛矿型TiO_2才具有光催化活性;超声法直接得到的金红石型TiO_2的束状形貌以及表面的小孔,使其光催化活性比水热法制备的金红石型TiO_2高。虽然气相法得到的产物是锐钛矿型TiO_2,但是TiO_2的尺寸太大,没有表现出优异的光催化性能。比较几种制备方法,水热法可以制备出尺寸小、分散性好、结构稳定、具有优异光催化性能的锐钛矿型TiO_2,优于其他的制备方法。
     2.以CNTs作载体材料,用溶胶-凝胶法制备了CNTs负载TiO_2纳米材料。
     首先研究了CNTs制备过程中的工艺参数,包括:裂解温度、时间、气源流量和碳源等因素对CNTs制备的影响。对于C_2H_2作碳源,Fe/Al_2O_3催化剂制备CNTs,最佳反应温度为640℃,气源流量为200sccm,反应时间为30min。用CO_2作碳源,Cr/Fe/MgO催化剂,气源流量为200sccm,反应时间为30min,裂解温度为930℃,得到的产物是纳米碳棒而不是CNTs。
     用水热法,以FeCl_3·6H_2O为原料,制备了直径在60-80nm,长度在200nm左右的均匀分散的棒状纳米Fe_2O_3。用该棒状Fe_2O_3作催化剂,C_2H_2作碳源,640℃制备出了直径约30nm,长度在微米级的CNTs。纯化处理后的CNTs中,棒状催化剂的残余量少于颗粒状催化剂。
     以TiCl_4为原料,用溶胶-凝胶法制备了CNTs负载TiO_2纳米材料,并应用于光催化还原CO_2和H_2O的实验中。结果显示,CNTs的加入提高了TiO_2的光催化效率,但CNTs加入量过多会妨碍TiO_2光催化剂对光的吸收。相对于活性炭来说,CNTs更有助于增强TiO_2的光催化活性。在循环利用过程中,CNTs负载TiO_2催化剂的光催化活性比纯TiO_2高。在CNTs负载TiO_2纳米材料的制备过程中进行水热处理有助于催化还原产物的选择,经水热处理后的催化剂能催化生成更多的甲酸,而溶胶-凝胶法制备的产物更有利于生成乙醇。
     3、采用Cu~(2+)对TiO_2进行修饰,使TiO_2的光吸收向可见光方向扩展。
     用TiCl_4和CuCl_2为原料制备了Cu~(2+)掺杂的金红石型TiO_2。随着Cu~(2+)加入量的增加,TiO_2的晶体尺寸逐渐减小,超过20%的Cu~(2+)掺杂对TiO_2的晶体结构影响和20%掺杂的样品相似。2%Cu~(2+)掺杂的TiO_2的光吸收向可见光方向移动,超过5%的Cu~(2+)掺杂引起了TiO_2吸收峰的蓝移。Cu~(2+)的掺入有利于提高光催化降解活性艳红的效率,2%的Cu~(2+)掺杂的金红石TiO_2的光催化活性最高,约为没有掺杂样品的3倍,不掺杂的样品光催化活性最低。
     4、以Cu(NO_3)_2和NaOH为原料,分别用溶胶-凝胶法和水热法制备了纳米CuO。
     与溶胶-凝胶法相比,水热法可以制备出晶格缺陷少、表面能低、自分散的片状纳米CuO。增大压力是减小纳米CuO尺寸的主要途径,适当控制溶液的pH值也有利于减小纳米CuO的尺寸。用水热法制备的纳米CuO比表面积大,用于锂离子电池负极可以提高电池的比能量;工作稳定;嵌锂平稳、脱锂容易;可克服衰减,延长电池使用寿命。
Nano materials have attracted much attention since they have excellent performance in information, biology, energy, and environment. Photocatalysis is also a hot research area in recent years, because it can explode many reactions which can not take place in normal environment. The development of photocatalyst is one of the key factors to realize the photocatalytic reactions. Among the various semiconductor photocatalysts, titania is widely used because of its strong oxidizing power, absence of toxicity and long-term photostability.
     In this thesis, we first synthesized and investigated the photocatalytic performance of the TiO_2 with different morphology and structure prepared by chemical vapor deposition (CVD), sol-gel, MgO deposition, ultrasonic and hydrothermal methods. And then, we studied the effect of modifying with carbon nanotubes (CNTs) and Cu~(2+) on the photocatalytic performance of TiO_2. The detailed contents are as follows:
     (1) Five methods were used to prepare nano TiO_2 photocatalyst and the catalysts were tested in the photocatalytic degradation of X-3B. Firstly, we prepared TiO_2 microspheres using the CVD method. At lower temperature, the spheres were composed of small rods grown from the center. At higher temperature, the rods melt together to form more smooth spheres. Since the spheres are in micrometers, the photocatalytic efficiency of them was very low. The optimal flux is 200sccm considering the quality of the product. Secondly, we had prepared TiO_2 nano particles by sol-gel method and an improve sol-gel method. The particles prepared by the sol-gel methods are very small but they agglomerated badly. The improved sol-gel method could some extent improve the photocatalytic efficiency of TiO_2 but the agglomeration still exist. Thirdly, TiO_2 nanorod and arrays were successfully prepared by the ultrasonic method, the TiO_2 arrays exhibited better photocatalytic efficiency than the TiO_2 rods since there are some small holes on the surface of the arrays which results in bigger surface area. The increase of the surface area is beneficial to promote the photocatalytic degradation of the dyes. Fourthly, we have successfully prepared TiO_2 particles, rods, flowers and sheets by hydrothermal method under acidic condition. The morphology of the samples could be controlled by adjusting the temperature, pressure and the concentration of TiCl_4. Pressure is helpful for the formation of the nanorods at 80℃and the nanoflowers at 160℃. It is also favorable for the crystallization of the as-prepared TiO_2 nanostructures. The flower-like structure has the best and the sheet-like structure shows the worst photocatalytic activity. With the increase of TiCl_4 concentration, the particle size increases and the surface area as well as the photocatalytic efficiency of the samples decrease except for the flower-like structure. In conclusion, TiO_2 with different morphology and structures were prepared by the five methods. The differences in the morphology and structure result in the differences in the photocatalytic efficiency of the products.
     (2) CNTs have attracted much attention since its discovery. Through the previous research results, CNTs are suitable for supporting TiO_2. So we had prepared CNTs in our lab and studied the factors affecting the preparing of CNTs.
     As for acetylene, iron catalyst can effectively catalyze the growth of CNTs. 640℃is the best temperature and 200sccm should be the most suitable gas flux, 30 minutes is enough for 500mg catalyst to prepare CNTs. When CO_2 was used as the carbon source, it broke to C atoms at 930℃, and the products are carbon nanorods rather than CNTs on the Fe/Cr/MgO catalyst.
     Rod-like Fe_2O_3 was prepared by hydrothermal method and it was used as the catalyst to prepared CNTs. XRD result shows that the product isα-Fe_2O_3 crystal and the SEM images show that they are rod-like which are about 60-80nm in diameter and 200nm in length. CNTs with diameter of about 30nm and micrometers in length were successfully produced by chemical vapor deposition method using the rod-like Fe_2O_3 catalyst. Formation mechanism of rod-like nano Fe_2O_3 was also discussed. The CNTs prepared by the rod like catalyst is easier to be purified than the particle like catalyst.
     The purified CNTs were then used as support for TiO_2 by sol-gel method. The CNT supported TiO_2 composites have been used as photocatalyst in the reduction of CO_2 with H_2O. The results show that the addition of CNTs could obviously improve the photocatalytic efficiency of TiO_2 and the CNTs have better effect than active carbon. C_2H_5OH can be selectively produced by the sol-gel method prepared CNT supported TiO_2, while HCOOH is the main product catalyzed by the hydrothermal treated one and P25. The CNT supported TiO_2 prepared by the sol-gel method exhibits higher efficiency than pure TiO_2 in the reusing cycles. Taking into account of the semiconducting properties of TiO_2, these CNT supported TiO_2 nanocomposites can also be applied to sensors, high-density electronic devices and lithium ion batteries as well as photocatalytic decomposition of pollutants. Moreover, the photocatalytic products CH4, HCOOH, C_2H_5OH can be reused as energy sources.
     (3) Cu~(2+) doped TiO_2 were prepared via a simple aqueous-phase stirring for 24h at a low temperature of 85℃, employing only TiCl_4, HCl and CuCl_2 as the starting materials. The results show that addition of copper influences the structure of TiO_2. The crystallite size decreased sharply with the increase of the copper content up to 10%. While there was no significant change in the crystallite size of titania particles as the copper content exceeded 20%. It confirms that the embedding of some portion of copper into titania particle inhibits the growth of rutile crystal of titania particles. This inhibition is correlated with the segregation of copper oxide at the boundaries of TiO_2. The embedded copper influences the photocatalytic activity of TiO_2 as well as the structure. The 2% copper-doped rutile TiO_2 exhibited relatively the highest photocatalytic activity which is about 3 times of the undoped TiO_2 in the photodegradation of aqueous brilliant red X-3B solution. The imbedding of the 2% Cu~(2+) also caused the red-shift of the absorption of TiO_2. Excessive of Cu~(2+) imbedding could not promote the photocatalytic efficiency of TiO_2, which also should be due to the morphology and structure of the TiO_2 photocatalyst.
     (4) Nano CuO was prepared by hydrothermal method using Cu(NO_3)_2 and NaOH as the source materials. Particle like CuO prepared by sol-gel method was also used for compare. The morphology of the sheet like CuO kept stable after 500℃sintering, while the particle like CuO agglomerated even after 200℃sintering. And the sheet like CuO has larger surface area and dispersed better than the particle like CuO. The two kinds of CuO were used in the negative electrode of Li-ion battery. The Li-ion battery using sheet like CuO as the negative electrode has higher specific energy and worked more stable than using the particle like CuO.
引文
[1] 顾宁,付德刚,张海黔等.[M].纳米技术与应用,人民邮电出版社,2002:3.
    [2] R. P. Feynman. [J]. Engineering and Science, 1996, 22(1): 15.
    [4] 顾宁,付德刚,张海黔等.[M].纳米技术与应用,人民邮电出版社,2002:1.
    [5] 张立德,李爱莉,端夫.[M].奇妙的纳米世界,化学工业出版社,2004:147.
    [6] 顾宁,付德刚,张海黔等.[M].纳米技术与应用,人民邮电出版社,2002:8.
    [7] 张立德,李爱莉,端夫.[M].奇妙的纳米世界,化学工业出版社,2004:29.
    [8] W P Halperin. [J]. Rev. Modern. Phys., 1986, 58: 532.
    [9] Morooka S, Yasutake T, Kobata A, et al. [J]. International Chemical Engineering, 1989, 29(1): 119.
    [10] 胡黎明,李春忠,姚光辉.[J].华东化工学院学报,1992,18(4):417.
    [11] 施利毅,李春忠,房鼎业.[J].太阳能学报,2000,21(1):100.
    [12] M.K. Akhtar, Y. Xiong, S.E. Pratsinis. [J]. AIChE J., 1991, 37: 1561.
    [13] 王俊文,殷月辉,冯天英,孙彦平.[J].太原理工大学学报,2003,34(1):53.
    [14] 王俊文,孙彦平,梁镇海,徐海萍,樊彩梅,陈新谋.[J].稀有金属材料与工程,2004,33(5):478.
    [15] 展红全,孙彦平,徐海萍,王俊文.[J].钛工业进展,2004,21(5):29.
    [16] 解宪英.[J].上海化工,2001,(3,4):37.
    [17] 施利毅,李春忠,古宏晨.[J].金属学报,2000,36(3):299.
    [18] Gabienz S, Voltzke D, Abicht HP, et al. [J]. J. Mater. Sci. Lett., 1998, 17: 537.
    [19] Ahonen P P, Tapper U, Kauppinen E I, et al. [J]. Mater. Sci. Engin.:A., 2001, 315(1-2): 113.
    [20] Ahonen P P, Richard O, Kauppinen E I. [J]. Mater. Reseat. Bullet., 2001, 36(11): 2017.
    [21] Ahonen P P, Moisala A, Tagger U, et al. [J]. J. Ranoparticle Resear., 2002, 4(1-2): 43.
    [22] Arabi-Katbi O I, Wegner K, Pratsinis S. E. [J]. Annales de Chinie Science des Materiaux, 2002, 27(6): 37.
    [23] Yin S, Inoue Y, Uchida S, et al. [J]. J. Nater. Res., 1998, 13: 844.
    [24] Arnal P, Corriu R J P, Leclercq D, et al. [J]. J. Mater. Chem., 1996, 6: 1925.
    [25] Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying. [J]. J. Phys. Chem. B, 1998, 102: 10871.
    [26] C. C. Wang, Z. Zhang, J. Y. Ying. [J]. NanoStruc. Mater., 1997, 9: 583.
    [27] Kumar K N P, Keizer K, Burggraaf A, et al., [J]. Nature, 1992, 358: 48.
    [28] 高濂,陈锦元,黄军华等.[J].无机材料学报,1995,10:423.
    [29] L. Palmisano, V. Augugliaro, A. Sclafani, M. Schiavello. [J]. J. Phys. Chem., 1988, 92: 6710.
    [30] Kumazawa H, Otsuki H, Sada E. [J]. J. Mater. Sci. Lett., 1993, 12: 839.
    [31] Look J L and Zukoski C F. [J]. J. Am. Ceram. Soc., 1995, 78: 21.
    [32] 吴迎春,徐章法.[J].盐城工学院学报,2001,14(4):25.
    [33] G. L. Li, G. H. Wang. [J]. Nanostruc. Mater., 1999, 11(5): 663.
    [34] Nagase T, Ebina T, Iwasaki T, et al. [J]. Chem. Lett., 1999: 911.
    [35] Wang C C and Ying J Y. [J]. Chem. Mater., 1999, 11: 3113.
    [36] Zheng Y, Shi E, Cui S, et al. [J]. J. Am. Ceram. Soc., 2000, 83: 2634.
    [37] Cheng H, Ma J, Zhao Z, et al. [J]. Chem. Mater., 1995, 7: 663.
    [38] 张立德,牟季美.[M].纳米材料和纳米结构,北京:科学出版社,2001:146.
    [39] 高濂,郑珊,张青红.[M].纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002:39.
    [40] Boer K W. [M]. Survery of semiconductor physics. New York: Van Nostrand Reinhold 1990, 249.
    [41] Brillas E, Mur E, Sauleda R, et al., [J]. Appl. Catal. B: Environ., 1998, 16: 31.
    [42] Alberici R M, Jardim W F. [J]. Appl. Catal. B: Environ., 1997, 14: 55.
    [43] Anpo M, Shima T, Kodama S, et al. [J]. Phys. Chem., 1987, 91: 4305.
    [44] J H Carey, J Lanrence, H M Tosine. [J]. Bull. Environ. Contam. Toxicol, 1976, 16: 697.
    [45] Grzechulska J, Morawski A W. [J]. Appl. Catal. B: Environ., 2002, 36: 45.
    [46] Lettmann C, Hildenbrand K, et al. [J]. Appl. Catal. B: Environ., 2001, 32: 215.
    [47] 谭湘萍,蒋伟川.[J].环境污染与防治,1994,16(5):5.
    [48] 姚清照,刘正宝.[J].工业水处理,1999,19(6):15.
    [49] 王文保,岳永德.[J].农村生态环境,1999,15(3):58.
    [50] 付宏弹,吕功煊,李树本.[J].化学物理学报,1999,12(1):113.
    [51] Prank S N, Bard A J. [J]. J. Am. Chem. Soc., 1977, 99: 303.
    [52] 李田,陈正夫.[J].环境科学学报,1998,18(2):167.
    [53] 陈士夫,赵梦月,陶跃武.[J].环境科学,1996,17(4):33.
    [54] 方佑玲,赵文宽.[J].应用化学,1997,14(2):81.
    [55] Heller A. [C]. London: Ontario Canada, 1992: 17.
    [56] 赵文宽,方佑龄,董庆华.[J].武汉大学学报,2000,46(2):133.
    [57] 赵文宽.[J].催化学报,1999,20(3):368.
    [58] 尚静,徐自力,杜绕国等.[J].高等学校化学学报,2000,21(8):1299.
    [59] 徐安武,刘汉钦,李玉光.[J].高等学校化学学报,2000,21(8):1252.
    [60] Wang R, Hashimoto K, Fujishima A, et al. [J]. Nature, 1997, 388: 431.
    [61] 高濂,郑珊,张青红.[M].纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002:284.
    [62] 刘娅丽,徐龙贵,周滨.[J].现代涂料与涂装,2002(3):35.
    [63] Bahnemann D W, Hilgendorff M, Memming R. [J]. J. Phys. Chem. B., 1997, 101: 4265.
    [64] O Regan B, Gratzel M. [J]. Nature, 1991, 353: 737.
    [65] Bach U, Lupo D, Comet P, et al. [J]. Nature, 1998, 395: 583.
    [66] 周武艺,唐绍裘.[J].陶瓷研究,2002,17(1):5.
    [67] J. Karch, R. Birringer, H. Gleiter. [J]. Nature, 1987, 330: 556.
    [68] 王希萌,王弘.[J].传感器技术,1995,5:7。
    [69] 梁振斌,郑顺旋,郭斯泼.[J].仪表技术与传感器,1997,10:17.
    [70] H. Cheng, J. Ma, Z. Zhao, L. Qi. [J]. Chem. Mater., 1995, 7: 663.
    [71] Y. Wang, Y. Hao, H. Cheng, J. Ma, B. Xu, W. Li, S. Cai. [J]. J. Mater. Sci., 1999, 34: 2773.
    [72] Congkang Xu, Yongjie Zhan, Kunquan Hong, Guanghou Wang. [J]. Solid State Communications, 2003, 126: 545.
    [73] Zhang Shunli, ZhouZhijun, Du Zuliang, A.V. Vorontsov, Jin Zhensheng. [J]. Chinese Science Bulletin, 2000, 45: 1533.
    [74] B.H. Kima, J.Y. Lee, Y. H. Choa, M. Higuchi, N. Mizutani. [J]. Mater. Sci. Engin. B, 2004, 107: 289.
    [1] R Asahi, T Morikawa, T Ohwaki, et al. [J]. Science, 2001, (293): 269.
    [2] S U M Khan, M Al-Shahry, W B Ingler Jr. [J]. Science, 2002, (297): 2243.
    [3] 姚超,吴凤芹,林西平,汪信.[J].现代化工,2004,24(9):14.
    [4] 马军委,张海波,董振波,吴雪文,韩团辉.[J].无机盐工业,2006,38(10):5.
    [5] Ahonen P P, Moisala A, Tapper U, et al. [J]. J. Nanoparticle Resear., 2002, 4(1-2): 43.
    [6] 王俊文,孙彦平,梁镇海等.[J].稀有金属材料与工程,2004,33(5):478.
    [7] 施利毅,李春,古宏晨等.[J].环境科学学报,2000,20(2):134.
    [8] Kobata A, Kusakabe K, Morooka S. [J]. AIChEJ, 1991, 37(3): 347.
    [9] 魏绍东,王杏.[J].中国涂料,2005,20(10):29.
    [10] 施利毅,李春忠,古宏晨.[J].金属学报,2000,36(3):295.
    [11] 苗利利,王水利.[J].纳米科技,2006,10:5.
    [12] Yibing Xie, Chunwei Yuan. [J]. Appl. Catalysis B: Environ., 2003, 46: 251.
    [13] Siddhartha K Pradhan, Philip J Reucroft, Fuqian Yang, et al. [J]. J. Crystal Growth, 2003, 256: 83.
    [14] Tadao Sugimoto, Xingping Zhou, and Atsushi Muramatsu. [J]. J. Colloid and Inter. Sci., 2003, 259: 53.
    [15] Weilin Guo, Zhiming Lin, Xikui Wang et al. [J]. Microelectronic Engineering, 2003, 66: 95.
    [16] 国伟林,王西奎,宋广智.[J].中国粉体技术,2002,8(4):22.
    [17] 国伟林,王西奎,林志明等.[J].高等学校化学学报,2002,23(8):1592.
    [18] 国伟林,杨中喜,王西奎等.[J].硅酸盐学报,2004,32(8):1008.
    [19] 国伟林,杜红,王西奎.[J].济南大学学报(自然科学版),2004,18(4):301.
    [20] Jiaguo Yu, Minghua Zhou, Bei Cheng, et al. [J]. Journal of Molecular Catalysis A: Chemical, 2005, 227: 75.
    [21] 吴树新,尹燕华,马智等.[J].河北师范大学学报(自然科学版),2005,29(3):281.
    [22] 吴树新,尹燕华,马智等.[J].分子催化,2005,19(3):167.
    [23] 张昭,吴潘,王乐飞等.[J].中国有色金属学报,2005,15(2):321.
    [24] 包南,马东,尚贞晓等.[J].环境化学,2005,24(2):150.
    [25] Ke Yang, Jianmin Zhu, Junjie Zhu et al. [J]. Mater. Lett., 2003, 57: 4639.
    [26] Sanjay R Dhage, Vandana D Choube, Violet Samuel et al. [J]. Mater. Lett., 2004, 58: 2310.
    [27] C.C. Wang, J.Y. Ying. [J]. Chem. Mater., 1999, 11: 3113.
    [28] M.M. Wu, G. Lin, D. Chen, G.G. Wang, D. He, S.H. Feng, R.R. Xu. [J]. Chem. Mater., 2002, 14: 1974.
    [29] P. Jeevanandam, Y. Koltypin, Y. Mastai, A. Gedanken. [J]. J. Mater. Chem., 2000, 10: 2143.
    [30] A. Narayanasamy, V. A. Maroni, R. W. Siegel. [J]. J. Mater. Res., 1989, 4: 1246.
    [31] J. Yu, M. Zhou, B. Cheng, H. Yu, X. Zhao. [J]. J. Mol. Catal. A: Chemical, 2005, 227: 75.
    [32] 石金娥,闫吉昌,王悦宏等.[J].高等学校化学学报,2006,27:1513.
    [33] Chunlei Wang, Baodong Mao, Enbo Wang, et al. [J]. Solid State Communications, 2007, 141(11): 620.
    [34] L.W. Lin, Y.H. Tang, L.Z. Pei, L.B. Zhu, Y. Zhang and C. Guo. [J]. Journal of Non-Crystalline Solids, 2007, 353(2): 159.
    [35] Linsheng Xia, Beifang Yang, Zhengping Fu, Yingling Yang, Hongwei Yan, Yuandong Xu, Shengquan Fu and Gongpu Li. [J]. Materials Letters, 2007, 61(4-5): 1214.
    [36] Jiaguo Yu, Yaorong Su, Bei Cheng and Minghua Zhou. [J]. Journal of Molecular Catalysis A: Chemical, 2006, 258(1-2): 104.
    [37] Yi Han, Guicun Li and Zhikun Zhang. [J]. J. Crystal Growth, 2006, 295(1): 50.
    [38] Zhonghua Wang, Tingshun Jiang, Yongmin Du, Kangmin Chen and Hengbo Yin. [J]. Mater. Lett., 2006, 60(20): 2493.
    [39] Meltem Asilturk, Funda Sayilkan, Sema Erdemoglu, Murat Akarsu, Hikmet Sayilkan, Murat Erdemoglu and Ertugrul Arpac. [J]. Journal of Hazardous Materials, 2006, 129(1-3): 164.
    [40] L.Q. Weng, S.-H. Song, S. Hodgson, A. Baker and J. Yu. [.1]. Journal of the European Ceramic Society, 2006, 26(8): 1405.
    [41] A.I. Kontos, I.M. Arabatzis, D.S. Tsoukleris, A. G. Kontos, M.C. Bernard, D.E. Petrakis and P. Falaras. [J]. Catalysis Today, 2005, 101(3-4): 275.
    [42] Yu. V. Kolen' ko, B. R. Churagulov, M. Kunst, L. Mazerolles and C. Colbeau-Justin. [J]. Applied Catalysis B: Environmental, 2004, 54(1): 51.
    [43] 张立德,牟季美.[M].纳米材料和纳米结构,北京:科学出版社,2001:148.
    [44] 张青红,高濂,郭景坤.[J].无机材料学报,2000,15(1):21.
    [45] Y. Li, J. Liu, Z. Jia. [J]. Mater. Lett., 2006, 60: 1753.
    [46] J. P. Liu, X. T. Huang, J. X. Duan et al. [J]. Mater. Lett., 2005, 59: 3710.
    [47] Y. Li, J. Liu, Z. Jia. [J]. Mater. Lett., 2006, 60: 1753.
    [48] 赵敬哲,王子忱,刘艳华等.[J].高等学校化学学报,1999,20:467.
    [49] 吴孟强,陈艾,周旺,徐榕青.[J].硅酸盐学报,2001,29(6):587.
    [50] 吴凤芹,姚超,王华林,范文元.[J].涂料上业,2006,36(12):31.
    [51] 余家国,熊建锋,程蓓.[J].催化学报,2005,26(9):745.
    [52] Li Fan, Fenglin Yang, Weishen Yang. [J]. Separation and Purification Technology 2004, 34: 89.
    [53] Liyi Shi, Chunzhong Li, Hongcheng Gu, Dingye Fang. [J]. Materials Chemistry and Physics 2000, 62: 62.
    [1] Molinari R, Mungari M, Drioli E, et al. [J]. Catalysis Today, 2000, 5: 71.
    [2] Md. Moazzem Hossain. [J]. AIChEJ, 1999, 45: 1308.
    [3] 白玉兰,孔德良,叶庆国.[J].青岛化工学院学报,2001,22(4):328.
    [4] Byrne J A, Davidson, Dunlop P S M, et al. [J]. J. Photochem. Photobio., 2002, 148: 365.
    [5] 何俣,朱永法,喻方.[J].无机材料学报,2004,3:385.
    [6] Abd El-Moneim A, Abd El-Daiem A M, Youssof I M, et al. [J]. Stat. Sol., 2003, 192 (2): 38.
    [7] Carlos R Esterkin, Antonio C Negro, Orlando M, et al. [J]. AIChEJ, 2002, 4: 832.
    [8] Silvia Gelover, Pedro Mondrag6nb, Antonio J imenez, et al. [J]. J. Photochem. Photobio., 2004, 165: 241.
    [9] 李萌,张志煜,崔作林等.[J].分子催化,2004,4:140.
    [10] 陶咏,陈爱平,戴智铭等.[J].中国粉体技术,2001,4:23.
    [11] 席北斗,刘纯新,孔欣等.[J].环境科学,2001,22(1):41.
    [12] Anita Rachel, Bernadette Lavedrine, Machiraju Subrahmanyam, et al. [J]. Catalysis Communications, 2002, 3:165.
    [13] Venkata Subba Raoa K, Rachel A, Subrahmanyam M, et al. [J]. Appl. Catalysis B: Environ., 2003, 46:77.
    [14] 徐锁洪,钟俊波,白春学.[J].环境污染治理技术与设备,2003,10:40.
    [15] 陈爱平,卢冠忠,杨阳,刘伟,刘威.[J].华东理工大学学报,2004,30(1):57.
    [16] 杨阳,陈爱平,古宏晨,戴智铭,古政荣,陶咏.[J].催化学报,2001,22(2):177.
    [17] 徐敏,徐日红,黎丽琼.[J].环境科学与技术,2005,5:18.
    [18] 胡春,王怡中.[J].环境科学学报,2001,1:123.
    [19] Shuji F., Hideaki i., Takuya K., et al. [J]. Appl. Catalysis B: Environ., 2003, 46: 453.
    [20] 张天永,李彬,柴义,费学宁.[J].感光科学与光化学,2005,23(6):421.
    [21] 贾娜,王海滨,霍冀川.[J].矿业研究与开发,2006,26(2):58.
    [22] 王利剑,郑水林,舒锋.[J].硅酸盐学报,2006,34(7):823.
    [23] 黄妙良,徐纯芳,王玲玲,林建明,吴季怀.[J].矿物学报,2004,24(4):329.
    [24] 张志翔,陈亮,包南,陈东辉.[J].水资源保护,2006,22(2):59.
    [25] 廖振华,陈建军,姚可夫等.[J].无机材料学报,2004,1:17.
    [26] 董秋花,赵中一,高宏宇等.[J].南昌大学学报(工科版),2005,9:64.
    [27] 张宗权,杨宗立,袁胜利等.[J].机械工程材料,2004,4:39.
    [28] Lena Wenhua, Liu Hong, Cheng Saoan, et al. [J]. J. Photochem. Photobiol., 2000, 131: 125.
    [29] 沈嘉年,宋江江,马寒冰等.[J].稀有金属材料与工程,2004,10:76.
    [30] 张庆庆,汤斌,薛正莲等.[J].生物学杂志,2004,21(1):15.
    [31] 冷文华,成少按,刘鸿等.[J].环境科学学报,2000,20(4):499.
    [32] Juan Matos, Jorge Laine, Jean Marie Herrmann, et al. [J]. Appl. Catal. B: Environ., 1998, 18: 281.
    [33] 敖燕辉,徐晶晶,沈迅伟等.[J].环境科学学报,2006,26(7):1111.
    [34] 崔鹏,魏凤玉,刘雪霆,杨则恒.[J].合肥工业大学学报,2001,24(5):994.
    [35] 张庆庆,汤斌,方磊,张春乐.[J].农业工程学报,2006,22(3):19.
    [36] 何翔,田晓梅,陈艳.[J].产业用纺织品,2005,8:27.
    [37] Zhang P Y, Liana F Y, Yu G, et al. [J]. J. Photochem. Photobiol. A: Chemistry, 2003, 156(1-3): 189.
    [38] 余家国等.[J].无机材料学报,2000,15(2):347.
    [39] Donjin B, Yonaki J, Bumjoon K, et al. [J]. J. HazardousMaterials, 2000, 73(2):199.
    [40] Halary E, Benvenuti G, Wagner F, et al. [J]. Appl. Sur. Sci., 2000, 154-155(1): 146.
    [41] Leistner T, Lehmbacher K, HrterP, etal. [J]. J. Non-Crystal. Solids, 2002, 303(1): 64.
    [42] Shieh J, Jhon M H. [J]. Thin Solid Films, 2001, 391(1): 101.
    [43] Wang X P, Yu Y, Hu X F, et al. [J]. Thin Solid Films, 2000, 371 (1-2): 148.
    [44] Richardson T J, Rubin M D. [J]. Electrochimica Acta, 2001, 46(13-14): 2119.
    [45] Kamada K, Mukai M, Matsumoto Y. [J]. Electrochimica Acta, 2002, 47(20): 3309.
    [46] Karuppuchamy S, Nonomura K, Yoshida T, et al. [J]. Solid State Ionics, 2002, 151(1-4): 19.
    [47] 黄怀国等.[J].电化学,2001,7(1):102.
    [48] Vitala R I, Langlet M, Simola J, et al. [J]. Thin Solid Films, 2000, 368(1): 35.
    [49] Deleon R L, Joshi M P, Rexer E F, et al. [J]. Appl. Sur. Sci., 1998, 127-129: 321.
    [50] Kuo D H, Tzeng K H. [J]. Thin Solid Films, 2002, 497: 420.
    [51] Mardare D, Baban C, et al. [J]. Surface Science, 2002, 468: 507.
    [52] SumitaS, Otsuka H, Kubota H, et al. [J]. Nuclear Instruments and Methods in Physics Research B, 1999, 148(1-4): 758.
    [53] Kow W S. [J]. J. Environ. Sci. Health Part A: Toxic/Hazard Subst. Environ., 2000, 35(3): 419.
    [54] Mandl S, Thorwarth G, Tauschenbach B. [J]. Surface and coatings technology, 2000, 133-134: 283.
    [55] Aarik J, Aidla A, Mandar H, et al. [J]. Appl. Sur. Sci., 2001, 172(1-2): 148.
    [56] 施利毅等.[J].华东理工大学学报,1998,24(3):291.
    [57] Castaneda L, Alonso J C, Ortiz A, et al. [J]. Mater. Chem. Phys., 2002, 77(3): 938.
    [58] Dumitriu D, Bally A R, Bally C, et al. [J]. Appl. Catalysis B: Environ., 2000, 25(2-1): 83.
    [59] 邓沁,聊东亮,肖新颜.[J].材料导报,2003,17:82.
    [60] Iijima. S. [J]. Nature, 1991, 354: 56.
    [61] Planeix J. M., Coustel N., Coq B., Brotons V., Kumbhar P. S., Dutartre R. et al. [J]. J. Am. Chem. Soc., 1994, 116(17): 7935.
    [62] Wendong Wang, Philippe Serp, Philippe Kalck, Joaquim Luis Faria. [J]. Appl. Catal. B: Environ. 2005, 56: 305.
    [63] Silvia Orlanducci, Vito Sessa, Maria Letizia Terranova, Giovanni A. Battiston, Simone Battiston, Rosalba Gerbasi. [J]. Carbon, 2006, 44: 2839.
    [64] Jing Sun, Mikio Iwasa, Lian Gao, Qinghong Zhang. [J]. Carbon, 2004, 42: 885.
    [65] Li. W, Liang C, Zhou W, et al. [J]. J. Phys. Chem. B, 2003, 107: 6292.
    [66] Xue B, Chen P, Hong Q, et al. [J]. J. Mater. Chem., 2001, 11: 2378.
    [67] 风仪,袁海龙.[J].功能材料,2004,35:317.
    [68] 陈小华,王健雄等.[J].新型炭材料,2000,15(4):39.
    [69] 彭峰,姜靖文,王红娟,冯景贤.[J].无机化学学报,2004,20(2):231.
    [70] 李茂刚,成荣明,徐学诚,陈奕卫,李相美.[J].化学通报,2006,1:36.
    [71] 邹勇.[J].黔东南民族师范高等专科学校学报,2004,22(3):15.
    [72] 开小明,王伦,邱晓生,高迎春.[J].中国卫生检验杂志,2006,16(12):1422.
    [73] Koo's. A, Ehlich. R, Horva'th. Z. E et al. [J]. Mater. Sci. Engin. C, 2003, 23: 275.
    [74] Zeng Huang, Zhu Ling, Hao Guangming et al. [J]. Carbon 1998, 36: 259.
    [75] Matsumoto. S, Pan. L, Tokumoto. H, Nakayama. Y. [J]. Phys. B 2002, 323: 275.
    [76] Randal L. Vander Wal, Thomas M. Ticich et al. [J]. Chem. Phys. Lett. 2000, 323: 217.
    [77] 朱绍文,贾志杰,李钟泽.[J].科技导报,1999,12:7.
    [78] Zhang T. S, Hing P, Zhang R. F. [J]. J. Mater. Sci., 2000, 35: 1419.
    [79] 张立德.纳米材料和纳米结构.[M].北京:科学出版社,2002.
    [80] 岁益民,黄可龙,潘春跃,[J].无机材料学报,1994,9(2):239.
    [81] 张敬畅,曹维良,单伟力等.[J].催化学报,1998,19(1):63.
    [82] Trapalis C, Kozhukharov V, Samuneva B. [J]. J. Mater. Sci. 1993, 28: 1276.
    [83] 张敬畅,曹维良,于定新等.[J].无机材料学报,1999,14(1):29.
    [84] 黄汉生.[J].现代化工,2001,21(9):53.
    [85] 周建斌,郭斌,高洁.[IJ].河北化工,2006,29(10):27.
    [86] 殷捷,陈玉成.[J].环境科学动态,1999,4:20.
    [87] 魏双绍.[J].天然气化工,1998,23:40.
    [88] Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR et al. [J]. Catal. Today 1998, 45: 221.
    [89] Yamashita H, Shiga A, Kawasaki S, lchihashi Y, Ehara S, Anpo M. [J]. Energy Convers. Mgmt 1995, 36: 617.
    [90] Anpo M, Yamashita H, Ichihashi Y, Ehara S. [J]. J. Electroanalyt. Chem. 1995, 396: 21.
    [91] Anpo M, Yamashita H, Ikeue K, Fuji Y, Zhang SG, Ichihashi Y et al. [J]. Catal. Today 1998, 44: 327.
    [92] Usubharatana P, McMartin D, Veawab A, Tontiwachwuthikul P. [J]. Ind. Eng. Chem. Res. 2006, 45: 2558.
    [93] Li Wenzhen, Liang Changhai, Qiu Jieshan et al. [J]. Carbon, 2002, 40: 787.
    [94] Rodriguez N M. [J]. J. Mater. Res., 1993, 8(12): 3233.
    [95] Bernard Coq, Jean Marc Ptaneix, Valere Brotons. [J]. Appl. Catal. A: General, 1998, 173(2): 175.
    [96] V. Brotons, B. Coq, J. M. Planeix. [J]. J. Mol. Catal. A: Chemical, 1997, 116(3): 397.
    [97] Coq B., Kumbhar P. S., Moreau C,, et al. [J]. J. Mol. Caral., 1993, 85(2): 215.
    [98] Jean-Marionhut, Ricarodo Vieira, Laurie Pesant, et al. [J]. Catalysis Today, 2002, 76(1): 11.
    [99] Wang WD, Serp P, Kalck P, Faria JL. [J]. Appl. Catal. B: Environ 2005, 56: 305.
    [100] Yu Y, Yu JC, than CY, Che YK, Zhao JC, Ding Let al. [J]. Appl. Catal. B:Environ, 2005, 61: 1.
    [101] Yu Y, Ma LL, Huang WY, Du FP, Yu JC, Yu JG et al. [J]. Carbon 2005, 43: 670.
    [102] Lee S, Sigmund WM. [J]. Chem. Commum. 2003, 780.
    [103] Yu Y, Yu JC, Yu JG, Kwok YC, Che YK, Zhao JC et al. [J]. Appl. Catal. A: General 2005, 289: 186.
    [104] Matos J, Laine J, Herrmann JM. [J]. J. Catalysis 2001, 200: 10.
    [1] 宋绵新,周天亮,王峰.[J].材料导报,2006,20(8):16.
    [2] 高濂,郑珊,张青红.[M].北京:化学工业出版社,2003.4.
    [3] Sha Jin, Fumihide Shiraishi. [J]. Chem. Eng. J., 2004, 97: 203.
    [4] 栾勇,傅平丰,戴学刚等.[J].化学进展,2004,9:738.
    [5] 吴树新,马智,秦永宁.[J].物理化学学报,2004,2:138.
    [6] Choi W, Termin A, Hoffmann M R. [J]. Phys. Chem., 1994, 98: 13669.
    [7] 吴玉程,陈挺松,解挺等.[J].功能材料,2005,1:121.
    [8] 余家国,赵修建,赵青南.[J].复合材料学报,2001,2:79.
    [9] 舒东,何春,郭海福.[J].精细化工,2004,6:421.
    [10] 谷秀梅,承遇.[J].硅酸盐学报,2004,5:52.
    [11] 张前程,张凤宝,张国亮等.[J].燃料化学学报,2004,2:240.
    [12] Ren Dasen, Bei Zongmin, nuang Li. [J]. Acta. Phys. Chim. Sin., 2004, 4: 414.
    [13] 张华星,张玉红,徐永熙等.[J].化学学报,2003,11:1813.
    [14] 陈俊涛,李新军,杨莹等.[J].催化学报,2004,5:397.
    [15] 翁之望,郭范,马剑华.[J].中国稀士学报,2002,12:119.
    [16] 卢萍,姚明明,张颖等.[J].硅酸盐通报,2003,2:34.
    [17] Jun Lin, Jimmy C. [J]. J. Photochem. Photobio., 1998, 116: 63.
    [18] 毕怀庆,袁文辉,韦朝海.[J].材料科学与工程学报,2004,2:99.
    [19] Xu An-wu, Gao Yuan, Liu Han-qin. [J]. J. Catalysis, 2002, 207(2): 151.
    [20] Xie Yi-bing, Yuan Chun-wei. [J]. Appl. Sur. Sci., 2004, 221(1-4): 23.
    [21] 张金龙,赵文娟,陈海军等.[J].物理化学学报,2004,20(4):424.
    [22] 鄂磊,徐明霞.[J].硅酸盐学报,2004,12:1538.
    [23] 杨民,孙颖,王全义等.[J].复旦学报(自然科学版),2003,6:339.
    [24] 崔玉民,范少华.[J].感光科学与光化学,2003,5:161.
    [25] 李晓倩,孙晓君,井立强等.[J].哈尔滨工业大学学报,2004,10:1368.
    [26] 崔玉民,范少华.[J].洛阳工学院学报,2002,23(2):85.
    [27] 符小荣,张校刚,宋世庚等.[J].应用化学,1997,14(4):77.
    [28] 席北斗,孔欣,刘纯新等.[J].环境化学,2001,20:27.
    [29] Ohtani B, Iwai K, Nishimoto S. [J]. J. Phys. Chem. B, 1997, 101: 3349.
    [30] 丘永,陈洪龄,徐南平.[J].化工学报,2005,7:1339.
    [31] Miki-Yoshida M, Collins-Martinez V, Ame zaga-Madrid P, et al. [J]. Thin Solid Films, 2004, 8: 60.
    [32] 夏长生,吴广明,沈军等.[J].材料科学与工程学报,2004,2:184.
    [33] 邢婵娟,延卫,张耀君等.[J].西安交通大学学报,2005,5:511.
    [34] 王斌,高飞,何斌等.[J].物理化学学报,2003,1:21.
    [35] 颜秀茹,李晓红,霍明亮等.[J].物理化学学报,2001,17(1):23.
    [36] 崔玉民,范少华.[J].感光科学与光科学,2004,22(6):434.
    [37] Vinodgopal K, Kamt P V. [J]. Environ. Sci. Technol., 1995, 29: 841.
    [38] Asahi R, Morikawa T, Ohwaki T, et al. [J]. Science, 2001, 293(5528): 269.
    [39] Khan S U M, A1Shahry M, Ingler W B Jr. [J]. Science, 2002, 297: 2243.
    [40] Torres G R, Lindgren T, Lu J, et al. [J]. J. Phys. Chem. B, 2004, 108(19): 5995.
    [41] Lindgren T, Mwabora J M, Avendano E Z, et al. [J]. J. Phys. Chem. B, 2003, 107(24): 5709.
    [42] 赵明,方玲,张弓等.[J].材料研究学报,2004,18(1):108.
    [43] 赵秀峰,张志红,孟宪锋等.[J].分子催化,2003,8:292.
    [44] 余灯华,廖世军.[J].环境污染治理技术与设备,2003,4(2):44.
    [45] Stylidi M, Kondaridesd I, Verykios X E. [J]. Appl. Catal. B: Environ., 2004, 47(3): 189.
    [46] Moon J, Yun C Y, Chung K W, et al. [J]. Catal. Today, 2003, 87(1-4): 77.
    [47] Wu T, Liu G, Zhao J, et al. [J]. J. Phys. Chem. B, 1998, 102(30): 5845.
    [48] Liu G, Zhao J. [J]. N. J. Chem., 2000, 24: 411.
    [49] Zhang F, Zhao J, Shen T, et al. [J]. Appl. Catal. B: Environ., 1998, 15(1-2): 147.
    [50] Liu G, Wu T, Zhao J, et al. [J]. Environ. Sci. Technol., 1999, 33(12): 2081.
    [51] Iliev V, Tomova D, Bilyarska L, et al. [J]. J. Photochem. Photobio. A: Chem., 2003, 159(3): 281.
    [52] Konstantinou I K, Albanis T A. [J]. Appl. Catal. B: Environ., 2004, 49(1): 1.
    [53] 管盘铭,夏亚穆,李德宏等.[J].催化学报,2001,22(2):161.
    [54] Navio J A, Colon G, Trillas M, et al. [J]. Appl. Catal. B: Environ., 1998, 16: 187.
    [55] Y. Q. Wang, Y. Z. Hao, H. M. Cheng. [J]. J. Mater. Sci., 1999, 34: 2773.
    [56] 张金龙,陈海军,徐华胜等.[J].催化学报,2004,25(1):10.
    [57] S. Lange, I. Sildos, V. Kiisk, et al. [J]. Mater. Sci. Engin. B, 2004, 112: 87.
    [58] Kambala V, Subba Rao, Basavaraju Srinivas, et al. [J]. Catalysis Letters, 2003, 90(1-2): 95.
    [59] Aita Y, Komatsu M, Yin S, et al. [J]. J. Solid State Chem., 2004, 177: 3235.
    [60] Nakamura R, Tanaka T, Nakato Y, [J]. J. Phy. Chem. B, 2004, 108: 10617.
    [61] Nada H, Oikawa K, Ogata T, et al. [J]. Chem. Soc. Japan, 1986, 8: 1084.
    [62] Diwald O, Thompson T L, Zubkov T, et al. [J]. J. Phys. Chem. B, 2004, 108: 6004.
    [63] Geula D, Micha T. [J]. J. Phys. Chem., 1993, 97(49): 12651.
    [64] 方佑龄,赵文宽,君少华等.[J].应用化学,1997,14(2):81.
    [65] 谭小春,黄颂羽.[J].化学物理学报,1998,11(5):416.
    [66] Mann S, Archibald M, Didyrnns M, et al. [J]. Science, 1993, 261: 1286.
    [67] C. He, Y. Xiong, X. Zhu. [J]. Catal. Cummun., 2003, 4: 183.
    [68] Y. Li, J. Liu, Z. Jia. [J]. Mater. Lett., 2006, 60: 1753.
    [69] Sanjay R Dhage, Vandana D Choube, Violet Samuel et al. [J]. Mater. Lett., 2004, 58: 2310.
    [70] Hiroshi Tsuji, Hiromitsu Sugahara, Yasuhito Gotoh, Junzo Ishikawa. [J]. Nuclear Instruments and Methods in Physics Research B, 2003, 206: 249.
    [71] M. Gopal, W. J. Mobey Chan, L. C. De Jonghe. [J]. J. Mater. Sci., 1997, 32: 6001.
    [72] J. C. S. Wu, C. H. Chen, [J]. J. Photochem. Photobio. A: Chemistry, 2004, 163: 509.
    [73] Ulrich Gesenhues. [J]. J. Photochem. Photobio. A: Chemistry, 2001, 139: 243.
    [74] Liang, X. Y., Ma, Z., Bai Z. C., Qin Y. N. [J]. Acta Phys. Chim. Sin., 2002,168: 567.
    [75] Linsebigler, A. L., Lu G. Q.. [J]. Chem. Rev., 1995, 95: 735.
    [76] 吴树新,尹燕华,马智等.[J].河北大学学报(自然科学版),2005,25(5):486.
    [77] Wu Shu-Xin, Ma Zhi, Qin Yong-Ning et al. [J]. Acta Phys. Chim. Sin., 2003, 19(10): 967.
    [78] Y. Li, T. J. White, S. H. Lim. [J]. J. Solid State Chem., 2004, 177: 1372-1381.
    [79] K. Wilke, H.D. Breuer. [J]. J. Photochem. Photobiol. A, 1999, 121: 49.
    [80] C.S. Turchi, D.F. Ollis. [J]. J. Catal., 1990, 122: 178.
    [81] 郑伟双,张光友,卢士香,徐文国.[J].科技导报,2006,24(7):21.
    [82] 牛新书,李红花,蒋凯.[J].电子元件与材料,2004,23(8):39.
    [1] 吴国良.[J].电池,2001,31(2):54.
    [2] 张立德,牟季美.[M].科学出版社,2001年.
    [3] 复君磊,赵世玺,周振平,张仁刚,刘韩星.[J].材料导报,2001,15(9):33.
    [4] 周根陶,刘双怀.[J].化学物理学报,1997,10(4):381.
    [5] 洪伟良,刘剑洪,田德余等.[J].深圳大学学报(理工版),2000,17(1):66.
    [6] 史延慧,郝万群,陈岗,冯守华.[J].高等学校化学学报,2000,221(4):497.
    [7] 洪伟良,赵凤起等.[J].火炸药,2000,23(3):7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700