用户名: 密码: 验证码:
基于Unigraphics的耐磨橡胶垫车斗结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是基于Unigrahpics NX的有限元分析与优化设计技术,利用Unigrahpics NX软件提供的有限元分析及优化模块,对江西耐普实业有限公司针对江西德兴铜矿使用的SF3150型电动轮矿用自卸车,进行车斗耐磨橡胶垫衬板改造的结构优化设计。
     首先对电动轮矿用自卸车进行了较为系统的阐述,介绍了电动轮矿用自卸车的国内外发展情况,性能特点,工况特点以及结构特点。并根据公司项目部要求,结合国外(智利)橡胶垫衬板车斗的使用情况,对德兴铜矿现使用的SF3150型电动轮矿车车斗进行橡胶垫衬板改造。再利用Unigrahpics NX软件提供的有限元分析(CAE)模块对改造后的橡胶垫衬板车斗结构进行了有限元分析,并针对设计中发现的问题进行了优化设计,使其能满足各种工况的要求。在此之前对有限元分析方法进行了理论性的阐述,并描述了结构优化设计的基本概念、优化流程在Unigrahpics NX的NXNastran模块中用到的优化算法以及它们的优缺点。然后针对耐磨橡胶车斗结构设计存在的问题,结合优化理论,在Unigrahpics NX5.0软件中建立耐磨橡胶车斗的实体模型,再进入CAE模块,建立有限元分析模型对其进行静力分析,并利用CAE的优化模块对车斗衬板安装骨架进行了优化设计。
     整个设计过程是按照原使用的矿车车斗容量不变,整体骨架重量最小的基本原则对骨架结构进行优化设计。最后针对电动轮矿用自卸车运行的工况特点对橡胶垫车斗骨架进行了模态分析,以满足工况运行要求。耐磨橡胶车斗底架的高级仿真及优化结果表明,通过Unigrahpics NX软件的CAE模块进行的10次迭代优化能够使底架的重量降低32.4%,使底架的承载性能得到改善,为耐磨橡胶车斗机架的设计提供了指导作用。
     本课题结合橡胶车斗实际工况解决了车斗的结构设计中存在的问题,获得了合理的、经济性高的机械结构。表明基于有限元分析的结构优化设计技术可以在提高产品的设计质量、降低开发与生产制造成本及提高产品在市场上的竞争能力等方面发挥重要作用。
This subject is on the basis of finite element analysis and optimization technology,using the optimization module of the Unigrahpics NX software to resolve the work of JiangxiNaiPu Co.Ltd aiming on Jiangxi DeXing copper use the electric wheel mine dump truck to optimize wear-resistant rubber liner.
     Firstly, systematicly elaborate the electric wheel Mine Dump Truck,introduce the development,features,condition features,structural characteristics of the electric wheel mine dump truck At home and abroad.According to the requirement of the project department of the company. Combining with the usage of rubberrMat Liner at aborad(Chile), designing the existing SF3150 rubber liner of the electric wheel bucket.using the optimization module of the Unigrahpics NX software to research the designed rubber liner, and optimize the founded problems to meet the nees of kinds of working condition. Theoretically elaborate on the aboved analysis method.and describe the basic concept of structure optimization, optimical algorithm in the optimization Process during using the NXNastran module of the Unigrahpics, and the merits of the them.Then aim on the problems of the structure design. Combination of optimization theory,building the solid model of wear-resistance rubber liner.accessing the CAE module.building the finite element analysis to static analysis,and optimize Cha Du-liner install skeleton by using the optimization module.
     The whole design process is on the basis of the unchanged capacity of the cha du, the principle which the weigh of the whole sketon should be lighest.Finally, modal analysis rubber pad cha-du skeleton in connecyion with the working condition of the electric wheel mine dump truck to meet the need of the condtion features. The advanced simulation and optimization results of the wear-resistance rubber cha du chasis shows that ten times iteration optimization through the CAE module of Unigrahpics NX software making the weight of the chasis reduced by 32.4%, which improve the bearing property of the chasis and provide leading function for the design of the wear-resistance rubber chasis rack.
     The subject resolves the problems exsisting in the design of the cha du in connction with actual working conditions, obtaining reasonable and economical mechanical structure. Structural optimization design technique on the basis of finite element analysis would play an important role in improving product design quality,reducing development and manufacturing costs, Improving the product competitiveness in the market
引文
[1]董振国.半挂牵引车车斗有限元强度分析[D].青岛:青岛大学, 2005
    [2]历辉,李万琼.货车车斗的等效载荷简化[J].汽车工程, 1994, (16): 310~314
    [3]栗艳丽,葛如海等.客车车身结构的动应力频谱分析[J].江苏大学学报, 2003, (7): 34~36
    [4]牛会明.应力测试技术在专用车上的应用[J].专用汽车, 2003(3): 36~38
    [5]柴苍修,马力等.农用运输车车斗有限元强度分析[J].拖拉机与农用运输车, 2002(1): 14~18
    [6]栗艳丽.客车车身结构动力学分析[D].镇江:江苏大学, 2003
    [7]赵韩,钱德猛.基于Unigrahpics的汽车结构轻量化设计[J].农业机械学报, 2005, (3): 66
    [8]石琴,姚成等.集装箱半挂车车斗结构拓扑优化设计[J].农业机械学报, 2005, (1): 10~12
    [9] Haftka, R.T. & Kamat, M.P. Elements of Structural Optimization[D]. Martinus Nijhoff, The Hague, 1985
    [10]顾家柳.转子动力学[M].北京:国防工业出版社, 1985
    [11] Gu Jialiu. Rotor dynamics[M]. Beijing: National, 1985
    [12]高金海.航空发动机整机建模技术及计算仿真研究[D].北京:北京航空航天大学能源与动力工程学院, 2005
    [13] Gao Jinhai.A study on the model technology of engine casing and imitative calculation[D].Beijing:School of Jet Propulsion, Bering University of Aeronautics and Astronautics, 2005
    [14] Venkayya, V.B.Design of optimum structures[C]. Presented at the Conference on Computer Oriented Analysis of Shell Structures.Palo Alto, California,August 1970
    [15]史亚杰,洪杰等.大长径比柔性转子系统设计方法研究[C].发动机结构强度与振动专业委员会第十二届学术会论文集.成都: 2004:54~58
    [16] Prager, W.& Shield, R.T. Optimal design of multi-purpose structures[J].Journal of Solids and Structures, 1968, (4):469~475
    [17] Schmit,L.A. Structural synthesis--its genesis and development[J]. AIAA Journal, 1981, 19(10), 1249~1263
    [18]陈宪侃,陈万薇等.游梁式抽油机与直线电机抽油机[J].石油钻采工艺, 2003, 25(1): 68~70
    [19]孙昭瑞.国内抽油机的发展方向[J].石油机械,2000,28(2):49~54
    [20]孙庆红,温泽民等.电机换向智能抽油机应用与分析[J].石油机械,2002,30(5):31~33
    [21]彭勇,史足民等.异形抽油机支架静强度及刚度分析[J].石油机械,2002,30(6):44~45
    [22]曾励,王新琴等.抽油机支架的有限元动态性能分析[J].扬州大学学报:自然科学版,2006,9(2):31~34
    [23] GRANDHIR.Structural optimization with frequency constraints[J].AIAA,2000,31(12):2296~2303
    [24] NS Khot, L Berke, VB Venkayya. Comparison of optimality criteria algorithms for minimum weight design of Structures[C]. Structural Dynamics and Materials Conference, 1978, 182~189
    [25]吴忠泽.机械设计师手册[M].北京:机械工业出版社,2002:188~190
    [26]胡玉兵.支持异构CAD协同设计平台技术的研究[D].济南:山东大学, 2006
    [27]陈纯,张申生等.面向大批量定制产品协同设计系统研究[J].计算机集成制造系统,2003,99 :788~792
    [28]王晨,张申生等.基于操作语义的AutoCAD协同设计的实现[J].计算机应用与软件, 2006, 23 (2) :8~10
    [29]于军华.异地协同设计系统的开发[D].济南:山东大学, 2005
    [30]张敬谊,张申生等.面向窄带环境的异地同步协同设计方法[J].上海交通大学学报, 2003, 37 (6) :883-886计的实现[J].计算机应用与软件,2006,23 2 :8~10
    [31]实威科技. SolidWorks原厂培训手册[M].北京:中国铁道出版社, 2004: 1~2
    [32]张进国,陈俊云.基于ANSYS参数化语言汽车钢板弹簧有限元分析及优化[J].拖拉机与农用运输车,2007,34(6):90~91
    [33]陈立周.机械优化设计方法[M].北京,冶金工业出版社,2005
    [34] Design Synthesis.Inc.OptdesX Users Manial[M].1992
    [35] O.C.Zienkiewicz, R.L. Taylor, J.Z. Zhu. The Finite Element Method: Its Basis and Fundamentals. Sixth edition, USA, Elsevier, 2005
    [36] Christodoulos A. Floudas,Panos M. Pardalos. Encyclopedia of Optimization.Second Edition[M],USA,Springer,2008
    [37] Andreas Antoniou, Wu-Sheng Lu. Practical Optimization Algorithms and Engineering Applications [M]. USA,Springer,2007
    [38]白新理等.结构优化设计[M].郑州,黄河水利出版社,2008
    [39]李正东,吴伯明.影响陶瓷过滤机产能的因素[J].金属材料与冶金工程,2007,35,(1):40~42
    [40]何文斌,李菊丽等. ANSYS在液压支架优化设计中的应用[J].机械设计与制造,2007,26(6):4170~4172
    [41]曾攀.有限元分析及应用[M].北京,清华大学出版社,2004
    [42]薛守义.有限单元法[M].北京,中国建材工业出版社,2005
    [43]蒋红旗,王繁生.起重机吊臂结构有限元模态分析[N].农业机械学报, 2006, 37, (3):20~22
    [44] Friedel Hartmann, Casimir Katz. Structural Analysis with Finite Elements[M]. USA,Springer,2007
    [45]杨晓东,刘春太等.任意平面域有限元网格划分技术[N].郑州工业大学学报, 1998, 36(04): 35~46
    [46] Erdogan Madenci, Ibrahim Guven. Finite Element Method and Applications in Engineering Using ANSYS[M]. USA,Springer,2006
    [47] Kent L.lawrence. ANSYS tutorial. USA, SDC, 2005
    [48]周廷美,王仲范.重型自卸车车架的计算机辅助设计[J].专用汽车, 2001, 36(5): 66~67
    [49]刘晓凯.SX6122BL车架模态试验分析[J].重型汽车, 1998, 25(2): 71~72
    [50]陈华光,电动轮自卸车车架模态分析[J].湘潭机电高等专科学校学报, 2000, 26(1): 102~103
    [51]林军.载货汽车车架模态分析[J].机电工程, 1998,39(3): 86~88
    [52]刘岩.自卸汽车车架设计[J].专用汽车, 1998, 37(9): 99~101
    [53]王国强.实用工程数值模拟技术及其在ANSYS上的实践[D].西北工业大学出版社, 1999
    [54]蒋孝煜.有限元法基础[M].清华大学出版社, 1984
    [55]周中坚,卢耀祖.机械与汽车结构的有限元分析[M].同济大学出版社,1996
    [56] ANSYS, Ins. ANSYS Elements Reference. Ninth Edition[J]. SAS, IP INC. 1997
    [57]李庆延.车架强度计算方法研究[J].专用汽车, 1997
    [58]黎西亚,李成刚等.车架有限元分析技术发展综述[J].专用汽车, 2001
    [59] Gellatly, R.A., Berke, L. & Gibson, W. The use of optimality criteria in automated structural design[C]. Presented at the 3rd Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Forces Base, Ohio, October ,1971
    [60] James D Lee. A Large-strain Elastic-plastic Finite Element Analysis of Rolling Process .Computer. Methods in Applied Mechanics and Engineering,1998,(161): 3147~3152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700