用户名: 密码: 验证码:
基于数值代数的图像复原问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在信号和图像处理中,期望将原始场景从观测到的降质数据中恢复出来。在数学上,这个过程就模型化为求解一个系数矩阵为模糊矩阵的线性代数系统。本学位论文研究基于数值代数的高性能正则化算法求解图像复原问题中的大规模线性代数系统。此类线性代数系统系数矩阵规模巨大、严重病态且在特定边界条件下具有特殊结构,例如在零边界条件下具有Toeplitz结构,Neumann边界条件下具有Toeplitz-plus-Hankel结构。研究分析结构矩阵的性质,设计稳定快速算法求解基于结构矩阵的线性方程组具有重要意义。本学位论文共有八章,主要研究内容分为六个部分。
     求解系数矩阵为三对角M矩阵的线性代数方程组是求解许多积分微分方程中的核心问题之一。保证该系数矩阵的单调性常常是问题研究的关键。第一部分基于三对角M矩阵的特殊性质,采用新的分块法则以及递推使用克莱姆法,研究提出了扰动后矩阵单调性的充分必要条件,并设计了计算最大可达上界的快速算法。理论分析和数值实验均显示了新算法的有效性。
     第二部分根据三角Toeplitz矩阵的特殊结构性质,使用循环矩阵逼近三角Toeplitz矩阵,设计了基于尺度参数和快速傅里叶变换的快速三角Toeplitz逆求取算法,即尺度Bini算法。尺度Bini算法在不增加原算法计算量的同时,提高了近似逆矩阵的精度。
     第三部分基于可逆Toeplitz矩阵的逆运算公式,通过求解两个基础方程,研究构造了多右端向量Toeplitz线性系统的近似逆预条件子。讨论了近似逆预条件共轭梯度法的计算复杂度,并给出了收敛性分析。数值实验比较说明了新逆预条件子的优越性。
     第四部分设计了图像复原问题中假设anti-reflective边界下的预条件技术。基于模糊矩阵的谱分解性质,设计了具有正则化性质的截断谱分解预条件子。截断谱分解预条件子改善了模糊矩阵的特征值分布,令较大特征值为1,较小特征值保持不变,加快了共轭梯度法求解图像复原问题的收敛速度,提高了复原图像质量。
     第五部分针对图像复原问题,设计了更符合真实场景的移位反射边界条件,给出了该边界条件下的模糊矩阵。根据模糊矩阵的特殊结构性质,设计了对应的Kronecker积逼近形式,提出了基于Kronecker积逼近的SVD型正则化算法。数值实验说明了SVD型正则化算法的高效性。
     采用CGLS和MRNSD等迭代正则化方法求解图像复原问题中的大规模严重病态线性系统,收敛速度虽然很快,但却出现了半收敛现象。第六部分通过分析CGLS和MRNSD方法中迭代向量的性质,结合具有高去噪性能的软阈值方法,设计了类CGLS和类MRNSD迭代算法求解图像复原问题。新算法克服了原算法的半收敛性质,提高了复原图像的质量。
In signal and image processing, one wants to recover a faithful representation of anoriginal scene from blurred noisy image data. This process can be transformed mathe-matically into solving a linear system with a blurring matrix. This dissertation will studynumerical linear algebra based high-performance regularized algorithms for large-scale,structured linear systems in image restoration problems. Particularly, the blurring matrixhas different special structures under different boundary conditions, i.e., block Toeplitzwith Toeplitz blocks under Dirichlet boundary conditions or block Toeplitz-plus-Hankelwith Toeplitz-plus-Hankel blocks under Neumann boundary conditions. In this case, itis important and necessary to analysis the special structures of these matrices and theirinverse matrices and moreover, to design fast and stable algorithms for structured matrixcomputations. This dissertation consists eight chapters with six main parts.
     Ensuring monotonicity of perturbed triangular M-matrices is important in many ap-plications. Based on special properties of triangular M-matrices, Part I in this dissertationprovides sufficient and necessary conditions for maximum allowable of a single perturba-tion and higher rank perturbations. The key techniques include explicit formulas for theinverse of partitioned matrices and the use of Cramer’s rule. Perturbed Toeplitz tridiago-nal M-matrices are considered as a special case. The utility of these results is shown byconsidering an application: ensuring a nonnegative solution of a discrete analogue of anintegro-differential population model.
     Using a circulant matrix to approximate a given Toeplitz matrix, Part II in the dis-sertation studies scale parameter and fast Fourier transform based algorithms, scaling andrevised scaling Bini’s algorithms for fast inversion of triangular Toeplitz matrices. Inparticular, comparing with the original Bini’s algorithm, the scaling one improves theaccuracy of the numerical solution without additional computational cost.
     According to the inverse formula for Toeplitz matrices given by Lv and Huang, anapproximate inverse preconditioner is proposed for symmetric positive definite, but ill-conditioned, Toeplitz systems with multiple right-hand sides in Part III. The constructionof the preconditioner is of low computational cost, requires only the entries of Toeplitzmatrices and does not require explicit knowledge of the generating function f of Toeplitz matrices. Its convergence is proved. Numerical results are given to illustrate the efficiencyof the proposed inverse preconditioner.
     Enforcing anti-reflective boundary conditions, a truncated spectral decompositionpreconditioner is proposed for image restoration problems in Part IV. The preconditioneris based on the spectral decomposition of the blurring matrix with anti-reflective boundaryconditions. It clusters the large eigenvalues around one, but leaves the small eigenvaluesalone as well. Hence, conjugate gradient type methods, when applied to solving thesepreconditioned systems, converge very fast. Numerical examples are given to demonstratethe effectiveness of the proposed preconditioner.
     Shifting reflective boundary conditions are proposed in Part V for preserving the con-tinuity at the boundaries and therefore reducing ringing effects in the restored image. AKronecker product approximation of the corresponding blurring matrix is then provided,regardless of symmetry requirement of the PSF. The efficiency of the approximation in anSVD-based regularization method is demonstrated by several numerical examples.
     Iterative regularization algorithms, such as the conjugate gradient algorithm for leastsquares problems (CGLS) and the modified residual norm steepest descent (MRNSD)algorithm, are popular tools for solving large-scale linear systems arising from imagerestoration problems. These algorithms, however, are hindered by a semi-convergencebehavior, in that the quality of the computed solution first increases and then decreases.Two soft-thresholding based iterative algorithms for image deblurring are proposed inPart VI. They combine CGLS and MRNSD with a denoising technique such as soft-thresholding on the residual vector at each iteration, respectively. The convergence ofMRNSD and soft-thresholding based algorithm is proved. Numerical results show that theproposed algorithms overcome the semi-convergence behavior and the deblurring resultsare slightly better than those of CGLS and MRNSD with their optimal iterations.
引文
[1] H.W. Engl, M. Hanke, A. Neubauer. Regularization of Inverse Problems[M]. Dordrecht:Kluwer,1996,5-15
    [2] P.C. Hansen. Rank-Deficient and Discrete Ill-posed Problems: Numerical Aspects of LinearInversion[M]. Philadelphia: SIAM,1997,1-50
    [3] R.C. Gonzalez, R.E. Woods. Digital Image Processing[M]. Reading: Addison-Wesley,1992,221-281
    [4] C.R. Vogel. Computational Methods for Inverse Problems[M]. Philadelphia: SIAM,2002,1-39
    [5] Q. Guo, S.Y. Chen, H. Leung, et al. Covariance intersection based image fusion technique withapplication to pansharpening in remote sensing[J]. Inform. Sci.,2010,180:3434-3443
    [6] G. Jeon, M. Anisetti, V. Bellandi, E. Damiani, J. Jeong. Designing of a type-2fuzzy logic filterfor improving edge-preserving restoration of interlaced-to-progressive conversion[J]. Inform.Sci.,2009,179:2194-2207
    [7] D.D. Sha, J.P. Sutton. Towards automated enhancement, segmentation and classification of dig-ital brain images using networks of networks[J]. Inform. Sci.,2001,138:45-77
    [8] C.Y. Wee, R. Paramesran. Measure of image sharpness using eigenvalues[J]. Inform. Sci.,2007,177:2533-2552
    [9] T.C. Lin, C.M. Lin. Wavelet-based copyright-protection scheme for digital images based onlocal features[J]. Inform. Sci.,2009,179:3349-3358
    [10] X.B. Gao, Q. Wang, X.L. Li, et al. Zernike-moment-based image super resolution[J]. IEEETrans. Image Process.,2011,20:2738-2747
    [11] X.B. Gao, K.B. Zhang, D.C. Tao, et al. Joint learning for single-image super-resolution via acoupled constraint[J]. IEEE Trans. Image Process.,2012,21:469-480
    [12] A.K. Jain. Fundamentals of Digital Image Processing[M]. Englewood Cliffs: Prentice-Hall,1989,1-10
    [13] H. Andrews, B. Hunt. Digital Image Restoration. Englewood Cliffs: Prentice-Hall,1977,1-30
    [14] J. Kamm, J.G. Nagy. Optimal Kronecker product approximation of block Toeplitz matrices[J].SIAM J Matrix Anal. Appl.,2000,22:155-172
    [15] N. Levinson. The Wiener RMS (root mean square) error criterion in filter design and predic-tion[J]. J. Math. Phys.,1946,25:261-278
    [16] T. Kailath, A.H. Sayed. Displacement structure: theory and applications[J]. SIAM Rev.,1995,37:297-386
    [17] G.S. Ammar, W.B. Gragg. Superfast solution of real positive definite Toeplitz systems[J]. SIAMJ. Matrix Anal. Appl.,1988,9:61-76
    [18] N. Kalouptsidis, G. Carayannis, D. Manolakis. Fast algorithms for block Toeplitz matrices withToeplitz entries[J]. Signal Process.,1984,6:77-81
    [19] R. Chan, M.K. Ng. Conjugate gradient methods for Toeplitz systems[J]. SIAM Rev.,1996,38:427-482
    [20] M.K. Ng, R.H. Chan, W.C. Tang. A fast algorithm for deblurring models with Neumann bound-ary conditions[J]. SIAM J. Sci. Comput.,1999,21:851-866
    [21] J.G. Nagy, K.M. Palmer, L. Perrone. Iterative methods for image deblurring: a Matlab object-oriented approach[J]. Numer. Algorithms,2004,36:73-93
    [22] S. Serra-Capizzano. A note on antireflective boundary conditions and fast deblurring models[J].SIAM J. Sci. Comput.,2003,25:1307-1325
    [23] L. Perrone. Kronecker product approximations for image restoration with anti-reflective bound-ary conditions[J]. Numer. Linear Algebra Appl.,2006,13:1-22
    [24] R.L. Lagendijk, J. Biemond. Iterative Identification and Restoration of Images[M]. Dordrecht:Kluwer,1991,22-23
    [25] P.C. Hansen, J.G. Nagy, D.P. O’Leary. Deblurring Images: Matrices, Spectra, and Filtering[M].Philadelphia: SIAM,2006,13-20
    [26] J. Bunch. Stability of methods for solving Toeplitz systems of equations[J]. SIAM J. Sci. Stat.Comput.,1985,6:349-364
    [27] R.S. Varga. On a discrete maximum principle[J]. SIAM J. Numer. Anal.,1966,3:355-359
    [28] C.D. Meyer, Jr. The role of the group generalized inverse in the theory of finite Markovchains[J]. SIAM Rev.,1975,17:443-464
    [29] G. Buffoni. Nonnegative and skew-symmetric perturbations of a matrix with positive inverse[J].Math. Comp.,1990,54:189-194
    [30] F. Bouchon. Monotonicity of some perturbations of irreducibly diagonally dominant M-matrices[J]. Numer. Math.,2007,105:591-601
    [31] R.D. Haynes, M. Trummer, S.C. Kennedy. Persistently positive inverses of perturbed M-matrices[J]. Linear Algebra Appl.,2007,422:742-754
    [32] R.A. Horn, C.R. Johnson. Topics in Matrix Analysis[M]. New York: Cambridge UniversityPress,1991,113-116
    [33] R. Nabben. Two-sided bounds on the inverses of diagonally dominant tridiagonal matrices[J].Linear Algebra Appl.,1999,287:289-305
    [34] R. Peluso, T. Politi. Some improvements for two-sided bounds on the inverse of diagonallydominant tridiagonal matrices[J]. Linear Algebra Appl.,2001,330:1-14
    [35] S.C. Kennedy, R.D. Haynes. Inverse positivity of perturbed tridiagonal M-matrices[J]. LinearAlgebra Appl.,2009,430:2312-2323
    [36] J. Huang, T.-Z. Huang. The inverse positivity of perturbed tridiagonal M-matrices[J]. LinearAlgebra Appl.,2001,434:131-143
    [37] Y.M. Svirezhev, D. O. Logoget. Stability of Biological Communities[M]. Moscow: MIR,1983
    [38] M. Morf. Doubling algorithms for Toeplitz and related equations[C]. Proc. IEEE Int. Conf. onAcoust. Speech and Singual Process, Apr.1980,5:954-959
    [39] D. Commenges, M. Monsion. Fast inversion of triangular Toeplitz matrices[J]. IEEE Trans.Auto. Control.,1984,29:250-251
    [40] D. Bini. Parallel solution of certain Toeplitz linear systems[J]. SIAM J. Comput.,1984,13:268-276
    [41] R.E. Georgiev. Inversion of triangular Toeplitz matrices by using the fast fourier transform[J].J. New Gener. Comput. Sys.,1989,2:247-256
    [42] V. Pan, A. Sadikou, E. Landowne. Polynomial division with a remainder by means of evaluationand interpolation[J]. Inform. Process. Lett.,1992,44:149-153
    [43] V. Pan, E. Landowne, A. Sadikou. Univariate polynomial division with a remainder by meansof evaluation and interpolation[C]. Proceedings of the Third IEEE Symposium on Parallel andDistributed Processing, Dallas, TX, USA, Dec.1991,212-217
    [44] V. Pan. Complexity of computations with matrices and polynomials[J]. SIAM Rev.,1992,34:225-262
    [45] A. Scho¨nhage. Asymptotically fast algorithms for the numerical multiplication and division ofpolynomials with complex coefficients[J]. Lecture Notes in Computer Science,1982,144:3-15
    [46] D. Bini, V. Pan. Polynomial division and its computational complexity[J]. SIAM J. Comput.,1986,2:179-203
    [47] D. Bini, V. Pan. Improved parallel polynomial division[J]. SIAM J. Comput.,1993,22:617-627
    [48] D.E. Knuth. The Art of Computer Programming: Seminumerical Algorithms[M]. Reading:Addison-Wesley,1981,420-435
    [49] F.R. Lin, W.K. Ching, M.K. Ng. Fast inversion of triangular Toeplitz matrices[J]. Theor. Comp.Sci.,2004,315:511-523
    [50] P. Davis. Circulant Matrices[M]. New York: John Wiley&Sons,1979,73-74
    [51] R.M. Gray. Toeplitz and circulant matrices: A review[J]. Foundations Trends Commun. Inform.Theory,2006,2:155-239
    [52] S. Belhaj. A fast method to block-diagonalize a Hankel matrix[J]. Numer. Algorithms,2008,47:15-34
    [53] G. Strang. A proposal for Toeplitz matrix calculations[J]. Stud. Appl. Math.,1986,74:171-176
    [54] J. Olkin. Linear and nonlinear deconvolution problems[D]. Houston: Rice University,1986
    [55] R.H. Chan, A.M. Yip, M.K. Ng. The best circulant preconditioners for Hermitian Toeplitz sys-tems[J]. SIAM J. Numer. Anal.,2001,38:876-896
    [56] E. Boman, I. Koltracht. Fast transform based preconditioners for Toeplitz equations[J]. SIAMJ. Matrix Anal. Appl.,1995,16:628-645
    [57] T. Kailath, V. Olshevsky. Displacement structure approach to discrete-trigonometric-transformbased preconditioners of G. Strang type and of T. Chan type[J]. Calcolo.,1996,33:191-208
    [58] S. Serra. A Korovkin-type theory for finite Toeplitz operators via matrix algebras[J]. Numer.Math.,1999,82:117-142
    [59] D. Bini, P. Favati. On a matrix algebra related to the discrete Hartley transform[J]. SIAM J.Matrix Anal. Appl.,1993,14:500-507
    [60] R. Chan. Toeplitz preconditioners for Toeplitz systems with nonnegative generating func-tions[J]. IMA J. Numer. Anal.,1991,11:333-345
    [61] R. Chan, P. Tang. Constrained minimax approximation and optimal preconditioners for Toeplitzsystems[J]. Numer. Algorithms,1993,5:353-364
    [62] D. Noutsos, P. Vassalos. New band Toeplitz preconditioners for ill-conditioned symmetric pos-itive definite Toeplitz systems[J]. SIAM J. Matrix Anal. Appl.,2002,23:728-743
    [63] S. Serra. Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptoti-cally ill-conditioned positive definite Toeplitz systems[J]. Math. Comput.,1997,66:651-665
    [64] L.Y. Kolotilina, A.Y. Yeremin. Factorized sparse approximate inverse preconditionings I. The-ory[J]. SIAM J. Matrix Anal. Appl.,1993,14:45-58
    [65] M. Benzi, C.D. Meyer, M. Tuma. A sparse approximate inverse preconditioner for the conjugategradient method[J]. SIAM J. Sci. Comput.,1996,17:1135-1149
    [66] M. Benzi, M. Tuma. A sparse approximate inverse preconditioner for nonsymmetric linear sys-tems[J]. SIAM J. Sci. Comput.,1998,19:968-994
    [67] W.P. Tang. Toward an effective sparse approximate inverse preconditioner[J]. SIAM J. MatrixAnal. Appl.,1999,20:970-986
    [68] E. Chow. A priori sparsity patterns for parallel sparse approximate inverse preconditioners[J].SIAM J. Sci. Comput.,2000,21:1804-1822
    [69] A. Nikishin, A.Y. Yeremin. Prefiltration technique via aggregation for constructing lowdensityhigh-quality factorized sparse approximate inverse preconditionings[J]. Numer. Linear AlgebraAppl.,2003,10:235-246
    [70] I. Gohberg, A. Semencul. On the inversion of finite Toeplitz matrices and their continuousanalogs[J]. Mat. Issled.,1972,7:201-233
    [71] M.K. Ng, H.W. Sun, X.Q. Jin. Recursive-based PCG methods for Toeplitz systems with non-negative generating functions[J]. SIAM J. Sci. Comput.,2003,24:1507-1529
    [72] W.K. Ching, M.K. Ng, Y.W. Wen. Block diagonal and Schur complement preconditioners forblock-Toeplitz systems with small size blocks[J]. SIAM J. Matrix Anal. Appl.,2007,29:1101-1119
    [73] F.R. Lin, M.K. Ng, W.K. Ching. Factorized banded inverse preconditioners for matrices withToeplitz structure[J]. SIAM J. Sci. Comput.,2005,26:1852-1870
    [74] F.R. Lin, W.K. Ching. Inverse Toeplitz preconditioners for hermitian Toeplitz systems[J]. Nu-mer. Linear Algebra Appl.,2005,12:221-229
    [75] X.-G. Lv, T.-Z. Huang. A note on inversion of Toeplitz matrices[J]. Applied Math. Letters,2007,20:1189-1193
    [76] G. Ammar, P. Gader. A variant of the Gohberg-Semencul formula involving circulant matri-ces[J]. SIAM J. Matrix Anal. Appl.,1991,12:534-540
    [77] G. Heinig, K. Rost. Algebraic methods for Toeplitz-like matrices and operators, in: OperatorTheory: Advances and Applications. Birkha¨user, Basel,1984.
    [78] A. Ben-Artzi, T. Shalom. On inversion of Toeplitz and close to Toeplitz matrices[J]. LinearAlgebra Appl.,1986,75:173-192
    [79] M.K. Ng, K. Rost, Y.W. Wen. On inversion of Toeplitz matrices[J]. Linear Algebra Appl.,2002,348:145-151
    [80] G. Heinig. On the reconstruction of Toeplitz matrix inverses from columns[J]. Linear AlgebraAppl.,2002,350:199-212
    [81] S. Serra. On the extreme eigenvalues of hermitian (block) Toeplitz matrices[J]. Linear AlgebraAppl.,1998,270:109-129
    [82] A. Bjorck. Numerical Methods for Least Squares Problems[M]. Philadelphia: SIAM,1996,269-316
    [83] M. Hanke, J.G. Nagy, R.J. Plemmons. Preconditioned iterative regularization for ill-posed prob-lems, in L. Reichel, A. Ruttan and R.S. Varga (eds.), Numerical Linear Algebra[M]. Berlin: deGruyter,1993,141-163
    [84] A. Arico, M. Donatelli, J.G. Nagy, et al. The anti-reflective transform and regularization byfiltering[J]. Numerical Linear Algebra in Signals, Systems, and Control., in Lecture Notes inElectrical Engineering,2011,80:1-21
    [85] C. Tablino Possio. Truncated decompositions and filtering methods with reflective/anti-reflective boundary conditions: a comparison[J]. Matrix methods: theory, algorithms, appli-cations, World Scientific Publishing, V. Olshevsky, E. Tyrtyshnikov Eds., in press.
    [86] A. Arico, M. Donatelli, S. Serra-Capizzano. The anti-reflective algebra: structural and com-putational analyses with application to image deblurring and denoising[J]. Calcolo,2008,45:149-175
    [87] A. Arico, M. Donatelli, S. Serra-Capizzano. Spectral analysis of the anti-reflective algebra[J].Linear Algebra Appl.,2008,428:657-675
    [88] M. Donatelli, S. Serra-Capizzano. Anti-reflective boundary conditions and re-blurring[J]. In-verse Problems,2005,21:169-182
    [89] M. Donatelli, C. Estatico, J. G. Nagy, et al. Anti-reflective boundary conditions and fast2Ddeblurring models[C]. Proceeding to SPIE’s48th Annual Meeting, San Diego, CA USA, F.Luk Ed,2003,5205:380-389
    [90] M. Donatelli, C. Estatico, A. Martinelli, et al. Improved image deblurring with anti-reflectiveboundary conditions and re-blurring[J]. Inverse Problems,2006,22:2035-2053
    [91] J.G. Nagy, K.M. Palmer, L. Perrone. Iterative methods for image restoration: a Matlab objectoriented approach. http://www.mathcs.emory.edu/~nagy/RestoreTools,2002
    [92] J.G. Nagy, K.M. Palmer. Steepest descent, cg, and iterative regularization of ill-posed prob-lems[J]. BIT,2003,43:1003-1017
    [93] M. Bertero, P. Boccacci. Introduction to Inverse Problems in Imaging[M]. London: Inst. ofPhysics Publ.,1998
    [94] E.R. Dowski, W.T. Cathey. Extended depth of field through wavefront coding[J]. Appl Optics,1995,34:1859-1866
    [95] J.G. Nagy, M.K. Ng, L. Perrone. Kronecker product approximations for image restoration withreflexive boundary conditions[J]. SIAM J. Matrix Anal. Appl.,2004,25:829-841
    [96] J.G. Nagy, M.E. Kilmer. Kronecker product approximation for preconditioning in three-dimensional imaging applications[J]. IEEE Trans Image Process,2006,15:604-613
    [97] M. Rezghi, S.M. Hosseini. Lanczos based preconditioner for discrete ill-posed problems[J].Computing,2010,88:79-96
    [98] C.V. Loan, N. Pitsianis. Approximation with Kronecker products[M]. In Linear Algebra forLarge Scale and Real Time Applications, M.S. Moonen and G.H. Golub (eds). Dordrecht:Kluwer,1993,293-314
    [99] J. Chung, J.G. Nagy, D.P. O’Leary. A weighted-GCV method for Lanczos-Hybrid regulariza-tion[J]. Electron. Trans. Numer. Anal.,2010,28:149-167
    [100] F.S. Viloche Baza′n, L.S. Borges. GKB-FP: an algorithm for large-scale discrete ill-posed prob-lems[J]. BIT,2010,50:481-507
    [101] M. Hanke. Conjugate Gradient Type Methods for Ill-Posed Problems[M]. Harlow: LongmanScientific&Technical,1995,7-34
    [102] D.P. O’Leary D P, J.A. Simmons. A bidiagonalization-regularization procedure for large scalediscretizations of ill-posed problems[J]. SIAM J Sci Statist Comput,1981,2:474-489
    [103] M.E. Kilmer, D.P. O’Leary. Choosing regularization parameters in iterative methods for ill-posed problems[J]. SIAM J. Matrix Anal. Appl.,2001,22:1204-1221
    [104] M.E. Kilmer, P.C. Hansen, Espan ol M I, A projected-based approach to general form Tikhonovregularization[J]. SIAM J. Sci. Comput.,2007,29:315-330
    [105] M.F. Jiang, L. Xia, G.F. Shou, et al. Two hybrid regularization frameworks for solving theelectrocardiography inverse problem[J]. Physics in Medicine and Biology,2008,53:5151-5164
    [106] L.I. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms[J].Physica D: Nonlinear Phenomena,1992,60:259-268
    [107] N. Paragios, Y. Chen, O. Faugeras. Handbook of Mathematical Models in Computer Vision[M].New York: Springer,2006,17-31
    [108] M.R. Banham, A.K. Katsaggelos. Spatially adaptive wavelet-based multiscale image restora-tion[J]. IEEE Trans. Image Process.,1996,5:619-634
    [109] R. Neelamani, H. Choi, R. Baraniuk. ForWaRD: Fourier-wavelet regularized deconvolution forill-conditioned systems[J]. IEEE Trans. Signal Process.,2004,52:418-433
    [110] Y.W. Wen, M.K. Ng, W.K. Ching. Iterative algorithms based on decoupling of deblurring anddenoising for image restoration[J]. SIAM J. Sci. Comput.,2008,30:2655-2674
    [111] X.G. Lv, T.Z. Huang, Z.B. Xu, et al. Kronecker product approximations for image restorationwith whole-sample symmetric boundary conditions[J]. Inform. Sci.,2012,186:150-163
    [112] A. Bjo¨rck. A bidiagonalization algorithm for solving large and sparse ill-posed systems of linearequations[J]. BIT,1988,28:659-670
    [113] D.P. O’Leary, J.A. Simmons. A bidiagonalization-regularization procedure for large scale dis-cretizations of ill-posed problems[J]. SIAM J. Sci. Stat. Comput.,1981,2:474-489
    [114] A.N. Tikhonov. Solution of incorrectly formulated problems and the regularization method[J].Soviet Math. Dokl.,1963,4:1035-1038
    [115] V.A. Morozov. Regularization Methods for Solving Incorrectly Posed Problems[M]. New York:Springer-Verlag,1984
    [116] G.H. Golub, M. Heath, G. Wahba. Generalized cross-validation as a method for choosing agood ridge parameter. Technometrics[J].1979,21:215-222
    [117] J. Chung, J.G. Nagy, D.P. O’Leary. A weighted-GCV method for Lanczos-hybrid regulariza-tion[J]. Electron. Trans. Numer. Anal.,2008,28:149-167
    [118] F.S. Viloche Baza′n. Fixed-point iterations in determining the Tikhonov regularization parame-ter[J]. Inverse Problems,2008,24:035001
    [119] M.L. Song, D.C. Tao, C. Chen, et al. Color to gray: Visual cue preservation[J]. IEEE Trans.Pattern Anal. Mach. Intell.,2010,32:1537-1552
    [120] M.L. Song, D.C. Tao, C. Chen, et al. Probabilistic exposure fusion[J]. IEEE Trans. Image Pro-cess.,2012,21:341-357
    [121] J. Bolz, I. Farmer, E. Grinspun, et al. Sparse matrix solvers on the GPU: Conjugate gradientsand multigrid[J]. ACM Trans. Graphics,2003,22:917-924
    [122] J.M. Bardsley, J.G. Nagy. Covariance-preconditioned iterative methods for nonnegatively con-strained astronomical imaging[J]. SIAM J. Matrix Anal. Appl.,2006,27:1184-1198
    [123] F.S. Viloche Baza′n, L.S. Borges. GKB-FP: an algorithm for large-scale discrete ill-posed prob-lems[J]. BIT,2010,50:481-507
    [124] A. Bjo¨rck, E. Grimme, P. Van Dooren. An implicit shift bidiagonalization algorithm for ill-posed systems of linear equations[J]. BIT,1994,34:510-534
    [125] D. Calvetti, L. Reichel. Tikhonov regularization of large linear problems[J]. BIT,2003,43:263-283
    [126] M. Hanke. On Lanczos based methods for the regularization of discrete ill-posed problems[J].BIT,2001,41:1008-1018
    [127] J.G. Nagy, Z. Strakos. Enforcing nonnegativity in image reconstruction algorithms[J]. Mathe-matical Modeling, Estimation, and Imaging, David C. Wilson, et al., Eds.,2000,4121:182-190
    [128] M.R. Hestenes, E. Stiefel. Methods of conjugate gradients for solving linear systems[J]. J. Res.Nat. Bur. Standards,1952,49:409-436
    [129] L. Kaufman. Maximum likelihood, least squares, and penalized least squares for PET[J]. IEEETrans. Med. Imaging,1993,12:200-214
    [130] D. Calvetti, B. Lewis, L. Reichel. GMRES-type methods for inconsistent systems[J]. LinearAlgebra Appl.,2000,316:157-169
    [131] I. Daubechies, M. Defrise, C. De Mol. An iterative thresholding algorithm for linear inverseproblems with a sparsity constraint[J]. Comm. Pure Appl. Math.,2004,57:1413-1457
    [132] P.C. Hansen. Regularization tools version4.0for Matlab7.3[J]. Numer. Algor.,2007,46:189-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700