用户名: 密码: 验证码:
压电微悬臂梁质敏传感器性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于力-电双向耦合理论,采用有限元方法,数值模拟了压电微悬臂梁,并进行参数分析,为设计高灵敏度微悬臂梁提供理论依据。压电微悬臂梁作为一种高灵敏度的新型传感器件,具有体积小、成本低、响应速度快、灵敏度高、结构简单以及易于集成等优点,已广泛应用于生物、化学和环境监测等众多领域,特别是利用其动态模式检测方法具有频率变化的高灵敏性和很宽的动态范围,检测某些气体、溶液成份等成为国内外研究热点,为生化微质量检测开辟了新的空间。本文以压电悬臂梁式微质量传感器为研究对象,进行理论分析、数值仿真研究压电微悬臂梁的性能,为开发设计高灵敏度压电微悬臂梁提供理论依据。
     首先阐述了压电基本理论,分析了压电双向耦合效应。基于微悬臂梁的振动模型,理论分析了微悬臂梁在空气和液体中的共振频率和自身结构参数的定量关系,灵敏度与共振频率变化量、被测物质量的关系。
     基于力-电耦合理论,利用有限元方法数值模拟压电微悬臂梁静、动态性能。通过仿真系统研究了悬臂梁材料特性、长度、宽度、厚度及共振阶数对压电悬臂梁微质量灵敏度检测的影响;并在课题组长期研究OPCM压电传感材料的基础上,进一步提出了纵向振动的OPCM模型,数值模拟结果表明OPCM比PZT悬臂梁具有更高的灵敏度。分析微悬臂梁在空气、水中的频率响应曲线,并比较微悬臂梁品质因数Q的特性,当微悬臂梁应用于液体环境中时,由于液体阻尼的影响,微悬臂梁的品质因数会降低,并且随着品质因数的降低,微悬臂梁灵敏度也会降低。但如果品质因数过高,微悬臂梁系统的稳定性会降低。
     压电微悬臂梁作为一种新型的检测手段在现代分析测量仪器中发挥越来越重要的作用,本文工作为进一步研究高性能、高灵敏度的微悬臂梁传感器的开发应用提供理论依据。
Based on electromechanical coupling effects, the sensitivity of micro-cantilever is research by analog simulation and experiments. Piezoelectric micro-cantilever sensor as new-type sensing element with high sensitivity, Piezoelectric micro-cantilever sensors with many advantages such as small volume, low cost, simple structure, fast response, high sensitivity and easily integrated etc, have been extensively applied to electronic devices, biology, chemistry, environmental monitoring and many other fields. Especially, the detection of gas and liquid ingredients, has been becoming the hot field in the domestic and foreign sensor world, by the use of dynamic mode testing method with high sensitivity owing to frequency shift caused by absorbing gas or liquid molecule, further expanding the new space for research of biochemical ultra-mass detection.Based on piezoelectric micro-cantilevers as the research objects in this thesis, the theoretical analysis and simulation of the ultra-mass micro-cantilever sensors are done.
     Firstly, the basic theories of piezoelectric effects are concisely introduced in this paper, and Piezoelectric bilateral coupled effect is recited. Based on the vibration theoretical model of micro-cantilever in air and in liquid, the theoretical analysis is focused on the relation between the resonance frequency and structural parameters of itself, the relation between cantilever sensitivity and resonance frequency shift, the mass of detected matter and quality factor.
     Based on electromechanical coupling effects of piezoelectric sensor, static analysis, modal analysis and harmonic response analysis of the piezoelectric micro-cantilever are done using finite element numerical simulation method. The effect of length, width, and resonance mode on the mass detection sensitivity of the piezoelectric cantilever has been studied systematically. According to the research work of our group on OPCM piezoelectric material, vertical vibration OPCM spring model is further put forward and numerical simulation result shows that OPCM has higher sensitivity than PZT cantilever. Frequency -amplitude curves of the cantilever in air and in liquid are obtained using finite element numerical simulation method, and the quality factor of the cantilever is compared. When the micro-cantilever works in the liquid condition, the quality factor decreases because of the effect of the liquid damping, in addition, the sensitivity will decrease with the decrease of quality factor. However, if quality factor is too high, then the stability of the micro-cantilever will decrease accordingly.
     Piezoelectric micro-cantilever sensor as a new type testing approach plays an increasingly important role in the development of modern analysis instruments. This work provides theoretical basis and references for further developing high-powered and high sensitivity micro-cantilever sensors.
引文
[1]张立勇,张学工,李衍达.生物芯片技术[J].世界华人消化杂志.2004(4):955-958
    [2]A.Pralle,E.L.Florin,H.K.Ernst et al.Photonic force microscopy:a new tool providing new methods to study membranes at the molecular level[J].Single Molecules.2000(2):129-133
    [3]J.L.Yang et al.Mechanical behavior of ultrathin microcantilever[J].Sensors and Actuators A.2000(1):102-107
    [4]T.Coman,E.Kavesten,M.H.Wiku et al.An optical IR-source and CO2 chamber system for CO2 measurements[J[.Journal of Microelectromechanical Systems.2000(4):509-516
    [5]W.Gopel,J.Hesse and J.N.Zemel.Sensors:A comprehensive survey in chemical and biochemical sensors[M].Germany:Weinheim,1991
    [6]T.A.Betts,C.A.Triple.Selectivity of chemical sensors based on microcantilevers coated with thin polymer films[J].Analytica Chimica Acta.2000(1):89-99
    [7]F.Q.Yang,J.C.M.Li.Diffusion-induced beam bending in hydrogen sensors[J].Journal of Applied Physics.2003(11):9304-9309
    [8]S.Xu,J.N.Sylvain,G.Y.Liu et al.In situ studies of thiol self-assembly on gold from solution using atomic force microscopy[J].Journal of Chemical Physics.1998(12):5002-5012
    [9]C.Lee,T.Itoh,G.Sasaki,TSiga.Sol-gel derived PZT force sensor for scanning force microscopy[J].Materials Chemistry and Physics.1996(1):25-29
    [10]B.Rogers,L.Manning,T.Sulchek,J.D.Adams.Improving tapping mode atomic force microscopy with piezoelectric cantilevers[J].Ultramicroscopy.2004(3):267-276
    [11]J.D.Adams,L.Manning,B.Rogers,M.Jones,S.C.Minne.Self-sensing tapping mode atomic force microscopy[J].Sensors and Actuators A.2005(1):262-266
    [12]L.Fadel,E Lochon,I.Dufour et al.Chemical sensing:millimeter size resonant microcantilever performance[J].Journal of Micromechanics and Microengineering.2004(9):14-23
    [13]Y.Lee,G.Lim,W.Moon.A piezoelectric microcantilever bio-sensor using the mass-micro-balancing technique with self-excitation[C].Korea:2005
    [14]H.P.Lang,J.P.Ramseyer,W.Grange et al.An artificial nose based on microcantilever array sensors[J].Journal of Physics:Conference Series.2007(1):663-667
    [15]L.G.Carrascosa,M.Moreno,M.Alvarez,L.M.Lechuga.Nanomechanical biosensors:a new sensing tool[J]. Trends in Analytical Chemistry. 2006(25): 196-206
    [16] M. Yang, X. Zhang, K. Vafai, C.S. Ozkan. High sensitivity piezoresistive cantilever design and optimization of analyte-receptor binding[J]. Journal of Micromechanics and Micro engineering. 2003(13): 864-872
    [17] B. Ilic, H.G. Craighead, S. Krylov et al. Attogram detection using nanoelectromechanical oscillators[J]. Journal of Applied Physics. 2004 (95) :3694 - 3703
    [18] B. Ilic, D. Czaplewski, M. Zalalutdinov et al. Single cell detection with micromechanical oscillators [J]. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena. 2001(19):2825 - 2828
    [19] B. Ilic, Y. Yang, H.G. Craighead. Virus detection using nanoelectromechanical devices[J]. Applied Physics Letters. 2004 (85) :2604 - 2606
    [20] A. Gupta, D. Akin, R. Bashir. Single virus particle mass detection using micro-resonators with nanoscale thickness[J]. Applied Physics Letters. 2004(84): 1976 - 1978
    [21] A. Gupta, D. Akin and R. Bashir. Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonaters[J]. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena. 2004(22):2785 - 2791
    [22] Y.J. Xie, Q.W. Shi et al. Simulation of translocation of long DNA chain through an entropic trapping channel[J]. Acta Physica Sinica. 2004(8): 2796-2800
    [23] D.R. Baselt, G.U. Lee, R.J. Colton. Biosensor based on force microscope technology[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 1996(14): 789-793
    [24] J.E. Sader. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope[J]. Journal of Applied Physics. 1998(1): 64-76
    [25] D. Maraldo, R. Mutharasan. Mass-change sensitivity of high-order mode of piezoelectric-excited millimeter-sized cantilever (PEMC) sensors: theory and experiments [J]. Sensors and Actuators B: Chemical. 2010(2): 731-739
    [26] A.R. Kadam, G.P. Nordin, M.A. George. Use of thermally induced higher order modes of a microcantilever for mercury vapor detection[J]. Journal of Applied Physics. 2006(9): 094905(1-4)
    [27] F. Lochon, I. Dufour, D. Rebiere. An alternative solution to improve sensitivity of resonant micro cantilever chemical sensors: comparison between using high order modes and reducing dimensions[J]. Sensors and Actuators B: Chemical. 2005(2): 979-985
    [28] G.A. Campbell, R. Mutharasan. Method of measuring bacillus anthracis spores in the presence of copious amounts of bacillus thuringiensis and bacillus cereus[J]. Analytical Chemistry. 2006(3): 1145-1152
    [29] D. Maraldo, F. Garcia, R. Mutharasan. Method for quantification of a prostate cancer biomarker in urine without sample preparation[J]. Analytical Chemistry. 2007(20): 7683-7690
    [30] Z. Hao, A. Erbil, F. Ayazi. An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations[J]. Sensors and Actuators A: Physical. 2003(2): 156-164
    [31] G.A. Campbell, R. Mutharasan. Detection and quantification of proteins using self-excited PZT-glass millimeter-sized cantilever. Biosensors and Bioelectronics[J]. 2005(21): 597-607
    [32] K. Rijal, R. Mutharasan. Piezoelectric-excited millimeter-sized cantilever sensors detect density differences of a few micrograms/ml in liquid medium[J]. Sensors and Actuators B: Chemical. 2007(1): 237-244
    [33] K. Rijal, R. Mutharasan. Method for measuring the self-assembly of alkanethiols on gold at femtomolar concentrations[J]. American Chemical Society. 2007(12): 6856-6863
    
    [34] D. Maraldo, R. Mutharasan. Detection and confirmation of staphylococcal enterotoxin b in apple juice and milk using piezoelectric-excited millimeter-sized cantilever sensors at 2.5 femtograms/mL[J]. Analytical Chemistry. 2007(20): 7636-7643
    [35] D. Maraldo, K. Rijal, G. Campbell, R. Mutharasan. Method for label-free detection of femtogram quantities of biologics in flowing liquid samples[J]. Analytical Chemistry. 2007(7): 2762-2770
    [36] G.A. Campbell, R. Mutharasan. Detection of pathogen Escherichia coli O157: H7 using self-excited PZT-glass microcantilevers[J]. Biosensors and Bioelectronics. 2005(21): 462-473
    [37] G.A. Campbell, R. Mutharasan. Sensing of liquid level at micron resolution using self-excited millimeter-sized PZT-cantilever[J]. Sensors and Actuators A: Physical. 2005(2): 326-334
    [38] A. Johansson et al. Polymeric cantilever-based biosensors with integrated readout[J]. Applied Physics Letters. 2006 (17): 1899-2010
    [39] A. Boisen, T. Thundat. Design & fabrication of cantilever array biosensors[J]. Materials Today. 2009( 9): 33:38
    [40] H.J. Butt. A sensitive method to measure changes in the surface stress of solids [J]. Journal of Colloid and Interface Science. 1996(1): 251-260
    [41] A.M. Moulin, S.J. O'Shea, and M.E. Welland. Microcantilever-based biosensors[J]. Ultramicroscopy.2000(4):23-31
    [42]K.M.Hansen,T.Thundat.Microcantilever biosensors[J].Methods.2005(1):57-64
    [43]T.Thundat,A.Majumdar.Microcantilevers for physical,chemical,and biological sensing[J].Sensors and Sensing in Biology and Engineering.2003:337-355
    [44]A.Vidic,D.Then,Ch.Ziegler.A new cantilever system for gas and liquid,sensing[J].Ultramicroscopy.2003(4):407-416
    [45]K.Rijal,R.Mutharasan.Piezoelectric-excited millimeter-sized cantilever sensors detect density differences of a few micrograms/mL in liquid medium[J].Sensors and Actuators B:Chemical.2007(1):237-244
    [46]骆英.正交异性压电复合材料功能元件的研究[D].南京:南京航空航天大学,2000
    [47]Y.Luo,B.Q.Tao.The OPCM strain gauges for strain & stress measurement of the orthotropic material structures[J].Acta mechanica solida sinica.2000(4):337-345
    [48]Y.Luo,G.Q.Zhao et al.Orthotropic piezoelectric composite materials actuator and its preliminary application[C].Smart Structures and Materials 2002:Active Materials:Behavior and Mechanics.San Diego:2002
    [49]陶宝祺,熊克,袁慎芳等.智能材料结构[M].北京:国防工业出版社,1997
    [50]P.G.Datskos,M.J.Sepaniak,C.A.Tipple.Photomechanical chemical micro sensors[J].Sensors and Actuators B:Chemical.2001(1-3):393-402
    [51]J.J.Headrick,M.J.Sepaniak,N.V.Lavrik.Enhancing chemi-mechanical transduction in microcantilever chemical sensing by surface modification[J].Ultramicroscopy.2003(1):417-424
    [52]P.G.Datskos,N.V.Lavrik,and M.J.Sepaniak.Detection of explosive compounds with the use of microcantilevers with nanoporous coatings[J].Sensor Letters.2003(1):25-32
    [53]Yue Min,Lin Henry,E.Daniel et al.A 2-D microcantilever array for multiplexed biomolecular analysis[J].Journal of Miccroelectromechanical Systems.2004(2):1-8
    [54]张准,汪凤泉.振动分析[M].南京:东南大学出版社,1991
    [55]赵倩云.微悬臂梁品质因数Q控制技术的研究[D].天津大学,2006
    [56]J.E.Sader.Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope[J].Journal of Applied Physics.1998(1):64-76
    [57]G.Y.Chen,R.J.Warmack,T.Thundat,D.P.Allison.Resonance response of scanning force microscopy cantilevers[J].Review of Scientific Instruments.1994(8):2532-2537
    [58]J.E.Sader.Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope[J].Journal of Applied Physics.1998(1):64-76
    [59]S.Kirstein,M.Mertesdorf,M.Schonhoff.The influence of a viscous fluid on the vibration dynamics of a scanning near-field optical microscopy fiber probes and atomic force microscopy cantilevers[J].Journal of Applied Physics.1998(4):1782-1790
    [60]J.W.Yi,W.Y.Shih and W.H.Shih.Effect of length,width and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers[J].Journal of Applied Physics.2002(3):1680-1686
    [61]师汉民,谌刚,吴雅.机械振动系统-分析、测试、建模、对策[M].武汉:华中理工大学出版社,1992
    [62]赵玫,周海亭,陈光治等.机械振动与噪声学[M].北京:科学出版社,2004
    [63]G.Y.Chen,R.Warmack,T.Thundat et al.Resonance response of sCanning force microscopy cantilevers[J].Review of Scientific Instruments.1994(8):2532-2537
    [64]F.L.Degertekin,B.Hadimioglu,T.Sulchek et al.Actuation and characterization of atomic force microscope cantilevers in fluids by acoustic radiation pressure[J].Applied Physics Letters.2001(11):1628-1632
    [65]李艳宁,唐洁,饶志军等.用微悬臂梁测量溶液粘度的研究[J].压电与声光.2005(10):572-574
    [66]王助成,邵敏.有限单元法基本原理与数值方法[M].北京:清华大学出版社,1988
    [67]饶寿期.有限元法和边界元法基础[M].北京:北京航空航天大学出版社,1990
    [68]莫喜平.ANSYS软件在模拟分析声学换能器中的应用[J].声学技术.2007(6):1279-1290
    [69]B.J.Zimmerman William,中仿科技公司.COMSOL Multiphysics有限元法多物理场建模与分析[M].北京:人民交通出版社,2007
    [70]葛金生.MEMS微结构动力学特性研究[D].南京理工大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700