用户名: 密码: 验证码:
稀土掺杂氟化物微纳米晶的可控合成及其上转换发光性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,对稀土上转换氟化物的研究发展迅速。人们在研究的过程中发现材料的上转换发光效率与材料的晶体结构、尺寸以及形貌都有很大的关系。因此稀土离子掺杂氟化物上转换材料的可控合成是研究上转换发光与尺寸关系的关键。本论文围绕这一问题进行了较为系统的研究,并取得以下成果:
     (1)用水热法成功制备了NaYF_4:Yb~(3+),Tm~(3+)微米晶。在980 nm激发下观察到了较强的蓝色和紫外上转换发光。通过比较不同样品,研究了投料浓度、反应时间和F-/Ln~(3+)摩尔比对产物晶体结构、尺寸和形貌的具体影响,并分析了原因。
     (2)向系统中添加NaNO3研究了Na+离子在反应中对产物晶体结构变化和尺寸形貌变化的影响。通过向系统中引入了如H~+、Li~+和K~+离子,研究了不同阳离子对产物结构的影响。
     (3)用溶剂热法合成了NaYF_4:Yb~(3+),Tm~(3+)纳米晶。该纳米晶可以很好的分散在非极性溶剂中形成透明胶体溶液。测量了上述透明溶液的上转换光谱,并分析了相应的上转换发光机理。再通过水解钛酸四丁酯,成功制备粒径约为40 nm的NaYF_4: Yb~(3+), Tm~(3+)/TiO_2纳米核壳结构并研究了TiO_2包层对上转换发光的影响。
In recent years, with the popularity of commercial infrared laser diode, the upconversion (UC) materials gradually become a hot research field. Due to their excellent optical properties, Rare Earth (RE)-doped UC materials have been applied extensively in many fields, such as solid-state lasers, optical communication, biolabels and photodynamic therapy. Under the same doping concentration of RE ions, the UC luminescence has close relationships with the crystal structure, sizes and morphologies of UC materials. Therefore, controllable synthesizing UC materials that plays a more crucial role. The main contents in this thesis are as follows:
     (1)Synthesizing Tm~(3+)/Yb~(3+) co-dopedβ-NaYF_4 micro-prisms by hydrothermal method successfully, and measuring their UC spectrum under the excitation of 980 nm. Although the sample’s size is large, with average length of 13μm and average diameter of 6μm, its ultraviolet (UV) UC efficiency is quite high in that the 291 nm and 346 nm emissions which come from five-photon process and four-photon process respectively are strong. This phenomenon shows the potential applications in short wavelength solid-state laser. By adjusting various reaction parameters such as reaction time, feeding amount and the molar ratio of NaF/Ln(NO3)3 ,et al, the influence of these parameters on crystal structures, sizes and morphologies of products has been studied. As the feeding amount increasing, the phenomenon of crystal structure transformation has been observed that YF3 would transform toα-NaYF_4 andα-NaYF_4 toβ-NaYF_4. The reaction time would make product’s size larger and reduce the slenderness. As time increasing, the crystal structure would transform fromβ-NaYF_4 toα-NaYF_4 andα-NaYF_4 to YF3, which is the opposite phenomenon observed in changing feeding concentration. The increasing of NaF/Ln(NO3)3 molar ratio would not only help the crystal structure transforming toβ-NaYF_4, but also reduce product size and increase slenderness.
     (2) The role Na+ ions play has been studied in by introducing NaNO3 into system. The results indicate that Na+ ions could regulate the morphology of YF3 and also enter the crystal lattice to formα-NaYF_4. As the amount of Na+ ions increasing, the product crystal structure would transform toβ-NaYF_4 fromα-NaYF_4. And these added sodium salts could also control the diameters ofα-NaYF_4 in a wide concentration range that diameters would shrink as the salt amount increasing. Toβ-NaYF_4, once NaNO3 introducing, the slenderness would increase, and would keep almost unchanged. Introduce other cations like H~+, Li~+ and K~+ ions to study the cation effect. Compared to Na~+ ions, H~+ and Li~+ have advantages in competition, due to the smaller ion radius, and would be more capable of entering lattice; while the larger radius K+ ions would barely change the crystal structure fromα-NaYF_4 to KYF_4.
     (3) NaYF_4:Yb~(3+),Tm~(3+) nanocrystals have been successfully synthesized with the diameters of about 4 nm. Since the surface modification of oleic acid, the obtained NaYF_4:Yb~(3+),Tm~(3+) nanocrystals could well solute in the nonpolar solvent, forming a transparent solution. Under the excitation of 980 nm, record the UC spectrum of as-prepared solution and analyze the corresponding luminescent mechanisms. By the hydrolysis of TBOT, the NaYF_4: Yb~(3+), Tm~(3+)/TiO_2 nano core-shell structure has been successfully synthesized, with the diameter of about 40 nm. After annealing, the TiO_2 outer layer would have crystal structure. Under the same testing conditions, compared the UC optical property of NaYF_4:Yb~(3+),Tm~(3+) nanocrystals and NaYF_4: Yb~(3+), Tm~(3+)/TiO_2 nanostructure, the result indicates that the amorphous TiO_2 shell could enhance but the annealed TiO_2 shell could effectively reduce the UV UC emissions.
引文
[1] F. Auzel, C. R. Acad. Sci. (Paris), 1966, 262B:1016.
    [2] Auzel F. Computeur quantique par transfer d'energie de Yb3+,Tm3+ dans an tungstate mixte et dans un VeiTe gemanate [J]. C. R. Acad. Sci. (Paris), 1966, 263B:819-821.
    [3] Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids [J]. Chem. Rev., 2004, 104:139.
    [4] Joubert M F. Photon avalanche upconversion in rare earth laser materials,”Opt. Mat., 1999, 11(2-3):181-203.
    [5] Pollnau M., Gamelin D.R. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems [J]. Phys. Rev. B 2000, 61(5):3337-3346.
    [6] L .F. Johnson, H. J. Guggenheim. Appl. Phys. Lett., 19(1971):44.
    [7]夏艳琴. Bi2O3与NaYF4体系的上转换研究[D].湖南:湘潭大学材料与电光物理学院,2006.
    [8] Kramer K.W., Biner D., Frei G., et al. Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors [J]. Chem. Mater. 2004,16:1244-1251.
    [9] Menyuk N., Dwight K., Pierce J. W., et al. NaYF4: Yb, Er an efficient upconversion phosphor [J]. Appl. Phys. Lett, 1972, 21(4):159-161.
    [10]刘晃清,秦伟平,赵贵军等,稀土氟化物纳米材料的制备及其上转换发光[J].发光学报, 2002, 23(4):361-363.
    [11] Wang Yan, Qin Weiping, Zhang Jisen, et al. Synthesis of Colloidal LaF3:Yb3+0.04, Er3+0.01 Nanocrystals with Green Upconversion Luminescence [J]. J. Rare Earths 2008, 26:40-43.
    [12] JiansheWang, Shuhui Bo, Limei Song, et al. One-step synthesis of highly water-soluble LaF3:Ln3+ nanocrystals in methanol without using any ligands [J].Nanotechnology, 2007, 18:465606.
    [13] Pei X.J., Hou Y.B., Zhao S.L. et al. Frequency upconversion of Tm3+ and Yb3+ codoped YLiF4 synthesized by hydrothermal method [J]. Materials Chemistry and Physics, 2005, 90:270-274.
    [14]陈宝玖,王海宁,秦伟平等.高效的红外到可见上转换氟氧化物玻璃材料[J].光谱学与光谱分析仪洲, 2000, 20(3):257-260.
    [15] Stantos P V, Gouveia E A, Araujo M T, et al. IR-visible upconversion and thermal effects in Pr3+/Yb3+ codoped Ga2O3:La2S3 chalcogenide glasses [J]. J. Phys.: Condens. Matter., 2000, 12:10003.
    [16] Sokolska I, Kuck S, Dzik G D, et al. The upconversion processes in Ho3+ doped LiTaO3 [J]. J. Alloys and Compounds., 2001, 323-34:273.
    [17] Wang X J, Xie Y, Guo Q X. Synthesis of high quality inorganic fullerene-like BN hollow spheres via a simple chemical route [J]. Chem. Commun., 2003, 21:2688-2689.
    [18] Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: formation of“dandelions [J]. J. Am. Chem. Soc., 2004, 126:8124-8125.
    [19] Yu D, Yam V. Hydrothermal-Induced Assembly of Colloidal Silver Spheres into Various Nanoparticles on the Basis of HTAB-Modified Silver Mirror Reaction [J]. J. Phys. Chem. B, 2005, 109:5497-5503.
    [20] Wang C R, Tang K B, Yang Q, et al. Fabrication of BiTeI submicrometer hollow spheres [J]. J. Mater. Chem, 2002, 12:2426-2429.
    [21] Li B, Xie Y, Huang J, et al. Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles [J]. Adv. Mater., 1999, 11:1456-1459.
    [22] Trentler T, Goel S, Hickman K, et al. Solution-Liquid-Solid Growth of Indium Phosphide Fibers from Organometallic Precursors: Elucidation of Molecular and Nonmolecular Components of the Pathway [J]. J. Am. Chem. Soc., 1997, 119: 2172-2181.
    [23] Cao M, Hu. C, Wang B. The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers [J]. J. Am.Chem. Soc., 2003, 125:11196-11197.
    [24] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth [J]. Appl. Phys. Lett., 1964, 4:89-92.
    [25] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires [J]. Angew. Chem. Int. Ed., 2002, 41:4790-4793.
    [26] Bakkers E, Verheijen M A. Synthesis of InP nanotubes [J]. J. Am. Chem. Soc., 2003, 125:3440-3441.
    [27] Xun Wang, Jing Zhuang, Qing Peng, et al. A General Strategy for Nanocrystal Synthesis [J]. Nature, 2005, 437:121-124.
    [28]余朝义.稀土掺杂氟化物上转换发光材料的制备及光谱特性研究[D].吉林:长春理工大学材料物理与化学学院,2006.
    [29] Sen D, Deb P, Mazumder S, et al. Microstructural investigations of ferrite nanoparticles prepared bynonaqueous precipitation route [J]. Mater. Res. Bull, 2000, 35:1243-1250.
    [30] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. J Phys Chem., 1977, 81: 1484-1488.
    [31] J. Y. Allain, M. Monerie, and H. Poignant. Tunable green upconversion erbium fiber laser [J]. Electron. Lett., 1992, 28:111.
    [32] S. Saders, R. G. Waarts, D. G. Mehuys, et al. Laser diode pumped 106 mW blue upconversion fiber laser [J]. Appl. Phys. Lett., 1995, 67:1815.
    [33] J. W. Stouwdam and F. C. J. M. van Veggel. Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles [J]. Nano Lett., 2002, 2:733.
    [34] Dev, K C.; Zhang, Y. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells [J]. Nanomedicine 2008, 3(1):73.
    [35] Jalil, R.A.; Zhang, Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals [J]. Biomaterials, 2008, 29:4122.
    [36] Thrash R J, Johnson L F. Upconversion laser emission from Yb3+-sensitized Tm3+ in BaY2F8 [J]. J. Opt. Soc. Am. B., 1994, 11(5): 881-885.
    [37] S. Barsanti, F. Cornacchia. Nd3+-doped fluoride film grown on LiYF4 substrate by pulsed laser deposition [J]. Thin Solid Films. 2008, 516:2009-2013.
    [38] Chen X. B., and Song Z. F. Study on six-photon and five-photon ultraviolet upconversion luminescence [J]. J. Opt. Soc. Am. B 2007, 24: 965-971.
    [39] Hehlen M.P., Kuditcher A., Lenef A.L., et al. Nonradiative dynamics of avalanche upconversion in Tm:LiYF4 [J]. Phys. Rev. B 2000, 61 (2): 1116-1128.
    [40] Owen J.J., Cheetham A.K., Mcfarlane R.A., Orientation-dependent fluorescence studies and spectroscopic analysis of doped barium yttrium fluoride upconversion laser crystals (BaY2–x–yYbxTmyF8) [J]. J. Opt. Soc. Am. B 1998, 15 (2): 684-693.
    [41] H. X. Mai, Y. W. Zhang and L. D. Sun, et al. Size- and Phase-Controlled Synthesis of Monodisperse NaYF4: Yb, Er Nanocrystals from a Unique Delayed Nucleation Pathway Monitored with Upconversion Spectroscopy [J]. J. Phys. Chem. C, 2007, 111:13730.
    [42] G. S. Yi, H. C. Lu, S. Y. Zhao, et al. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors [J]. Nano Lett., 2004, 4:2191.
    [43] L. Wang, and Y. Li. Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Multicolor Luminescent Materials [J]. Nano Lett. 2006, 6:1645-1649.
    [44] Chunyan Cao, Weiping Qin, et al. Enhanced Ultraviolet Up-conversion Emissions of Tm3+/Yb3+ codoped YF3 Nanocrystals [J]. Journal of Fluorine Chemistry, 2008, 129: 204–209.
    [45] Guofeng Wang, Weiping Qin, Lili Wang, et al. Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals [J].Optics Express, 2008, 16:11907.
    [46] Shuang Fang Lim, William S. Ryu, and Robert H. Austin. Particle size dependence of the dynamic photophysical properties of NaYF4: Yb, Er nanocrystals [J]. Optics Express, 2010, 18:2309-2316.
    [47] J. Shan, M. Uddi, N. Yao, et al. The Hidden Effects of Particle Shape and Criteria for Evaluating the Upconversion Luminescence of the Lanthanides Doped Nanophosphors [J]. J. Phys. Chem. C, 2010, 114 (6):2452–2461.
    [48] Sun, Y., Chen, Y., Tian, L., et al. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4: Yb, Er nanocrystals [J]. Nanotechnology, 2007,18:275609.
    [49] Liang, X., Wang, X., Zhuang, J., et al. Synthesis of NaYF4 Nanocrystals with Predictable Phase and Shape [J]. Adv. Funct. Mater., 2007, 17:2757.
    [50] Wang, F., Han, Y, Lim, C.S., et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature, 2010, 463:1061.
    [51] K. Riwotzki, H. Meyssamy, H. Schnablegger, et al. Liquid-Phase Synthesis of Colloids and Redispersible Powders of Strongly Luminescing LaPO4: Ce, Tb Nanocrystals [J]. Angew. Chem., Int. Ed., 2001, 40:573.
    [52] Heer, S., K?mpe, K., Güdel, H. U., et al. Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals [J]. Adv. Mater., 2004, 16:2102.
    [53] Hilderbrand, S.A, Shao, F., Salthouse, C., et al. Upconverting luminescent nanomaterials: application to in vivo bioimaging [J]. Chem. Commun., 2009, 28:4188 - 4190.
    [54] Nyk, M., Kumar, R., Ohulchanskyy, T. Y., et al. High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors [J]. Nano Lett., 2008, 8 (11):3834.
    [55] Liu, C., Wang, H., Li, X. et al. Monodisperse, size-tunable and highly efficient b-NaYF4: Yb, Er(Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications [J]. J. Mater. Chem., 2009, 19:3546.
    [56] Li, C., Yang, J., Quan, Z., et al. Different Microstructures of a-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources [J]. Chem. Mater., 2007, 19:4933.
    [57] Zhao, J., Sun, Y., Kong, X., et al. Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level [J]. J. Phys. Chem. B, 2008, 112: 15666–15672.
    [58] Boyer, J. C., Cuccia, L. A, Capobianco, J. A. Synthesis of Colloidal Upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals [J]. Nano Lett., 2007, 7: 847-852.
    [59] Zhang, F., Li, J., Shan, J., et al. Shape, Size, and Phase-Controlled Rare-Earth Fluoride Nanocrystals with Optical Up-Conversion Properties [J]. Chem. Eur. J., 2009, 15:11010.
    [60] Fan Zhang, Ying Wan, Ting Yu, et al. Uniform Nanostructured Arrays of Sodium Rare-Earth Fluorides for Highly Efficient Multicolor Upconversion Luminescence [J].Angew. Chem. Int. Ed., 2007, 46:7976-7979.
    [61] Wang, M., Huang, Q. L., Hong, J. M., et al. Selective Synthesis and Characterization of Nanocrystalline EuF3 with Orthorhombic and Hexagonal Structures [J]. Cryst. Growth Des., 2006, 6:1972.
    [62] Wang, M., Huang, Q. L., Hong, J. M., et al. Controlled Synthesis and Characterization of Nanostructured EuF3 with Different Crystalline Phases and Morphologies [J]. Cryst. Growth Des., 2006, 6, 2169.
    [63] Li, C., Yang, J., Yang, P., et al. Hydrothermal Synthesis of Lanthanide Fluorides LnF3 (Ln ) La to Lu) Nano-/Microcrystals with Multiform Structures and Morphologies [J]. Chem. Mater., 2008, 20:4317.
    [64] Wanbiao Hu, Liping Li, Guangshe Li, et al. High-Quality Brookite TiO2 Flowers: Synthesis, Characterization, and Dielectric Performance [J]. Cryst. Growth Des., 2009, 9 (8):3676-3682.
    [65] Li Gao, Xin Ge, Zhanli Chai, et al. Shape-controlled synthesis of octahedralα-NaYF4 and its rare earth doped submicrometer particles in acetic acid [J]. Nano Res., (2009) 2: 565-574.
    [66] Guo, F.; Friedman, J.M. Charge Density-Dependent Modifications of Hydration Shell Waters by Hofmeister Ions [J]. J. Am. Chem. Soc., 2009, 131:11010.
    [67] Chunxia Li, Zewei Quan, Jun Yang, et al. Highly Uniform and Monodisperseβ-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: Hydrothermal Synthesis and Luminescent Properties [J]. Inorg. Chem., 2007, 46 (16):6329-6337.
    [68] G. Qin, W. Qin, S. Huang, et al. Infrared-to-violet upconversion from Yb3+ and Er3+ codoped amorphous fluoride film prepared by pulsed laser deposition [J]. J.Appl.Phys., 2002, 92:6936.
    [69] G. Qin, W. Qin, C. Wu, et al. Enhancement of ultraviolet upconversion in Yb3+ and Tm3+ codoped amorphous fluoride film prepared by pulsed laser deposition [J]. J.Appl.Phys., 2003, 93;4328.
    [70] N. Menyuk, K. Dwight and J. W. Pierce. NaYF4: Yb, Er—an efficient upconversion phosphor [J]. Appl. Phys. Lett., 1972, 21:159.
    [71] H. X. Mai, Y. W. Zhang, R. Si, et al. High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and Optical Properties [J]. J. Am. Chem. Soc., 2006, 128:6426.
    [72] G. S. Yi and G. M. Chow. Colloidal LaF3: Yb, Er, LaF3: Yb, Ho and LaF3: Yb, Tm nanocrystals with multicolor upconversion fluorescence [J]. J.Mater.Chem. 2005, 15:4460.
    [73] Y. Wang, W. Qin, J. Zhang, et al. Bright Green Upconversion Fluorescence of Yb3+, Er3+-codoped Fluoride Colloidal Nanocrystal and Submicrocrystal Solutions [J]. Chem. Lett., 2007, 36:912.
    [74] Y. Wang, W.P. Qin, W.H. Di, et al. Infrared-to-visible and infrared-to-violet upconversion fluorescence of rare earth doped LaF3 nanocrystals [J]. Chinese Phys. B, 17, 1674 (2008).
    [75] L. Wang, and Y. Li. Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals [J]. Chem. Mater. 2007, 19:727.
    [76] J. Zhang, W. Qin, J. Zhang, et al. Self-Assembly of Yb3+-Tm3+ Co-Doped YF3 Elongated Nanocrystals into Nanobundles of Straw and Up-Conversion Fluorescence [J]. J. Nanosci. Nanotechnol., 2008, 8:1388.
    [77] R.J.Thrash and L.F .Johnson, Upconversion laser emission from Yb3+-sensitized Tm3+ in BaY2F8 [J]. J. Opt. Soc. Am. B, 1994, 11:881-885.
    [78] Xiaobo Chen and Samuel S. Mao. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications [J]. Chem. Rev., 2007, 107, 2891-2959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700