用户名: 密码: 验证码:
金属掺杂TiO_2纳米管及水热制备TiO_2纳米纤维的光电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO2光催化技术已经得到广泛研究。阳极氧化法制备的TiO2纳米管阵列具有较大比表面积和较强的吸附能力,与钛基体结合牢固等优点,表现出比TiO2纳米膜更高的光催化活性和光电转化效率,对TiO2纳米管阵列进行合理改性进一步提高其光催化活性具有重要意义。金属元素掺杂是改善TiO2光催化活性的一种有效方法。为此,制备了金纳米晶负载和铁掺杂TiO2纳米管阵列电极,并对制备的光电极进行了系统表征和光催化活性研究。同时,为实现纳米TiO2产业化,对水热法制备TiO2纳米纤维进行了研究。本论文围绕以上内容,主要开展了以下几个方面的工作:
     (1)采用电化学自掺杂法制备了Au纳米晶负载TiO2纳米管阵列复合电极。电极为阵列结构,平均孔径为100nm,平均管长为7μm。X射线衍射(XRD)、X射线荧光光谱分析(XRF)和紫外-可见漫反射光谱(DRS)分析显示,500℃煅烧制得的电极为锐钛矿相;Au的掺杂量为0.05wt.%;在400nm-700nm产生一个明显的Au纳米晶表面等离子共振吸收带,电极在可见光区具有明显的吸收峰。可见光下,Au/TiO2纳米管阵列复合电极6小时可降解亚甲基蓝(10ppm)达85%以上,而未负载的TiO2纳米管阵列基本未降解,其在可见光下表现出良好的光催化性能。
     (2)以阳极氧化TiO2纳米管阵列为基底,采用超声震荡法制备了铁掺杂的TiO2纳米管阵列。由DRS及SPV分析可知铁掺杂增强了TiO2纳米管阵列对可见光的吸收和光生电了-空穴对的分离能力。铁掺杂TiO2纳米管阵列的光催化实验表明,紫外光照射2小时可降解亚甲基蓝(10ppm)达90%,可见光照射6小时降解40%,表现出良好的光催化活性。但当铁掺杂过量,会产生抑制作用。
     (3)应用水热法制备了TiO2纳米纤维。制备的TiO2纳米纤维直径为50nm左右,长度为20μm。由透射电镜图(TEM)可以看出实验过程中经酸冲洗浸泡和煅烧后,纳米纤维的结构没有被破坏。300-450℃煅烧可得到锐钛矿相TiO2。在紫外光下催化降解亚甲基蓝(10ppm),80分钟降解率达90%。
Titanium dioxide (TiO2) with nanostructure has been studied as photocatalyst in degradation of organic pollutants for decades. TiO2 nanotube arrays prepared by anodization method possess great specific surface area, prominent absorption ability and strong mechanical strength, thus exhibit better PC performance and higher photoelectron conversion efficiency than TiO2 nano film. However, it is very important to further improve its photocatalytic activity by reasonable doping. It has been proved that metal doping would be a viable way to improve the photocatalytic activity of TiO2. In the present work, Au nanocrystal anchored TiO2 nanotube array electrode and iron doped TiO2 nanotube array electrode were prepared and characterized. In addition, to realize the industrialization of nano TiO2, TiO2 nanofibers prepared by hydrothermal method were studied and characterized. Based on the mentioned above, some works were carried out as follows:
     (1) Au nanocrystal anchored TiO2 nanotube array electrode was prepared by electrochemical self-doping method. The electrodes presented compact array configuration with an average pore diameter of approximately 100 nm and a length approximately 7μm. Au nanocrystal anchored TiO2 nanotube array electrode analyzed by X-ray fluorescence spectroscopy (XRF) were 0.05wt.%. X-ray spectra (XRD) indicated that the crystal structure of Au/TiO2 electrode prepared at 500℃was pure anatase phase. UV-vis absorption spectra (DRS) showed a broad absorption band in the 400nm-700nm region because of plasma resonance absorption of ultrafine Au nanocrystal. Under visible light irradiation, the photodegradation of methylene blue (MB, 10ppm) on Au/TiO2 electrode was more than 85% in 6h.
     (2) Fe-doped TiO2 nanotube array electrode was prepared by immersing TiO2 nanotube array in iron salt solution under ultrasonic condition. The DRS and SPV analysis showed noticeable increase of visible light absorption and excellent separation of ability of electron-hole pair of Fe-doped TiO2 nanotube array electrode. Under UV light irradiation, the photodegradation of MB (10ppm) on Fe/TiO2 electrode was more than 90% in 2 h, while visible light irradiation,40% photodegradation efficiency was obtained in 6h. Fe-doped TiO2 nanotube array electrode exhibited excellent photocatalytic activity, but excess iron doping, its photocatalytic activity was decreased.
     (3) TiO2 nanofibers with diameter of approximately 50nm and length of approximately 20um were prepared by hydrothermal method. During the process of acid washing and calcination, the structure of nanofibers was not damaged. After 300-450℃calcination, they were anatase phase. Under UV light irradiation, the photodegradation of MB was 90% in 80min.
引文
[1]Adachi M,Murata Y,Harada M et al. Formation of titania nanotubes with high photocatalytic activity[J].Chem Lett,2000,29(8):942-946.
    [2]花海蓉,孙秀云,王连军等.光催化-膜分离组合工艺降解斯蒂芬酸的研究[J].环境科学与管理,2007,32(10):84-86.
    [3]Augustynski J. The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO2. Electrochimica Acta,1993,38(1):43-46.
    [4]张金龙,陈锋,何斌等.光催化[M].上海:华东理工大学出版社,2004.
    [5]Gennari F C, Qasquevich D M. Kinetics of the anatase-rutile transformation in TiO2 in the presence of Fe2O3[J].Journal of Materials Science,1998,33(6):1571-1578.
    [6]周武艺.纳米TiO2的掺杂改性及光催化性能的研究[D].长沙:湖南大学,2005.
    [7]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J].Nature,1972,238(5358):37-38.
    [8]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin Environmental Contamination Toxicology, 1976,16(6):697-701.
    [9]Hoffmann H R, Martin S T, Chci W, et al. Environmental applications of semiconductor photocatalsis[J]. Chemical Reviews,1995,95(1):69-96.
    [10]Garraway E R, Hoffmann A J, Hoffmann M R. Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids[J]. Environmental Science & Technology, 1994,28(5):776-785.
    [11]Duonghong D, Borgarello E, Gratzel M. Dynamics of light-induced water cleavage in colloidal systems[J]. Journal of the American Chemical Society,1981,103(16):4685-4690.
    [12]Oills D F, Pelizzetti E, Serpone N. Photocatalysis:Fundamentals and applications [D]. New York: Wiley Pr.,1989.
    [13]Moazzem M, Gregory H, Raupp B. Polychromatic radiation field model for a honeycomb monolith photocatalytic reacto[J]. Chemical Engineering Science,1999,54(15-16):3027-3034.
    [14]韩世同,习海玲等.半导体光催化研究进展与展望[J].化学物理学,2003,16(5):339-349.
    [15]李广勤.二氧化钛光催化材料的可控制备及性能研究[D].北京:中国科学院理化技术研究所,2007.
    [16]Wu T X, Liu G M, Zhao J C et al. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions[J], Journal of Physical Chemistry B,1998,102(30):5845-5851.
    [17]Fujishima A, Rao N T, Tryk A D. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [18]黄开金等.纳米材料的制备及应用[M].冶金工业出版社,2009.
    [19]H. Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song, and J. C. Zhao. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions[J]. Journal of the American Chemical Society,2005,127:6730-6736.
    [20]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [21]刘平等.掺杂TiO2光催化膜材料的制备及其灭菌机理[J].催化学报,1999,20(3):325-328.
    [22]何陆春,葛晓青,赵景等.光催化氧化和膜处理染色废水及其回用[J].染整技术,2005,27(10):28-31.
    [23]陈士夫等.光催化降解磷酸酯类农药的研究[J].感光科学与光化学,2000,18(1):7-11.
    [24]Mao L Q, Li Q L, Dang H X et al. Synthesis of nanocrystalline TiO2 with high photoactivity and large specific surface area by sol-gel method[J]. Material Research Bull,2005,40(2):201-208.
    [25]张冬梅,俞惠敏.炼油高浓度有机废碱水预处理方法研究[J].环境工程,2005,23(4):36-38.
    [26]Yin S, Ihara K, Aita Y et al. Visible-light induced photocatalytic activity of TiO(2-X)A(y) (A=N, S) prepared by precipitation route[J]. Journal of Photo-chemistry and Photobiology A: Chemistry,2006,179(1-2):105-114.
    [27]Zhang Y, Gu H, Iijima S et al. Heterogeneous growth of B-C-N nanotubes by laser ablation [J]. Chemical Physics Letters,1997,279(5-6):264-269.
    [28]Lin H P, Mou C Y."Tubules-within-a-tubule"hierarchical order of mesoporous molecular sieves in MCM-41 [J].Science,1996,273(5276):765-768.
    [29]Hacohen Y R, Grunbaum E, Tenne R et al. Cage structures and nanotubes of NiCl2. Nature. 1998,395(6700):336-338.
    [30]Sung S L, Tsai S H, Tseng C H et al. Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition [J]. Applied Physics Letters,1999,74(2):197-199.
    [31]Gong D, Grimes C A, Varghese O K et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal Matters Research,2001,16(12):3331-3334.
    [32]Feldman Y, Wasseman E, Srolovitz D J et al. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes[J].Science,1995,267(13):222-225.
    [33]张云怀,胡夫,肖鹏.TiO2纳米管的制备及应用研究[J].材料导报,2007,5(21):91-94.
    [34]Martin C R. Membrane-based synthesis of nanomaterials[J]. Chemistry of Materials, 1996,8(8):1739-1746.
    [35]杨绍贵.纳米TiO2及其复合膜电极的制备与光电催化性能研究[D].大连:大连理工大学.2004.
    [36]Kasuga T,Hiramatsu M et al.Formation of titanium oxide nanotube[J].Langmui,1998,14(]2): 3160-3163.
    [37]Du G H, Chen Q, Che R C et al. Preparation and structure analysis of titanium oxide nanotubes[J]. Applied Physics Letters,2001,79(26):3702-3804.
    [38]Zhong Yong Yuan, Bao Lian Su. Titanium oxide nanotubes, nanofibers and nanowires[J]. Colloids and Surfaces A:Physciochem. Eng.Aspects,2004,241:173-183.
    [39]Chien Te Hsieh, Wen Syuan Fan, Wei Yu Chen. Impact of mesoporous pore distribution on adsorption of methylene blue onto titania nanotubes in aqueous solution[J]. Microporous and Mesoporous Materials,2008,116:677-683.
    [40]Yao B D, Chan Y F, Zhang X Y et al. Formation mechanism of TiO2 nanotubes[J]. Applied Physics Letters,2003,82(2):281-283.
    [41]Wang W Z, Varghese O K, Paulose M et al. A study on the growth and structure of titania nanotubes[J].Journal of Materials Research,2004,19(2):417-422.
    [42]Yupeng Guo, Nam Hee Lee, Hyo Jin Oh et al. Preparation of titanate nanotube thin film using hydrothermal method[J]. Thin Solid Films,2008,516:8363-8371.
    [43]Xinsheng Peng and Aicheng Chen. Large-Scale synthesis and characterization of TiO2-based nanostructures on Ti substrates[J]. Advanced Function Material,2006,16:1355-1362.
    [44]韩文涛.马建华,郝彦忠.二氧化钛纳米管的研究进展[J].河北科技大学学报,2005,26(3):199-202.
    [45]Kasuga T,Hiramatsu M,Hoson A et al.Titania nanotubes prepared by chemical processing[J]. Advanced Material,1999,11 (15):1307-1311.
    [46]Wang Y Q, Hu G Q, Duan X F et al. Microstructure and formation mechanism of titanium dioxide nanotubes[J].Chemical Physics Letters,2002,365(15):427-431.
    [47]赵慧敏,陈越,全燮等.Zn掺杂TiO2纳米管电极制备及其对五氯酚的光电催化降解[J].科学通报,2007,52(2):158-162.
    [48]Chuanmin Ruan, Maggie Paulose, Oomman K Varghese et al. Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte[J].Solar Energy Materials and Solar Cells,2006,90:1283-1295.
    [49]Ghicov A, Tsuchiay H, Schmuki P et al. Titanium oxide nanotubes prepared in phosphate electrolytes[J].Electrochemistry Communications,2005,7(5):505-509.
    [50]Macak J M, Schmuki P. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes[J].Electrochimica Acta,2006,52(3):1258-1264.
    [51]Macak J M, Aldabergerova S, Ghicov A et al. Smooth anodic TiO2 nanotubes:annealing and structure[J].Physical Status Solidi,2006,203(10):R67-R69.
    [52]郑青,周保学,白晶等.TiO2纳米管阵列及其应用[J].化学进展,2007.19(]):117-122.
    [53]孙岚,李静,庄惠芳等.TiO2纳米管阵列的制备、改性及其应用研究进展[J].无机化学学报.2007,23(11):1841-1850.
    [54]Gopal K Mor, Oomman K Varghese, Maggie Paulose et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties,and solar energy applications. Solar Energy Materials & Solar Cells,2006,90:2011-2075.
    [55]G K Mor, O K Varghese et al. Fabrication of tapered conicalshaped titani nanotubes[J].Journal of Material Research,2003,18(11):2588.
    [56]Gopal K Mor, Karthik Shankar, Maggie Paulose et al. Enhanced photocleavage of water using titania nanotube arrays[J].Nano Letters,2005,5:191.
    [57]Mor G K, Carvalho M A, Varghese O K et al. A room temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination[J]. Journal of Materials Research,2004,19(2):628-634.
    [58]Mor G K, Shankar K, Paulose M et al. Enhanced photocleavage of water using titania nanotube arrays[J].Nano Letters,2005,5(1):191-195.
    [59]Zhao J, Wang X, Li L. Electrochemical fabrication of well-ordered titania nanotubes in H3PO4/HF electrolyte[J]. Electronics Letters,2005,41(13):771-772.
    [60]Beranek R, Hildebrand H, Schmuki P. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes[J]. Electrochemical and Solid-State Letters,2003,6(3):B12-B14.
    [61]Ruan C, Paulose M, Varghese O K et al. Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte[J]. Solar Energy Materials and Solar Cells,2006,90(9):1283-1295.
    [62]Macak J M, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes[J]. Electrochimica Acta,2005,50(18):3679-3684.
    [63]Ghicov A, Tsuchiay H, Schmuki P et al. Titanium oxide nanotubes prepared in phosphate electrolytes[J]. Electrochemistry Communications,2005,7(5):505-509.
    [64]Macak J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium[J].Angewandte Chemie International Edition,2005,44(14):2100-2102.
    [65]Lung Chuan Chen, Yi Ching Ho, Chao Ming Huang. Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes [J]. Electrochimica Acta,2009,54(15):3884-3891.
    [66]Ruan C, Paulose M, Varghese O K et al. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte[J].Journal of Physical Chemistry B,2005,109(33):15754-15759.
    [67]Paulose M, Yoriya S et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length[J]. Journal of Physical Chemistry B,2006,110(33):16179-16184.
    [68]Albu S P, Ghicov A, Macak J M et al.250 μm long anodic TiO2 nanotubes with hexagonal self-ordering[J]. Physical Status Solidi,2007,1(2):R65-R67.
    [69]Gopal K Mor, Oomman K Varghese et al. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films[J]. Advanced functional materials,2005,15:1291-1296.
    [70]Andrei Ghicov, Jan M. Macak et al. TiO2 nanotube layers:Dose effects during nitrogen doping by ion implantation[J].Chemical Physics Letters,2006,419:426-429.
    [71]Paulose M, Mor G K, Varghese O K et al. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays[J]. Journal of Photochemisty and Photobiology A:Chemistry,2006,178(1):8-15.
    [72]Xie Y B. Photoelectrochemical application of nanotubular titania photoanode[J]. Electrochemical Acta,2006,51(17):3399-3406.
    [73]Wang M, Guo D J. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation[J]. Journal of Solid State Chemistry,2005,178:1996-2000.
    [74]Wu Zhongbiao, Dong, Fan, Zhao Weirong et al. The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with highsisible light photocatalytic activity[J]. Nanotechnology,2009,20(23):2209-2213.
    [75]Chalita Ratanatawanate, Chunrong Xiong. Fabrication of PbS quantum dot doped TiO2 nanotubes[J]. ACS Nano,2008,2(8):1682-1688.
    [76]Idakiev V, Yuan Z Y, Tabakova T et al. Titanium oxide nanotubes as support of nano-sized gold catalysts for low temperature water-gas shift reaction[J]. Applied Catalysis A: General,2005,281(1-2):149-155.
    [77]Xian Feng Gao, Wen Tao Sun,Guo Ai et al. An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films. Journal of Physical Chemistry C,2009,113:20481-20485.
    [78]Ilie Hanzu, Thierry Djenizian Ortiz and Philippe Knauth. Mechanistic study of Sn electrodeposition on TiO2 nanotube layers:thermodynamics, kinetics, nucleation, and growth modes[J].Journal of Physical Chemistry C,2009,113:20568-20575.
    [79]秦亮,陶杰,王玲等.Ti/TiO2-Pt修饰电极的制备及电催化性能研究[J].稀有金属材料与工程,2007,36(10):1870-1873.
    [80]Shuai Yuan, Le YuLiyi Sh, Jun Wu, Jianhui Fang and Yin Zhao. Highly ordered TiO2 nanotube array as recyclable catalyst for the sonophotocatalytic degradation of methylene blue[J].Catalysis Communications,2009,10(8):1188-1191.
    [81]Lai Y K, Sun L, Lin C J et al. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity[J]. Journal of the Electrochemical Society,2006,153(7):D123-D127.
    [82]Quan X, Ruan X L, Zhao H M et al. Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode[J].Environmental Pollution, 2007,147(2):409-414.
    [83]Quan X, Yang S G, Ruan X L et al. Preparation of titania nanotubes and their environmental applications as electrode[J].Environmental Science & Technology,2005,39(10):3770-3775.
    [84]Sergiu P. Albu, Andrei Ghicov, Jan M. Macak et al. Self-organized free-standing TiO2 nanotube membrane for flow-through photocatalytic applications[J]. Nano Letters, 2007,7(51):1286-1289.
    [85]Regan B O, Gratzel M A. Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2[J]. Nature,1991,353(6346):737-740.
    [86]Adachi M, Murata Y, Okada 1 et al. Formation of titania nanotubes and applications for dye-sensitized solar cells[J]. Journal of the Electrochemical Society,2003,150(8):G488-G493.
    [87]Patcharee Charoensirithavorn,a Yuhei Ogomi,b Takashi Sagawa,a,z Shuzi Hayase,band Susumu Yoshikawaalmprovement of Dye-Sensitized Solar Cell ThroughTiCl4-Treated TiO2 Nanotube Arrays[J]. Journal of The Electrochemical Society,2010,157:B354-B356.
    [88]Hun Park, Dae-Jin Yang, Ho-Gi Kim, Seong-Je Cho, Su-Chul Yang, Hyunjung Lee and Won-Youl Choi. Fabrication of MgO-coated TiO2 nanotubes and applicationto dye-sensitized solar cells[J]. Journal of Electroceramics.2009,23:146-149.
    [89]Varghese O K. Paulose M, Shankar K et al. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays[J]. Journal of Nanoscience and Nanotechnology, 2005,5(7):1158-1165.
    [90]Mohapatra SK, Misra M, Mahajan VK, Raja KS. Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: Application of TiO(2-)xC(x) nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode [J]. Journal of physical chemistry,2007, 111(24):8677-8685.
    [91]Prida V M, Velez M H, Cervera M et al. Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes[J].Journal of Magnetism and Magnetic Materials,2005,294(2):69-72.
    [92]Ch S H, Jin S et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes[J].Biomaterials,2005,26(24):4938-4943.
    [93]Li Shi Wang, Ming Wei Xiao, Xin Jian Huang et al. Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles[J]. Journal of Hazardous Materials,2009,161:49-54.
    [94]Huaiyong Zhu, Xueping Gao, Ying Lan et al. Hydrogen titanate nanofibers covered with anatase nanocrystals:A delicate structure achieved by the wet chemistry reaction of the titanate nanofibers[J]. Journal of the American Chemical Society,2004,126:8380-8381.
    [95]菅盘铭,夏亚穆,李德宏等.掺杂TiO2纳米粉的合成、表征及催化性能研究[J].催化学报,2001,22(2):161-164.
    [96]Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between phtoreactivity and charge carrier recombination dynamics[J]. Journal Physical Chemistry,1994,98(51):13669-13679.
    [97]S Rengaraj and X Z Li. Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension[J].Journal of Molecular Catalysis A,2006,243(1):60-67.
    [98]Baozhu Tian, Chunzhong Li, Feng Gu et al. Synergetic effects of nitrogen doping and Au loading on enhancing the visible-light photocatalytic activity of nano-TiO2[J]. Catalysis Communications,2009,10(6):925-929.
    [99]L Sun, J Li, C L Wang. An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity [J].Solar Energy Materials and Solar Cells, 2009,93(10):1875-1880.
    [100]Guoguang Liu, Xuezhi Zhang, Liqing Zheng et al. The preparation of Zn2+doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities[J].Chemosphere,2005,59(9):1367-1371.
    [101]Wu Guosheng, Nishikawa, Tomohiro et al. Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response [J].Chemistry of materials,2007, 19(18):4530-4537.
    [102]Jimmy C, Yu J G, Ho W K et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 Powders[J].Chemistry of Materials,2002,14(9): 3803-3816.
    [103]Shankar K, Mor G K et al. An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films:modified of bandgap and photoelectrochemical properties[J]. Journal of Physics D:Applied Physics,2006,39(11):2361-2366.
    [104]Ghicov A,Tsuchiya H et al. TiO2 nanotube layers:Does effects during nitrogen doping by ion implantation[J]. Chemical Physics Letters,2005,419(4-6):426-429.
    [105]Li D, Haneda H, Hishita S et al. Visible-light-driven N-F-codoped TiO2 photocatalysts:Optical characterization, photocatalysis, and potential application to air purification[J].Chemistry of Materials,2005,17(10):2596-2602.
    [106]Liu H Y, Gao L. (Sulfur, nitrogen)-codoped rutile-titanium dioxide as a visible-light-activated photocatalyst[J]. Journal of the American Ceramic Society,2004,87(8):1582-1584.
    [107]Sun W T, Pan H Y et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes [J].Journal of the American Chemical Society,2008,130(4):1124-1125.
    [108]吴树新.改性纳米TiO2光催化氧化还原性能的研究[D].天津:天津大学,2003.
    [109]Jiaqing Geng, Dong Yang, Juhong Zhu et al. Nitrogen-doped TiO2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method[J]. Materials Research Bulletin,2009,44:146-150
    [110]Yanyan Zhang,Wuyou Fu, Haibin Yang et al. A novel humidity sensor based on Na2Ti3O7 nanowires with rapid response-recovery Sensors and Actuators B,2008135:317-321.
    [111]Dmitry V Bavykin, Jens M Friedrich and Frank C Walsh. Protonated titanates and TiO2 nanostructured materials:synthesis, properties, and applications[J]. Advanced Materials,2006, 18:2807-2824.
    [112]Chuanmin Ruan,Craig A. Grimes. Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte[J]. Solar Energy Materials & Solar Cells,2006,90:1283-1295.
    [113]Andrei Ghicov, Hiroaki Tsuchiya, Jan M. Macak et al. Annealing effects on the photoresponse of TiO2 nanotubes. Journal of Statistical Physics,2006,203(4):454-458.
    [114]Jan M Macak, Patrik Schmuki. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes[J]. Electrochimica Acta,2006,52:1258-1264.
    [115]Maggie Paulose, Karthik Shankar, Sorachon Yoriya et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length[J]. Journal of Physical Chemistry,2006,28: 1435-1440.
    [116]Peter L M, Riley D J, Tull E J. Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots[J]Journal of the Chemical Society,2002,10:1030-1031.
    [117]Robel I, Subramanian V. Kuno M et al. Quantum dot solar cells Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films[J]. Journal of the American Chemical Society,2006,128:2385-2393.
    [118]Plass R, Pelet S, Krueger J. Quantum dot sensitization of organic-inorganic hybrid solar cells[J].Jouranl of Physical Chemistry,2002,106:7578-7580.
    [119]Murry C B, Kagan C R, Bawendi M G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices[J].Science,1995,270:1335-1338.
    [120]Henglein A. Small-particle research:Physicochemical properties of extremely small colloidal metal and semiconductor particles[J].Chemical Reviews,1989,89:1861-1873.
    [121]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996,271:933-937.
    [122]Du L,Furube Yamamoto, Katoh R et al. Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems:dependence on TiO2 particle size[J]. Jouranl of Physical Chemistry C,2009,113:6454-6462.
    [123]齐普荣,王光辉.光降解偶氮染料的研究进展[J].染料与染色,2007,44(2):38-41.
    [124]陈荣圻.现代活性染料与分散染料的发展[J].染料与染色,2007,44(2):47-50.
    [125]Jan M Macak,Michael Hueppe and Patrik Schmuki. Filling of TiO2 nanotubes by self-doping and electrodeposition[J]. Advanced Materials,2007,19:3027-3031.
    [126]Ping Wang, Teng Feng Xie, Hai Yan Li et al.Synthesis and plasmon-induced charge-transfer properties of monodisperse gold-doped titania microspheres[J]. Chemistry A European Journal,200915:4366-4372.
    [127]E W McFarland, J Tang. A photovoltaic device structure based on internal electron emission[J]. Nature,2003,421:616-618.
    [128]Hexing Li, Zhenfeng Bian, Jian Zhu et al. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity[J].American Chemical Society,2007,129:4538-4539.
    [129]Li YZ, Zhang et al. Highly efficient visible-light-induced photocatalytic activity of nanostructured Agl/TiO2 photocatalyst[J]. Langmuir,2008,24(15):8351-8357.
    [130]Shuyun Kuang, Lixia Yang.Fabrication,characterization and photoelectrochemical properties of Fe2O3 modified TiO2 nanotube arrays[J]. Applied Surface Science,2009,255:7385-7388.
    [131]Susanta K Mohapatra, Narasimharao Kondamudi, Subarna Banerjee et al. Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solarLight illumination[J]. Langmuir,2008,24:11276-11281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700