不同修复措施下侵蚀红壤的团聚体稳定性与肥力特点
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以湖北省咸宁市侵蚀红壤为供试对象,大田试验设置了作物对照(CK)、作物+聚丙烯乙酰(PAM) (C1)、作物+稻草覆盖(C2)、作物+带状牧草(C3)、作物+PAM+带状牧草(C4)和作物+稻草覆盖+带状牧草(C5)等6个处理,分别于种植花生前(A)、花生收获后(B)和小麦收获后(C)采集表层土壤样品,并结合室内土培试验,分析了不同修复措施下土壤肥力、团聚体组成及其稳定性的变化,研究了水稳性团聚体中有机质的分布规律,探讨了不同措施提高红壤肥力、改善土壤结构的机理,以期为侵蚀红壤结构退化的修复重建提供理论依据。研究结果表明:
     1.大田试验中,B时期各处理(除C2)的pH值和阳离子交换量(CEC)均高于CK,说明修复后土壤的缓冲性能增强,相对于CK减缓了土壤pH值的下降;B时期各处理土壤的全氮、全磷含量的平均值分别比A时期提高了50%、56%。
     大田小区不同时期土壤有机质含量的变化趋势为B>C>A,C时期C2处理的有机质含量比CK增加了20.63%,其他处理间无显著差异;室内土培试验表明,稻草3.2 gkg-1。(D1)处理的土壤有机质含量比对照(CK)上升了33.06%,其他处理间无显著差异。
     大田试验不同时期土壤碱解氮含量表现为C>B>A,土壤速效磷和速效钾含量均表现为B>C>A,B、C时期均以C4处理的碱解氮含量最高,C时期C2和C5处理土壤速效钾分别比CK提高了152.67%、59.25%;土培试验表明,PAM有利于土壤碱解氮含量的提高,稻草可增加土壤速效磷、速效钾含量,土壤速效钾含量随着稻草施用量的增加而显著上升。
     随着修复时间的延长,大田小区土壤游离态铁铝氧化物含量逐渐减少,非晶形铁铝氧化物含量逐渐增加,说明土壤晶形铁铝氧化物逐渐向非晶形转化,铁铝氧化物的活化度逐渐提高。
     2.各处理干筛团聚体以大粒径(>4 mm,4-2 mm)为主,稻草和PAM可显著增加土壤>4 mm干筛团聚体的含量。湿筛后,各处理土壤团聚体的组成发生变化。大田实验中,各级水稳性团聚体含量从高到低的顺序是:<0.25 mm、1-0.5 mm、0.5-0.25 mm、2-1 mm、4-2 mm、>4 mm,随着修复时间的延长,<0.25 mm的微团聚体逐渐向2-1 mm和0.5-0.25 mm的大团聚体转变,C时期各处理>0.25 mm的水稳性团聚体含量比CK增加了23.57%-40.23%;土培试验中,PAM可显著提高>4 mm水稳性团聚体的含量,且随着PAM用量的增加而增加。
     用>0.25 mm水稳性团聚体含量(WSA)、>0.25 mm团聚体的破坏率(PAD)和平均重量直径(MWD)来衡量土壤团聚体稳定性,结果表明,大田试验以C2、C4处理的团聚体稳定性较高,土培实验中PAM2 g kg-1(P1)、稻草1.6 g kg-1+PAM1 g kg-1 (D2P2)、稻草3.2 g kg-1+PAM1 g kg-1 (D1P2)处理的团聚体稳定性显著高于其他处理。
     3.大田试验不同时期水稳性团聚体的有机质含量表现为B>C>A。随着团聚体粒径(>4 mm,4-2 mm,2-1 mm,1-0.5 mm,0.5-0.25 mm)的减小,水稳性团聚体的有机质含量逐渐降低。B、C时期团聚体有机质含量分别以C4、C5处理的团聚体有机质含量最高。土壤有机质含量与各粒径水稳性团聚体的有机质含量呈线性正相关,与小粒径(2-1 mm,1-0.5 mm,0.5-0.25 mm)团聚体有机质含量的相关性达极显著水平,相关系数为0.7792-0.8286。同一粒径(除0.5-0.25 mm)下,C2处理水稳性团聚体有机质含量与土壤有机质含量的相关系数(0.9338-0.9962)明显高于其他处理的。
     4.大田试验中,无论是4-5 mm的干筛团聚体还是水稳性团聚体,团聚体有机质含量表现为内层>外层,B时期团聚体内外层有机质含量高于C时期,各处理干筛团聚体外层有机质含量低于土壤有机质含量,内层有机质含量与其相差不大,而水稳性团聚体内外层有机质含量均明显高于土壤有机质含量。
     5.从提高侵蚀红壤肥力和团聚体稳定性方面来看,本研究认为大田试验中C2和C4处理的修复效果好于其他处理。
In this research, taking eroded red soil of Xianning City, Hubei Province as experimental material, six treatments control (CK), PAM (C1), straw mulch (C2), contour hedgerow (C3), PAM+contour hedgerow (C4) and straw mulch+contour hedgerow (C5) were set in field test, and samples of topsoil were collected before planting peanut (A) and after harvesting of peanut (B) and wheat (C) respectively. Combining with soil incubation experiment, the changes of soil fertility, aggregates distribution and stability of different restoration measures were studied, as well as the distribution of organic matter (OM) in water stable aggregates of various sizes, aggregate interiors and exteriors. It was expected to study the effects of different measures on improving red soil fertility and soil structure in order to provide theoretical basis for the reconstruction of eroded red with degradated structure. The results showed that:
     1. In field test, both pH and cation exchange capacity (CEC) in all treatments (except C2) were higher than those of CK in B period, indicating that soil buffer capacity was strengthened and soil pH of all treatments decreased slowly relative to CK. Compared with A period, the content of total nitrogen and total phosphorus in B period were increased by 50%,56% respectively.
     The order of soil OM content in different periods of field test was B>C>A, and OM content of C2 treatment increased significantly by 20.63% in contrast to CK during C period, but there was no significant difference between other treatments. In soil incubation experiment, OM content of the treatment with 3.2 g kg-1 straw mulch (D1) significantly grew up to 8.13 g kg-1 compared with control (CK), while no significant differences were observed between other treatments.
     The content of soil available nitrogen in field test increased gradually from A period to C period, while the order of available phosphorus and available potassium were B>C>A. C4 treatment had the highest percentage of soil available nitrogen in either B period or C period. Besides, available potassium content of C2 and C5 treatment in C stage were significantly higher than that of CK, and its increasing extent reached 152.67%, 59.25% respectively. In soil incubation experiment, it was found that PAM enabled to improve soil available nitrogen content, while rice straw was beneficial to increasing the content of available phosphorus and available potassium, especially available potassium rose significantly with the increasing of rice straw amount.
     With restoration time prolonged, free iron-aluminum oxides content was gradually decreased, but the amorphous showed opposite trend, it reflected that iron-aluminum oxides gradually transformed from crystalline to amorphous with the improvement of activation grade.
     2. In both field test and soil incubation experiment, not only dry aggregates in all treatments were mainly distributed in>4 mm,4-2 mm, but also rice straw and PAM could significantly increase the content of>4 mm dry aggregate. After wet sieving, from high to low, the content of water stable aggregates percentage of field test were<0.25 mm,1-0.5 mm,0.5-0.25 mm,2-1 mm,4-2 mm,>4 mm. Micro-aggregates (<0.25 mm) were agglomerated to 2-1 mm and 0.5-0.25 mm, and the content of water stable aggregates (>0.25 mm) in all treatments were higher than that of CK in C period, with the increasing extent from 23.57% to 40.23%. Meanwhile, the percentage of>4 mm water stable aggregates were greatly improved with the increasing quantity of PAM.
     Aggregate stability were studied through three aspects which were>0.25 mm water stable aggregates (WSA),>0.25 mm percentage of aggregate disruption (PAD) and mean weigh diameter (MWD), the aggregate of C2 and C4 treatments were more stable in field test, while PAM2 g kg-1 (P1), straw mulch 1.6 g kg-1+PAM1 g kg-1 (D2P2), straw mulch 3.2 g kg-1+PAM1 g kg-1 (D1P2) were relatively stable in soil incubation experiment.
     3. In field test, the order of organic matter content of water stable aggregates in different periods was B>C>A, and the content were reduced with the diminishing of aggregate diameter. Water stable aggregates of C4 and C5 hit the highest organic matter percentage in B and C stage. Moreover, there was a linear positive correlation happened to organic matter between soil and water stable aggregates, and the correlation coefficients (r) of small aggregates (2-1 mm,1-0.5 mm,0.5-0.25 mm) ranged from 0.7792 to 0.8286, with a very significant level. The correlation coefficients of C2 treatment (0.9338-0.9962) were obviously higher than that of other treatments.
     4. Both in 4-5 mm dry aggregate and in water stable aggregate of field test, organic matter in aggregate exteriors was lower than that in interiors. Organic matter content of aggregate interiors in B period was over that in C period. Compared with soil organic matter, organic matter content of dry aggregate exteriors was lower, but slight difference for interiors. However, soil organic matter was much lower than that of water stable aggregate interiors and exteriors.
     5. With respect to improving fertility and aggregate stability of eroded red soil, C2 and C4 treatments had better restoration effect in field test.
引文
1.鲍士旦.土壤农化分析.北京:中国农业出版社,2000,129-154
    2.曹丽花,赵世伟,梁向锋等.PAM对黄土高原主要土壤类型水稳性团聚体的改良效果及机理研究.农业工程学报,2008,24(1):45-49
    3.陈恩凤,周礼恺,邱凤琼.土壤肥力实质的研究Ⅱ.黑壤.土壤学报,1985,22(2):113-119
    4.陈恩凤.土壤肥力物质基础及其调控.北京:科学出版社,1990,14(3):772-775
    5.陈利军,周礼凯.土壤保肥供肥机理及其调节n.棕壤型菜园土的腐殖质结合形态及其肥力学意义.应用生态学报,1999,10(4):427-429
    6.陈世正,杨邦俊,宋光煜等.稻草还田对土壤肥力与作物产量的影响.土壤肥料,1995,4:13-17,42
    7.D希勒尔.土壤物理学概论.尉庆丰,荆家海,王益权等译.西安:陕西人民出版社,1988
    8.杜尧东,夏海江.聚丙烯酰胺防治坡地水土流失田间试验研究.土壤侵蚀与水土保持学报,,2000,14(3):10-13
    9.方勇,章勇.南方红壤区种植黑麦草的效应研究.草业科学,2005,22(4):69-71
    10.郭杏妹,吴宏海,罗媚等.红壤酸化过程中铁铝氧化物矿物形态变化及其环境意义.岩石矿物学杂志,2007,26(6):515-521
    11.何腾兵,杨开琼.PAM对土壤保肥供肥性能的研究.土壤通报,1997,28(6):257-260
    12.何云峰,徐建民,侯惠珍等.有机无机复合作用对红壤团聚体组成及腐殖质氧化稳定性的影响.浙江农业学报,1998,10(4):197-200
    13.胡国成,章明奎.氧化铁对土粒强胶结作用的矿物学证据.土壤通报,2002,33(1):25-27
    14.黄伟生,黄道友,汪立刚等.稻草覆盖对坡地红壤培肥及作物增产的效果.农业工程学报,2006,22(10):102-104
    15.霍琳.长期施肥对黄土高原旱地黑垆土团聚体的影响.[硕士学位论文].兰州:甘肃农业大学图书馆,2007
    16.姜灿烂,何园球,李辉信等.长期施用无机肥对红壤旱地养分和结构及花生产量的影响.土壤学报,2009,46(6):1103-1108
    17.姜培坤,周国模,钱新标.侵蚀型红壤植被恢复后土壤养分含量与物理性质的变化.水土保持学报,2004,18(1):12-14,30
    18.冷延慧,长期施肥对棕壤、黑土团聚体组成及其稳定性的影响.[博士学位论文].沈阳:沈阳农业大学图书馆,2008
    19.李德成,梁音,赵玉国等.南方红壤区水土保持主要治理模式和经验.中国水土保持,2008,12:54-56
    20.李富宽,姜慧新.秸秆覆盖的作用与机理.当代畜牧,2003,6:38-40
    21.李海鹰,姜小三,潘剑君等.土壤阳离子交换量分布规律的研究—以江苏省溧水县为例.土壤,2007,39(3):443-447
    22.李恋卿,潘根兴,张旭辉.退化红壤植被恢复中表层土壤微团聚体及其有机碳的变化.土壤通报,2000,31(5):193-195
    23.李新举,张治国.秸秆覆盖与秸秆翻压还田效果比较.国土与自然资源研究,1999,1:43-45
    24.李学垣主编.土壤化学及实验指导.北京:中国农业出版社,1997
    25.李阳兵,谢德体.不同土地利用方式对岩溶山地土壤团粒结构的影响.水土保持学报,2001,15(4):122-125
    26.李朝霞,蔡崇法,史志华等.鄂南第四纪粘土红壤团聚体的稳定性及其稳定机制初探.水土保持学报,2004,18(4):69-72
    27.梁音,张斌,潘贤章等.南方红壤丘陵区水土流失现状与综合治理对策.中国水土保持科学,2008,6(1):22
    28.刘京,常庆瑞,李岗等.连续不同施肥对土壤团聚性影响的研究.水土保持通报,2000,20(4):24-26
    29.刘士余,聂明英,彭鸿燕.百喜草及其应用研究.安徽农业科学,2007,35(25):7807-7808,7810
    30.刘晓利,何圆球.不同利用方式和开垦年限下红壤水稳性团聚体及养分变化研究.土壤,2009,41(1):84-89
    31.刘迎新,王凯荣,谢小立等.稻草覆盖对亚热带红壤旱坡地玉米旱期生长的生理调节作用及其产量效应.生态与农村环境学报,2007,23(4):18-23,56
    32.刘玉含,张展羽,伊德里萨等.农田秸秆覆盖技术及其发展趋势分析.水利经济,2007,25(2):53-56
    33.龙明杰,张宏伟,陈志泉等.高聚物对土壤结构改良的研究Ⅲ.聚丙烯酰胺对赤红壤的改良研究.土壤通报,2002,33(1):9-13
    34.龙忠富,汪俊良,刘正书等.百喜草不同种植模式的水土保持效应初探.山地农业生物学报,2004,23(5):408-411
    35.鲁如坤.土壤农业化学分析方法.中国土壤学会编.北京:中国农业科技出版社,2000,272-282
    36.吕仕洪,向悟生,李先琨等.红壤侵蚀区植被恢复研究综述.广西植物,2003,23(1):83-89
    37.潘定杨,杨羊根,潘富英.利用优质牧草改造低丘红壤侵蚀劣质地的研究.中国水土保持,1992,(10):40-43
    38.潘英华,雷廷武,张晴雯.土壤结构改良剂对土壤水动力学参数的影响.农业工程学报,2003,19(4):37-39
    39.彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响.生态学报,2003,23(10):2176-2183
    40.沈林洪,陈晶萍,黄炎和.百喜草特性的研究.福建水土保持,2001,13(2):52-56
    41.沈裕琥,黄相国,王海庆.秸秆覆盖的农田效应.干旱地区农业研究,1998,16(1):45-50
    42.史德明,周伏健,徐朋.我国南方土壤侵蚀动态与水土保持发展趋势.福建水土保持,1993(3):9-13
    43.史学正,于东升.我国亚热带土壤侵蚀的生物工程治理.水土保持研究,1999,6(2):137-141
    44.苏静.宁南地区植被恢复对土壤团聚体稳定性及碳库的影响.[硕士学位论文].杨凌:西北农林科技大学图书馆,2005
    45.孙天聪,李世清,邵明安.长期施肥对褐土有机碳和氮素在团聚体中分布的影响.中国农业科学,2005,38(9):1841-1848
    46.腾玲玲.PAM对紫色土坡地土壤磷素流失的控制效应与机理分析.[硕士学位论文].重庆:西南大学,2008
    47.王春红,肖娟,王治国等.秸秆覆盖对坡面径流及土壤流失影响的研究.山西农业大学学报,1998,18(2):149-152
    48.王春燕, 黄丽,谭文峰等.几种侵蚀红壤中有机质和团聚体的关系.水土保持学报,2007,21(3):52-56
    49.王旭东,关文玲,杨雪芹等.添加不同材料对肥料中氮磷在土壤中淋出特性的影响.农业环境科学学报,2005,24(3):544-547
    50.王学强,蔡强国,和继军.红壤丘陵区水保措施在不同坡度坡耕地上优化配置的探讨.资源科学,2007,29(6):68-7
    51.魏朝富, 高明,谢德体等.有机肥对紫色水稻土水稳性团聚体的影响.土壤通报,1995,26(3):114-116
    52.吴婕,朱钟麟,郑家国等.秸秆覆盖还田对土壤理化性质及作物产量的影响.西南农业学报,2006,19(2),192-195
    53.夏冰.红壤季节性干旱对坡底水蚀快速阻断措施的响应.[硕士学位论文].武汉:华中农业大学图书馆,2009
    54.夏海江,杜尧东,孟维忠等.聚丙烯酰胺防治水土流失的效果.生态学杂志,2001,20(1):70-72
    55.肖丽霞,解庆友,郑建渠等.稻麦双套不同秸秆还田方式对作物产量及土壤肥力的影响.上海农业科技,2005,6:59-61
    56.徐明岗,文石林.红壤丘陵区不同种草模式的水土保持效果与生态环境效应.水土保持学报,2001,3(15)1:77-80
    57.杨改河等.旱区农业理论与实践.西安:世界图书出版,司西安公司,1993
    58.杨雪芹,胡田田,王旭东等.聚丙烯酰胺对磷素在土壤中吸附-解吸的影响.水土保持学报,2006,20(1):87-90
    59.员学锋,吴普特,冯浩.聚丙烯酰胺(PAM)的改土及增产效应.水土保持研究,2002,9(2):55-58
    60.员学锋,汪有科,吴普特等.PAM对土壤物理性状影响的试验研究及机理分析,水土保持学报,2005,19(2):37-40
    61.章明奎,何振立.成土母质对土壤团聚体形成的影响.热带亚热带土壤科学,1997,6(3):198-202
    62.张琪.红壤团聚体特征与物理化学性质相互作用机理及其对侵蚀过程的影响.[硕士学位论文].武汉:华中农业大学图书馆,2003
    63.张旭辉,李恋卿,潘根兴.不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响.生态学杂志,2001,20(2);16-19
    64.赵聚宝,赵琪.抗旱增产技术.北京:中国农业出版社,1998,79-93
    65.赵其国.中国东部红壤地区土壤退化的时空变化、机理及调控.北京:科学出版社,2002
    66.赵世伟,苏静,杨永辉等.宁南黄土丘陵区植被恢复对土壤团聚体稳定性的影响.水土保持研究,2005,12(3);27-29
    67.中国农业科学院.红黄壤地区综合治理与农业持续发展研究.北京:中国农业出版社,2001:1-10
    68.朱捍华,黄道友,刘守龙等.稻草易地还土对丘陵红壤有机质和主要物理性质的影响,应用生态学报,2007,18(11):2497-2502
    69.黄道友,刘守龙等.稻草易地还土对丘陵红壤团聚体碳氮分布的影响.水土保持学报,2008,22(2):135-140
    70.朱奇宏,黄道友,刘守龙等.红壤丘陵区农作物秸秆综合利用现状与展望.生态学杂志,2005,,24(12):1482-1486
    71.朱咏莉,刘军,王益权.国内外土壤结构改良剂的研究利用综述,水土保持学报,2001,15(6):140-142
    72. Bartoli F, Burtin G, Guerif J. Influence of organic matter on aggregation in oxisols rich in gibbsite or in goethite:clay dispersion, aggregate strength and water-stability. Geoderma,1992,54(1-4):259-274
    73. Bernard Barthes Eric Roose. Aggregate stability as an indicator of soil susceptibility to run off and erosion:validation at several levels. Catena,2002,47(8):133-149
    74. Boix-Fayos C, Calvo-Cases A, Imeson A C et al. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena,2001,44:47-67
    75. Bundt, M., S. Kretzschmar, W. Zech, and W. Wilcke. Seasonal redistribution of Manganese in soil aggregates of a Costa Rican coffee field. Soil Sci.,1997,162: 641-647
    76. Cambardella C A, Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci. Soc. Am. J.,1993,57:1071-1076
    77. Cerda A. Parent material and vegetation affect soil erosion in eastern Spain. Soil Sci. Soc. Am.J.,1999,63:362-368
    78. Chan K Y. Soil particulate organic carbon under different land use and management. Soil Use. Manage.,2001,17:217-221
    79. Christensen, B T. Straw ineorporation and soil organic matter in macro-aggregations and particle size separates. Soil Sci.,1986,37:125-135
    80. Duiker S W, Fred E.Rhoton et al. Iron (Hydr) oxide crystallinity effect on soil aggregate. Soil Sci. Soc. Am. J.,2003,67:606-611
    81. Elliott E T, Coleman DC. Let the soil work for us. Ecol. Bull.,1988,5(39):23-32
    82. Haynes R J. Interactions between soil organic matter status, cropping history, method of quantification and sample pretreatment and their effects on measured aggregate stability. Biol. Fert. Soils.,2000,30:270-275.
    83. Horn R. Aggregate characterization as compared to soil bulk properties. Soil Till. Res.,1990,17(3-4):265-289
    84. Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem.,1996,28(4-5):665-676
    85. Kay-Shoemake J L, M E Watwood, R D Lentz. Polyacrylamide as an organic nitrogen source for soil microorganisms with potential effects on inorganic soil nitrogen in agricultural soil. Soil Biol. Biochem.,1998,30(8/9):1045-1052
    86. Kohl R A, Schumacher T E. Infiltration with porous and noporous simulated residue. J. Soil Water Conserv.,1999,54(3):574-576
    87. Lentz, R D, Sojka R E, Robbins C W. Reducing phosphorus losses from surface-irrigated fields:emerging polyacrylamide technology. J. Environ. Qual.,1998, 27(2):305-312
    88. Markgraf W, Horn R. Scanning electron microscopy-energy dispersive scans analyses and rheological investigations of South-Brazilian soils. Soil Sci. Soc. Am. J.,2007, 71:851-859
    89. Maysoon M M, Charles W R. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci. Soc. Am. J.,2004,68:809-816
    90. Nie J, Zhou J M, Wang H Y. Effect of long-term rice straw return on soil Glomalin, Carbon and Nitrogen. Pedosphere,2007,17(3):295-302
    91. Oster, J D, Shainberg, Wood J D. Flocculation value and gel strueture of sodiumrcalcium Montmorillonite and illite suspensions. Soil Sci. Soc. Am. J.,1980, 44:955-959
    92. Oades J M. Soil organic matter and structural stability:Mechanisms and implications for management. Plant Soil,1984,76:319-337
    93. Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur. J. Soil Sci.,2000,51:595-605
    94. Singh S, Singh J S. Microbial biomass associated with water-stable aggregates in forest, savanna, and cropland soils of seasonally dry tropical region, India. Biol. Fert. Soils.,1995,27(8):1027-1033
    95. Singh S, Singh J S. Water-stable aggregates and associated organic matter in forest, savanna, and cropland soils of seasonally dry tropical region, India. Biol. Fert. Soils.,1996,22:76-82
    96. Sojka R E, Lentz R D. Time for yet another look at soil conditioners, Soil Sci.,1994, 158:233-234
    97. Steven Degryze. Soil organic carbon pool changes following land use conversion. Global. Change. Biol.,2004 (10):1120-1132
    98. Tisdall J M. Possible role of soil microorganisms in aggregation in soils. Plant Soil, 1994,117:145-153
    99. Van Bavel, C.H.M. Mean weight-diameter of soil aggregates as a statistical index of aggregation. Soil Sci. Soc. Am. J.,1949,14:20-23
    100.Zhang G S, Chan K Y, Li G D et al. Effect of straw and plastic film management under contrasting tillage practices on the physical properties of an erodible loess soil. Soil Till. Res.,2008,98:113-119
    101.Zhang M K, He Z L, Chen G C et al. Formation and water stability of aggregates in red soil as affected by organic matter. Pedosphere,1996,6(1):39-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700