用户名: 密码: 验证码:
碳纤维/环氧复合材料高速撞击损伤效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用二级轻气炮进行高速撞击,研究了不同撞击条件下M55J/AG-80复合材料的力学性能和撞击损伤区域的变化规律,及其损伤形式,初步讨论了高速撞击损伤机理,并利用有限元分析软件LS-DYNA进行数值模拟,为航天器结构材料的空间碎片风险评估与结构优化设计提供实验和理论依据。
     研究结果表明,高速撞击后前两层板均被穿透,对M55J/AG-80复合材料层合板造成穿孔损伤,第三层板未被穿透,在表面形成撞击坑。在撞击正面穿孔附近表层树脂基体被烧蚀掉,纤维裸露在外,并有基体开裂,纤维断裂、拔出,材料剥落,分层等破坏。M55J/AG-80复合材料层合板撞击穿孔附近材料界面剪切、层间剪切和弯曲强度随着弹丸速度和撞击角度的增加而降低;在弹丸速度和撞击角相同的条件下,靶板上距穿孔越远的部分强度降低越少,第一层板距穿孔距离相同的部分材料的损伤程度要小于第二层板的。撞击损伤区域大小与弹丸直径和撞击角成正比;双层板结构中,第二层板的损伤区域小于第一层板的损伤区域。通过研究M55J/AG-80复合材料高速撞击后的微观形貌,初步探讨了其损伤机理。在撞击过程中,复合材料的破坏是由于在穿孔附近形成高的应力场造成的。同时复合材料依靠其自身的结构破坏吸收弹丸部分动能,纤维破坏和脱粘是吸收能量的主要方式。
     利用有限元分析软件LS-DYNA,开展了弹丸高速撞击复合材料层合板双层板结构的二维有限元数值模拟,很好的描述了撞击过程,得到了侵彻速度和应力变化信息。侵彻速度先是快速下降,穿透第一层板后下降速度放缓。靶板同一点的应力值在传播过程中总是不断波动;随着传播距离的增加应力不断衰减,到达靶板边缘后发生反射。通过与试验结果比较,验证了计算的有效性。
The changes in mechanical properties and size of damage zone and damage patterns were investigated by using two-stage light gas gun under different impact conditions. High velocity impact damage mechanism was preliminary discussed. Numerical simulation was carried out by finite element analysis software LS-DYNA. This paper provids experiments and theoretical basis for shield structure design and risk evaluation of spacecraft in space debris environment.
     Experimental results show that after high velocity impact, the first and second plates were both penetrated and formated perforation. But the third plate were not penetrated and formated impact crater. The positive surface of resin matrix around the perforation has been ablated away and lead to fiber exposed. Several damage modes were take place such as delamination, matrix cracking, fiber/matrix debonding, fiber pull out, materials spalling, and fiber fracture. The interfacial shear strength, interlayer shear strength and bending strengh of M55J/AG-80 compsite laminates around the perforation declined with the increase of the velocity and impact angle. Under the same impact condition, the strength of materials farther away from the perforation decreased less, and the strength of material in the first plat decreased less than the second plate’s to the same position from perforation. The size of impact damage zone is directly proportional to projectile diameter and impact angle. In dual-wall, the size of impact damage zone of second plate is less than that of the first plate. Anti-impact performance of composite is mainly affected by resin matrix, fiber, interface performance and projectile speed. Result shows that during the penetrating process, a high stress field were formatted around the perforation, and the kinetic energy of projectile was absorbed by destruction of composite material. In additon, fiber damage and debonding is the main form of energy absorption.
     Two-dimensional finite element numerical simulation of high-velocity projectile impact composite laminates was carried out by finite element analysis software LS-DYNA. It can be seen that impact process was simulated well, and some information was got such as penetration speed and the change of stress. The result shows that penetration speed declined rapidly at first, then the rate of decline slow down after penetrating the first plate. Stress was always changing in the same position. And it also attenuated through the process of spreading from the perforation to the around. Compared with test results, numerical simulation has been proven to be effective.
引文
1 N. L. Johnson. Environmentally-Induced Debris Sources. Advances in Space Research. 2004, 34(5):993~999
    2张庆明,黄风雷.空间碎片环境及其危害.中国安全科学学报. 1996, 6(5): 15~20
    3陈烈民,沃西源.航天结构材料的应用和发展.航天返回与遥感. 2007, 28(1):58~61
    4 A. Paillous, C. Pailler. Degradation of Multiply Polymer-Matrix Composites Induced by Space Environment. Composites. 1994, 25(4):287~295
    5 Kwang-Bok, Shin, Chun-Gon. Prediction of Failure Thermal Cycles in Graphite/Epoxy Composite Materials Under Simulated Low Earth Orbit Environments. Composites, Part B. 2000, 31(3):223~235
    6 TK Kristen, CS Phillip, LH Wynford. Simulated Space Environmental Effects on a Polyetherimide and Its Carbon Fiber-Reinforced Composites. Sampe Journal. 1993, 29(3):29~44
    7 S. Katz. Composite Materials Behavior Under Hypervelocity Debris Impact. Journal of Spacecraft and Rockets. 2009, 46(2):230~235
    8薛富兴,杨晓燕.空间碎片研究概况.国际太空. 2004, (5):14~19
    9都亨,刘静.载人航天和空间碎片.中国航天. 2002, (2):18~23
    10朱毅麟.空间碎片环境近况.中国空间科学技术. 1996, (6):19~28
    11李春来,欧阳自远,都亨.空间碎片与空间环境.第四季研究. 2002, 22(6): 540~551
    12杜善义.先进复合材料与航空航天.复合材料学报. 2007, 24(1): 1~11
    13苏小萍.碳纤维增强复合材料的应用现状.高科技纤维与应用. 2004, 29(5):34~36
    14赵稼样.碳纤维复合材料在民用航空上的应用.高科技纤维与应用. 2003, 28(3):1~4
    15甄华生.复合材料在航天器中的应用近况.宇航材料工艺. 1997, (4): 14~16
    16 R. Destefanis, F. Schafer, M. Lambert. Enhanced Space Debris Shield for Manned Spacecraft. International Journal of Impact Engineering. 2003, 29:215~226
    17 A. J. Stilp. Review of Modern Hypervelocity Impact Facilities. International Journal of Impact Engineering. 1987, 5:613~621
    18 D. W. Bogdanoff, R. J. Miller. Improving the Performance of Two-Stage Gas Guns by Adding a Diaphragm in the Pump Tube. International Journal of Impact Engineering. 1995, 17:81~92
    19 M. W. Greenaway, W. G. Proud, J. E. Field. A Laser-accelerated Flyer System. International Journal of Impact Engineering. 2003, 29:317~321
    20童靖宇,侯明强.航天器空间碎片被动防护技术.航天器环境工程. 2008, 25(2):101~105
    21 Alexander C. Charters. The Early Years of Aerodynamics Ranges, Light-Gas Gus, and High-Velocity Impact. International Journal of Impact Engineering. 1995, 17:151~182
    22 J. D. Walker, D. J. Grosch. A Hypervelocity Fragment Launcher Based on an inhibited Shaped Charge. International Journal of Impact Engineering. 1993,14:763~774
    23 Moreno Faraud, Roberto Destefanis, David Palmieri. SPH Simulation of Debris Impacts Using Two Different Computer Codes. International Journal of Impact Engineering. 1999, 23:249~260
    24 Wing L. Cheng, Scott Langlie, Shigeru Itoh. High Velocity Impact of Thick Composites. International Journal of Impact Engineering. 2003, 29:167~184
    25 S. Ryan, F. Schaefer, W. Riedel. Numerical Simulation of Hypervelocity Impact on CFRP/Al HC SP Spacecraft Structures Causing Penetration and Fragment Ejection. International Journal of Impact Engineering. 2006, 33: 703~712
    26 W. Riedel, H. Nahme, D. M. White. Hypervelocity Impact Damage Prediction in Composites: Part II-Experimental Investigations and Simulations. International Journal of Impact Engineering. 2006, 33:670~680
    27 L. A. Merzhievsky. Statistical Characteristics of a Debris Cloud Behind a Shield. International Journal of Impact Engineering. 1997, 20:569~577
    28崔伟峰,曾新吾. SPH算法在超高速碰撞数值模拟中的应用.国防科技大学学报. 2007, 29(2):43~46
    29闫晓军,张玉珠,聂景旭.空间碎片超高速碰撞数值模拟的SPH方法.北京航空航天大学学报. 2005, 31(3):351~354
    30张伟,庞宝君,贾斌.弹丸超高速撞击防护屏碎片云数值模拟.高压物理学报. 2004, 18(1):47~52
    31 Dr. Harry D. Fair. Electromagnetic Launch. International Journal of Impact Engineering. 2003, 29:247~262
    32 W. P. Schonberg, J. E. Williamsen. Empirical Hole Size and Crack Length Models for Dual-Wall Systems under Hypervelocity Projectile Impact. International Journal of Impact Engineering. 1997, 20:711~722
    33 E. A. Taylor, J. P. Glanville, R. A. Clegg. Hypervelocity Impact on Spacecraft Honeycomb: Hydrocode Simulation and Damage Laws. International Journal of Impact Engineering. 2003, 29:691~702
    34 Y. Akahoshi, M. Kaji, H. Hata. Measurement of mass, Spray Angle and Velocity Distribution of Fragment Cloud. International Journal of Impact Engineering. 2003, 29:845~853
    35 W. P. Schonberg. Protecting Spacecraft against Orbital Debris Impact Damage Using Composite materials. International Journal of Impact Engineering. 2000, 31:869~878
    36 V. V. Silvestrov, A. V. Plastinin. An Investigation of Cerami/Aluminium as Shield for Hypervelocity Impact. International Journal of Impact Engineering. 1999, 23:859~867
    37 Y. Akahoshi, R. Nakamura, M. Tanaka. Development of Bumper Shield Using Low Density Materials. International Journal of Impact Engineering. 2001, 26:13~19
    38 R. C. Tennyson, C. Lamontagne. Hypervelocity impact damage to composites. Composites: Part A. 2000, 31:785~794
    39 V. V. Silvestrov, A. V. Plastinin, V. V. Pai. Hypervelocity Impact on Isotropic Composites with Metal or Ceramic in Inclusions. International Journal of Impact Engineering. 1997, 20:733~742
    40 E. A. Taylor, M. K. Herbert, D. J. Gardner. Hypervelocity Impact on Spacecraft Carbon Fibre Reinforced Plastic/Aluminium Honeycomb. Proceedings of the Institution of Mechanical Engineers. Part G. 1997, 211:355~363
    41 A. B. Martínez, M. Sánchez-Soto, J. I. Velasco. Impact Characterization of aCarbon Fiber-Epoxy Laminate Using a Nonconservative Model. Journal of applied polymer science. 2005, 97(6):2256~2263
    42 Michel Lambert, Frank K. Schafer, Toblas Geyer. Impact Damage on Sandwich Panels and Multi-Layer Insulation. International Journal of Impact Engineering. 2001, 26:369~380
    43 K. Y. Huang, A. de Boer, Akkerman. Analytical Modeling of Impact Resistance and Damage Tolerance of Laminated Composite Plates. AIAA Journal.2008, 46(11):2760~2772
    44 S. Katz, E. Grossmana, I. Gouzman. Response of Composite Materials to Hypervelocity Impact. International Journal of Impact Engineering. 2008, 35:1606~1611
    45哈跃,庞宝君,管公顺.玄武岩纤维布Whipple防护结构超高速撞击损伤分析.哈尔滨工业大学学报. 2007, 39(5):779~782
    46徐颖,温卫东,崔海波.复合材料层合板低速冲击逐渐累积损伤预测方法.材料科学与工程学报. 2006, 24(1):77~81
    47梅志远,朱锡,任春雨.弹道冲击下层合板破坏模式及抗弹性能实验研究.海军工程大学学报. 2005, (1):11~15
    48徐颖.复合材料层合板冲击损伤及冲击后疲劳寿命研究.南京航空航天大学博士学位论文. 2007:17
    49汤佩钊.复合材料及其应用技术.重庆科学出版社, 1998:3
    50 Zhou XF, Nairn JA, Wagner HD. Composites Part A. 1999, 30:1387~400.
    51 Chang F, Chang K. A progressive damage model for laminated composites containing stress concentrations. Compos Mater. 1987, 21(9):834~855
    52 Katayama M. Numerical Simulation of Space Debris Impacts on the Whipple Shield. Acta Astronautica. 1997, 40(12):859~869
    53张庆明,黄风雷.超高速碰撞动力学引论.科学出版社, 2000:60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700