用户名: 密码: 验证码:
黑龙江省嘉荫县马连金矿床的成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马连金矿区大地构造位置位于佳木斯隆起北部,该区已发现马连金矿床、蜂房沟金矿点、小马连沟金矿点和多处异常,其中马连金矿床较为典型,本文详细研究该矿床的成矿地质背景、矿床地质、流体包裹体特征和成矿时代,并对该区两个金矿点做了详细的地质调查研究与样品的室内分析工作,取得了如下认识:
     矿床地质特征表明:马连金矿床矿体以脉状为主,主要赋存于近南北向、北北东向和北北西向断裂带中,矿体的围岩为黑龙江岩群上岩组;矿石自然类型为石英脉型;矿石矿物主要有自然金、黄铁矿、黄铜矿和毒砂,脉石矿物主要为石英、碳酸盐、云母类和绿泥石;围岩蚀变明显,主要蚀变类型有硅化、绿帘石化、绿泥石化、阳起石化和碳酸盐化;根据矿体构造,矿石结构、构造,矿物共生组合特征,将矿床的矿化分为:石英-毒砂—黄铁矿阶段、石英-金属硫化物阶段和石英-碳酸盐阶段三个矿化阶段;蜂房沟金矿点和小马连沟金矿点与马连金矿床具有相似的地质特点,矿体围岩均为黑龙江岩群,矿体以石英脉为主,矿物组成为黄铁矿、石英、绢云母和高岭土,围岩蚀变主要有绢英岩化、泥化、青磐岩化等,蜂房沟金矿点可分为绢云母—黄铁矿、石英—黄铁矿和石英—高岭土三个矿化阶段。
     矿床流体包裹体研究表明:马连金矿床三个成矿阶段对应的成矿温度分别为:石英—毒砂—黄铁矿阶段:220℃~310℃;石英—金属硫化物阶段:180℃~220℃;石英—碳酸盐阶段阶段:120℃~180℃;通过流体包裹体相关参数计算得出:成矿压力为7.65~24.07MPa,成矿深度为0.97-1.79km。包裹体的气相成分主要为CO2、H2O和CH4,成矿流体总体为CO2-H2O-CH4体系;具有低盐度、低密度的流体特征,与国内外典型的造山型金矿床的流体性质有相似的特点;因此,初步确定该矿床为与造山带有关的中低温热液脉型金矿床;考虑到其它两个矿点成矿地质条件及流体包裹体特征与马连金矿相似,因此它们同属于造山型金矿。
     本次获得矿体围岩白云母钠长片岩的锆石U-Pb年龄为266.4±5.5 Ma,而构造折返退变质过程形成的白云母40Ar/39Ar等时线年龄为180Ma左右;因此,初步认为马连金矿床的成矿期为这期构造折返的伸展期,或早燕山期成矿。
     基于上述研究,我们得出:该矿床的含矿流体是在古生代古亚洲洋闭合,佳木斯地块向松嫩地块拼贴过程中产生,在随后的构造折返阶段聚集、上升到地壳浅部脆性域发生结晶沉淀作用而成矿。
The Malian gold area was located in the north of Jiamusi upwarping,consists of Malian gold deposit,Fengfanggou and Xiaomaliangou mineral occurrence. The major strata outcropping in the area include Proterozoic Heilongjiang terrain, lower Cretaceous Ningyuancun Group (K1n),Taiqihe Group(K1t), Upper Cretaceous Fuminhe Group (K2f),Taipinlinchang Group (K2tp),Yuliangzi Group(K2yl),Cenozoic Neogene Pliocene-Oligocene Sunwu Group and Pleistocene-Holocene fluvial Facies sedimentation.The intrusive igneous rock mainly Proterozoic Era arkosic gneiss, ophite and Mesozoic Era ganite, ganite-porphyry and quartz vein ,tandileofite-porphyrite et al.The area structure are Neanticlinorium and NNE,EW,NS fault ,which development in Heilongjiang terrain.
     In the mining area, exposed strata is mainly upper-petrofabric of Heilongjiang terrain whereas the intrusive igneous rock mainly diorite,dacite-porphyrite,quartz vein,the structures are mainly multiple fold which is attitude is NE in the Heilongjiang terrain,and the fault attitude are NNE ,NNW ,NE ,SN et al. among them the SN and NW fault are formed before premetallogenic and metallizing phase,whereas the NE fault is the compressional faulting of the postmineralization,The mineralization type of the Malian gold deposit is sulfid altered mylonite type,while a small quantity of the orebody is sulfide quartz vein type,the most ore minerals are native gold, the syngenesispyrite ore minerals are pyrite, mispickel, which total content are less than 5%.the gangue mineral were quartz, plagioclase, carbonate, micagrou chlorite ,while there are also have some epidote,actinolite, illuderite, garnet, tourmaline , graphite et al. Accordance with formation orders, combination features and relationships of these minerals, mineralization can be divided into three phases: quartz—metal stoxida steage, quartz—gold—sulphide stage, quartz—calcite stage.The wall-rock alteration are mainly muscovitization, silication, epidotization, and pilitation,carbonatation and so on, in the deposit. The vicinity between gold- mineralization and the wall-rock alteration is the silication.
     The host rock of Fengfanggou and Xiaomaliangou mineral occurrence is Heilongjiang terrane, mineral occurrence is composed mainly of auriferous quartz veins, the ore minerals is mainly composed of pyrite and limonite, the gangue minerals is composed of quartz chlorite, sericite, epidote, the main texture of the ore bodies are semi-self-shaped, the main structure of ore bodies dissemination structure,There are many type of host rock alteration,such as ferritization sericitization and propylitization. Mineralization of Fengfangou mineral occurrence can be divided into three phases: Sericite—Pyrite steage, quartz—Pyrite stage, quartz—Kaolin stage.
     In Malian gold deposit , the fluid inclusions were devided into two types, the one is the gas-liquid two-phase ,which is the most fluid inclusion type of Malian gold deposit holding about 95%.According to the gas-liquid ratio ,this one also cloud be devided into 5%~30% and 30%~40% two types,the shape of the gas-liquid two-phase rotundatus,areellipse and irregular, the size were between 2-10μm, the hepredomination was 6μm,the other were pure gas or liquid inclusions,the shape of inclusions were elliptic,regular or irregular. homogenization temperature of NaCl-H2O fluid inclusions of two-phase is 140℃~310℃, and different temperatures correspond to different stages of mineralization; salinity is 0.5%~4.5% and density is 0.72-01.2g/cm3, so ore-forming fluids is the low-salinity, low-density fluid; calculated mineralized pressure is 7.65~24.07MPa, and forming depth is 0.97-1.79km; components by laser Raman studies have shown that gas compositions of inclusion are mainly CO2,H2O and CH4.The main ore-forming fluid which is CO2-CH4-H2O system shows the characteristics of metamorphic fluids.
     By studying the result of the previous data,combine with the features of the fluid inclusions obtained ,we can see that Malian gold deposit mineralization fluid hydrothermal are from the deep metamorphic mixed with the atmospheric precipitation. As the Heilongjiang terrane is one of the major source of minerals. As Fengfangou and Xiaomaliangou mineral occurrence has similainties with Malian gold deposit on geological features and fluid inclusions, suggests that they are the same type of gold deposit .
     Conclusion from the CL image analysis and LA-ICP-MS U-Pb age of testing of zircon in Muscovite albite schist shows that zircon in Muscovite albite schist include three groups:Ⅰ. Neopaleozoic early Permain (266.3±5.5 Ma),Ⅱ. Early Neopaleozoic ordovician (467~486Ma),Ⅲ. Mesozoic Era early Triassic (235~245Ma).The first group zircon is formation of zircon in crystallization processes for initial rock or limited the deposition age of the Heilongjiang terrane,within the previous data and our examination, we can limited that gold deposits of the ore-forming age is 180Ma.Combine with regional geologic characteristic,we can speculate that mineralized thermal power source of Malian gold deposits come from the orogenics between Jiamisi and Songnen massifs, to be influenced by Paleozoic Centeal Asian.Mineralized fluids reaulted in transformation between extrusion and extension during high pressure metamorphism,which occurred when subducting, turn back to superficial part.Mineral substance concentrated and deposited as surrounding rock eluvialed when fluid migration .
     From resarch result of the ore-forming age, mineralized material sources , mineralized thermal power source and ore-forming fluids shows that: As the Paleo-Asian Ocean closed,Jiamusi and Songnen massifs occoured collision,in deepness mineral-bearing fluids generated, As the rising progress along the fracture, Fluid is mixed by atmoshpere precipitation and leachied Heilongjiang Group resulting in obtaining part of ore-forming materials, ultimately is precipitate in the form of sulfur quartz vine ore body in the NE fault,which fromed Malian gold deposit and Fengfanggou and Xiaomaliangou mineral occurrence .
     Compared Malian gold deposit with some type domestic and overseas’orogenic gold deposit ,we found they have some common depaetments .So we concluded that Malian gold deposit which development in tectonic zones is orogentic gold deposit.
引文
[1] CHEN Y J. Fluidization model for continental collision in special reference to study ore-forming fluid of gold deposits in the eastern Qinling Mountains, China [J].Progress in Natural Science, 1998, 8(4): 385-393.
    [2] D.I.Groves,R.J.Goldfarb,M.Gebre-mariam,et.al.Orogenic gold deposits:A proposed classi- fication in the context of their crustal distribution and relationship to other gold deposit type [J].Ore Geology Review.1998,3:7-27.
    [3] Diamond L W. 2001. Review of the systematics of CO2-H2O fluid inclusions [J].Lithos, 55: 69~99.
    [4] Eenst A.J, Burke.Raman microspectrometry of fluid inclusions [J]. Litho .2001, 55: 139-158.
    [5] Fu-yuan Wu, Bor-ming Jahn, Simon A,et al. Highly fractionated I-type granites in NE China (II):isotopic geochemistry and implications for crustalgrowth in the Phanerozoic [J].LITHOS,2003(67).
    [6] Goldfarb R J, Groves D I, Gardoll S.Orogenic gold and geological time: a global synthesis [J]. Ore Geological Review.2001,18:1~73.
    [7] Goldfarb R J, Phillips G N, Nokleberg W J.Tectonic setting synorogenic gold deposits of the Pacific Rim [J].Ore Geological Review.1998,13:7~27.
    [8] Herrington R J, and Wilkinson J J.Colloidal gold and silica in mesothermal vein systems [J]. Geology, 1993,21(6):539-542.
    [9] Haussidon M,Albarède F,Sheppard S M F.Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions [J].Earth and Planetary Science Letters,1989,92(2):144-56.
    [10] J.M. Batumike, W.L. Griffin, E.A. Belousova, et al..LAM-ICPMS U–Pb dating of ki-mberlitic perovskite: Eocene–Oligocene kimberlites from the Kundelungu Plateau, D.R. Congo [J]. Earth and Planetary Science, 2008,267: 609-619.
    [11] Keto, L.S., Jacobsen, S.B., 1987. Nd and Sr isotopic variations of Early Paleozoic oceans [J].Earth Planet. Sci. Lett. 84, 27– 41.
    [12] Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., Kotov, A.B., Kozakov, I.K., Sal’nikova,E.B., 1996. Sources of Phanerozoic granitoids in Central Asia: Sm–Nd isotope data [J].Geochem.Int. 34, 628– 640.
    [13] Krogh T E. 1993. High precision U-Pb ages for granulite metamorphism and deformation in the Archean Kapuskasing structual zone,Ontario: Implication for structure and development of the lower crust [J]. Earth Planet Sci. Let.,119: 1~18.
    [14] Kevin F.Cassidy, David I.Groves,Neal J.McNaughton.Late-Archean granitoid-hosted deposits,Yilgarn Craton,Wesern Australia:Deposit characteristics,crustal architecture and implications for ore genesis [J].Ore Geology Reviews.1998,13:65-102.
    [15] Louis A. Bucci,Ateffen G.Hagemann,David I.Groves,et al.The Archean Chalice gold deposit:a record of complex,multistage,high-temperature hydrothermal activity and gold mineralization associated with granitic rocks in the Yilgarn Craton,Western Australia [J].Ore Geology Reviews.2002,19:23-67.
    [16] Mumm A S, Oberthür T,Vetter U, Blenkinsop T.G. 1997. High CO2content of fluid inclusions in gold mineralisations in the Ashanti Belt, Ghana: a new category of ore forming fluids [J].Mineralium Deposit, 32: 107~118.
    [17] Pearce J.A., Harris N.B.W. and Tindle A.G. Trece element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. J. Petrol, 1984, 25, 956-983.
    [18] Townley B K, Godwin C I. Isotope characterization of lead in galena from ore deposits of the Aysén Region ,southern Chile [J].Mineralium Deposita,2001,36:45~57.
    [19] Vervoort J D.,Pachett P J,Gehrels G E.,et al.,.Constraints on early earth differentiation from hafnium and neodymium isotopes.Nature [J] 1996,379:624~627.
    [20] Wu F Y,Yang Y H,Xie L W,et al.Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb [J] geochronology.Chem Geol,2006,234:105~126.
    [21] Wiedenbeck M, Alle P, Corfu F et al.Three natural zircon stands for U-Th-Pb,Lu-Hf,trace element and REE analyses [J].Geostand newsl,1995(19):1-23.
    [22]黑龙江省矿业集团有限责任公司.黑龙江省嘉荫县马连岩金矿床详查报告[R].2002,11
    [23]黑龙江省地矿局第三地质大队.黑龙江省嘉荫县马连岩金矿床南段普查报告[R],1994,12
    [24]黑龙江省地矿局第三地质大队.黑龙江省嘉荫县马连岩金矿床普查报告[R].1989,04
    [25]袁见齐,朱上庆,翟裕生.矿床学[M].北京,地质出版社,1984
    [26]卢焕章,范宏瑞,倪陪等.流体包裹体[M].北京,科学出版社,2004
    [27]张兴洲.黑龙江群中放射虫硅质岩的首次发现及意义[J].长眷地质学院学报,1991,21(2)
    [28]范宏瑞,谢奕汉,王英兰.流体包裹体与金矿床的成矿及勘探评价[J].贵金属地质,1997,6(3):204-213
    [29]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2006,16(49)
    [30]邵世才.试论韧性剪切作用与金的成矿[J].贵金属地质,1996.5(2)
    [31]李昌年.火成岩微量元素岩石学[M].北京:中国地质大学出版社,1992.1-195
    [32]沈渭洲.同位素地质学教程[M].北京:原子能出版社,1997,1-287
    [33]孙景贵.胶东地区地质体的含金性与金成矿关系[J].地质找矿论丛,1999,2(14)
    [34]任纪舜.论中国大陆岩石圈构造的基本特征[J].中国区域地质,1991,4
    [35]周永章.河台金矿床流体包裹体的地球化学特征[J].广东地质,1994,4(9)
    [36]范宏瑞,谢奕汉,王英兰.豫西上宫构造蚀变岩型金矿成矿过程中的流体—岩石反应[J].岩石学报,1998,4(14)
    [37]陈衍景,张静,赖勇.大陆动力学与成矿作用-教育部高级研讨班论文集[M].北京:地震出版社,2001
    [38]许文良,孙德有,周燕.满洲里一绥分河地学断面岩浆作用和地壳结构[M].北京地质出版社,1994
    [39]张海驲、栾慧、陈乐目.黑戈江印支期花岗岩的确定及其地质意义[J].黑龙江地质,1991,2(1),8~100
    [40]黑龙江省地质矿产局.黑龙江省区域地质志[M]北京:地质出版社,1993:8~30.
    [41] Wilde S A,吴福元,张兴洲.中国东北麻山杂岩晚泛非期变质的锆石SHRIMP年龄证据及全球大陆再造意义[J]地球化学,2001,30(1):35~50
    [42]曹熹,党增欣,张兴洲,姜继圣,王洪德.佳木斯复合地体[M]长春:吉林科学技术出版社,1992
    [43]宋彪,李锦轶,牛宝贵,徐文喜.黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义[J]地球学报,1997,18:306~312
    [44]吴福元,Wilde S A,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄. [J]岩石学报,2000,17(3):443~452
    [45]党延松,李德荣.关于佳木斯地块前寒武纪同位素地质年代学问题的讨论[J]长春地质学院学报,1993,23(3):12~18
    [46]孙景贵,门兰静,赵俊康,等.延边小西南岔大型富金铜矿床矿区内暗色脉岩的锆石年代学及其地质意义[J].地质学报,2008b,82(4):517~527.
    [47]黄映聪.佳木斯地块古生代变质作用与构造演化.吉林大学博士论文[D], 2009, 1~132
    [48]颉颃强,张福勤,苗来成等,东北牡丹江地区“黑龙江群”中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义[J].岩石学报,2008,24(6):1237~1250
    [49]黄映聪,张兴洲,熊小松等.黑龙江省东部桦楠隆起美作花岗岩的锆石LA-ICP-MS U-Pb定年及其地质意义[J].吉林大学学报(地球科学版),2008,38(4):631~638.
    [50]李锦轶,牛宝贵,宋彪,等.长白山北段地壳的形成与演化[J].北京:地质出版社,1999,46~69.
    [51]卢焕章.CO2流体与金矿化:流体包裹体的证据[J].2008,37(4):321-328
    [52]涂光炽.关于CO2若干问题的讨论[J].地学前缘,1996,3(4):53-62
    [53]陈雷.黑龙江宁安县英城子金矿床成矿作用与成矿模式研究[D].吉林大学硕士学位论文,2008.
    [54]卢焕章,Guha J,方根保.山东玲珑金矿的成矿流体特征[J].地球化学,1999,28(5):421-437
    [55]陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征[J].岩石学报,2007,23(9): 2085-2108
    [56]王英兰,谢奕汉,范宏瑞.小秦岭金矿流体包裹体挥发组分与金的矿化[J].岩石学报,1994,10(2):211-217
    [57]赫英,毛景文.幔源岩浆去气形成富二氧化碳含金流体——可能性与现实性[J].地学前缘,2001,8(4)
    [58]熊德信,孙晓明,翟伟等.云南大坪韧性剪切带型金矿富CO2流体包裹体及其成矿意义[J].地质学报,2007,81(5):640-654
    [59]毛华海,张哲儒.1997.热液中金的沉淀机理研究综述[J].地质地球化学,2004,27(2):89~91.
    [60]毕诗健,李建威,赵新福.热液锆石U-Pb定年与石英脉型金矿成矿年代:评述与展望[J].2008,27(1):69-76
    [61]毛景文,李晓峰,张荣华,等.深部流体成矿系统[M].北京:中国地质大学出版社,,2005:
    [62]陈衍景,林治家,Franco PIRAJNO,等.东秦岭上宫金矿流体成矿作用:稳定同位素地球化学研究[J].2004,24(3):13-21
    [63]冷成彪,张兴春,王守旭,等.滇西北雪鸡坪斑岩铜矿S、Pb同位素组成及对成矿物质来源的示踪[J].矿物岩石,2008,28(4):80-88
    [64]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000,143-192
    [65]韩吟文,马振东.地球化学[M].北京:地质出版社,2003,213-217
    [66]毛景文,李晓峰,李厚民等.中国造山带内生金属矿床类型、特点和成矿过程探讨[J].地质学报,2005,79(3):342-372
    [67]陈衍景.陆内碰撞造山体制的流体作用模式及与成矿的关系[J].地学前缘,1996,3(3~4):282~289.
    [68]陈衍景.中国区域成矿研究的若干问题及与陆-陆碰撞的关系[J].地学前缘,2002,9(4):319~328
    [69]张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征[J].中国科学(D).,1996,26(3):193~200.
    [70]毛景文,谢桂青,张作衡等.中国北方中生代大规模成矿作用的其次及地球动力学背景[J].地质学报,2005,21(1):169-188
    [71]卢焕章,池国祥.剪切带中流体地球化学特征及其找矿意义[J].桂林工学院学报,1995,15(1):9-22
    [72]胡文宣,孙睿,张文兰.金矿成矿流体的特点及深-浅部流体相互作用成矿机制[J].地学前缘,2001,8(4):281~288
    [73]张原庆,钱祥麟,李江海.造山作用概念和分类[J].地质论评,2002,48(2):192-196
    [74]陈衍景.影响碰撞造山成岩成矿模式的因素及其机制[J].地学前缘, 1998 ,5(Suppl.):109-118
    [75]翎井生,陈础廷,季明均.河台韧性剪切带蚀变糜棱岩型金矿的地质特征、矿床成因河成矿模式[J].广东地质,1992,7(3)
    [76]张乾,潘家永,邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释[J].地球化学,2000,29(3):231~238
    [77]孙景贵,刑树文,郑庆道,等.中国东北部陆缘有色、贵金属矿床的地质、地球化学[M].长春:吉林大学出版社,2000
    [78]陈柏林,董法宪,李中坚.韧性剪切带型金矿成矿模式[J].地质论评,1999,2(5)
    [79]陈衍景.造山型矿床,成矿模式及找矿潜力[J].中国地质,2006,33(6):1181-1196
    [80]陈衍景.碰撞造山体制的成矿作用[J].大地构造与成矿学,1996(suppl.):1~12
    [81]冯建忠,邵世才,汪东波.陕西八卦庙金矿脆-韧性剪切带控矿特征及成矿构造动力学机制[J].中国地质,2002,29(1):58-66
    [82]张作衡.西秦岭地区造山型金矿床成矿作用和成矿过程[D].博士学位论文.北京:中国地质科学院

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700