用户名: 密码: 验证码:
铈铁固溶体的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在控制产物颗粒的大小、形貌和粒度分布方面,模板法具有独特优势而成为制备纳米材料的重要途径。软模板更是因为其胶体体系所组成的有序的聚集体,可以提供动态平衡的空腔,且孔道的大小和形状可以随实验条件的不同而变化,因此成为材料制备的先进技术。本文分别采用水热法和水热模板法(分别以非离子表面活性剂PEG-4000和阴离子表面活性剂SDBS为模板剂)制备了高比表面积、具有介孔结构的铈铁固溶体,探讨了制备条件对比表面积、孔结构和热稳定性的影响,并对产物进行了XRD、FT-IR、TEM、H2-TPR和比表面测试等检测。
     采用水热法制备产物时,主要考察了不同Ce/Fe物质的量的比和共沉淀温度对产物晶相、表面性能和还原性能的影响以及产物的热稳定性。XRD结果表明,不同Ce/Fe物质的量的比对产物的晶相有较大的影响。当x=0.9、0.8、0.7、0.6时,可以合成单一物相的铈铁固溶体;而当x=0.5时,得到的是含有八边形FeO(OH)杂相的铈铁固溶体;BET检测结果表明,共沉淀温度对产物的比表面积有较大的影响。当共沉淀温度为10℃时,合成的产物具有较大的比表面积,为143.7m2·g-1。随着共沉淀温度的升高,产物的比表面积有下降的趋势;TEM检测结果表明,所合成的Ce0.9Fe0.1O2产物具有蠕虫状介孔结构;H2-TPR结果表明,所得的产物具有较好的还原性能。
     以PEG-4000为模板剂,采用水热法制备铈铁固溶体时,主要考察了其用量、水热温度对产物比表面积的影响和溶液的pH值、水热对产物晶相的影响以及产物的热稳定性。XRD检测结果表明,pH值对产物的晶相有较大的影响。当pH为10(±0.05)时,可以合成单一物相的铈铁固溶体;而当pH为9(±0.05)时,得到的是含有杂相的铈铁固溶体。水热温度对产物的晶相几乎没影响,但随着水热温度的升高,产物的结晶程度越来越好;小角度XRD检测结果表明,所得产物具有规整有序的介孔结构;BET检测结果表明,PEG-4000的用量和水热温度对产物的比表面积有较大的影响,当PEG-4000/([Ce]+[Fe])的物质的量的比为0.3、反应温度为150℃时,制得的产物有较大的比表面积,为160.6 m2·g-1;TEM检测结果表明,所合成的产物Ce0.9Fe0.1O2具有蠕虫状介孔结构;FT-IR检测结果表明,表面活性剂PEG-4000与前驱体发生了协同作用,经过500℃煅烧后,产物中的表面活性剂已基本被除去。但产物的热稳定性较差,经过700℃高温煅烧后1h,产物的孔结构发生了严重坍塌,比表面积减小为43.2m2·g-1。
     以SDBS为模板剂,采用水热法制备铈铁固溶体时,主要考察了SDBS的用量对产物比表面积及热稳定性的影响。BET检测结果表明,SDBS用量对产物Ce0.9Fe0.1O2的比表面积有较大的影响,当SDBS/([Ce]+[Fe])的物质的量的比为0.4时,合成的产物具有较大的比表面积,为169.7 m2·g-1;而且产物具有较为均一的孔径分布,其平均孔径为4.5nm;FT-IR检测结果表明,表面活性剂SDBS与Ce(OH)3和Fe(OH)3乳胶发生了协同自组装作用,经过500℃煅烧后,产物中的表面活性剂仍有残余;TEM检测结果表明,产物Ce0.9Fe0.1O2具有蠕虫状介孔结构;产物的热稳定性较好,经过700℃高温煅烧后1h,产物的孔结构发生了部分坍塌,比表面积减小为77.8 m2·g-1;H2-TPR检测结果表明,产物的比表面积越大,其储氧量越大,低温还原性能越好。
The template method has become an important way to prepare nanomaterials for its unique superiority in controlling the granule's size, the appearance and the grain-size distribution. Especially, the soft template method, which provides the cavity of dynamieal equilibrium and the passageway's size and the shape enhanging with the experimental condition, becomes the preponderant way to prepare nanomaterials. In this text, Mesoporous cerium-iron solid solution with fluorite cubic structure and high specific surface area was prepared by the hydrothermal method and hydrothermal method with nonionic surfactant polyethylene glycol (PEG) and sodium dodecyl benzene sulfonate(SDBS) as templates. The influence of synthesis parameters on BET, pore structure and thermal stability were investigated.The samples were aslo characterized by XRD, FT-IR, H2-TPR, TEM and BET.
     Hydrothermal method was used to prepare CexFe1-xO2 solid solution. The influence of the molar ratio of Ce/Fe and coprecipitation temperature on specific surface area, crystal phase and reduction performance are investigated. The XRD pattem show that the molar ratio of Ce/Fe has significant influence on phase component. The solid solution with single phase could be obtained When x=0.9,0.8,0.7,0.6 while the samples with a impurity phase of octagon FeO(OH) were prepared when x=0.5. The BET results show that coprecipitation temperature have influence on specific surface area. The prepared sample's specific surface area is of 143.7 m2·g-1 at an coprecipitation temperature of 10℃(±0.05). With the temperature increasing, the sample's specific surface area decreases. The TEM images show that the as-prepared sample Ce0.9Fe0.1O2 is of worm-like mesoporous structure. The H2-TPR results show that the as-prepared sample has a better reducibility.
     Under the system that using PEG-4000 as template, the influence of the amount of PEG-4000, hydrothermal temperature on specific surface area, the influence of pH value and temperature on phase were investigated. The solid solution with single phase could be obtained when pH value is about 10(±0.05) while the samples with a impurity phase were prepared when pH value is 9(±0.05). On the contrary, the hydrothermal temperature has less influence on the phase of the sample, but with temperature increasing, the sample has a better crystallinity. The low-angle XRD results show that mesoporous structure of the sample is deposited homogeneously. The BET results show that PEG-4000 content and hydrothermal temperature have influence on specific surface area when the molar ratio of Ce/Fe is 0.3, hydrothermal temperature is 150℃, the prepared sample's specific surface area is of 160.6 m2·g-1. The TEM images show that the samples of Ce0.9Fe0.1O2 possess worm-like mesopore. The FT-IR results show that PEG-4000 cooperated with inorganic precursor and the residual PEG-4000 can be removed by calcination at 500℃. The as-prepared samples possess poor thermal stability, the specific surface area decreased to 43.2 m2·g-1 and the pore collapsed dramatically after calcination at 700℃for 1 h.
     Under the system that using SDBS as template, the influence of the amount of SDBS on specific surface area and the sample's thermal stability were investigated. The BET results show that SDBS's content has great influence on specific surface area and when the molar ratio of Ce/Fe is 0.4, the as-prepared sample's specific surface area is of 169.7 m2·g-1, meanwhile pore size distribution of the sample is relatively symmetrical and the average pore size is 4.5 nm. The FT-IR results show that SDBS self-assembly with Ce(OH)3 and Fe(OH)3. There is a little amount of SDBS left in sample. The TEM images show that the sample of Ce0.9Fe0.1O2 holds worm-like mesopore.The sample performs excellent thermal stability and the specific surface are decreased to 77.8 m2·g-1 after calcination at 700℃for 1h. The H2-TPR results show that the OSC and the calalytic performance of low-temperature is related to specific surface area.
引文
[1]郭伊均,陈盛梁.汽车排气污染及控制对策[J].重庆环境科学,1997,19(3):9-13.
    [2]Tanaka H, Fujikawa H, Takahashi L. Perovskite-Pd three-way catalysts for automotive applications[J]. Catal.Emiss.Technol,1993,968:63~76.
    [3]罗宁,刘治中.汽车排放标准与改进燃料品质降低排放污染[J].四川环境,1997,16(3):27-30.
    [4]麦立强,邹正光,崔天顺.TWC处理汽车尾气的研究进展[J].桂林工学院学报,1999,19(2):188-192.
    [5]王亚明.催化原理及新催化技术[M].昆明:云南科技出版社,1997,150
    [6]张晓菲,胡瑞生,高官俊等.两种络合剂对Ce-Sn-O复合氧化物结构与性能的影响[J].物理化学学报,2007,23(5):659-663.
    [7]Maela M, Floriana V, Anna C, et al. New gold catalysts supported on mixed Ceria-Titania oxides for water-gas shift and prefertial CO oxidation reactions[J]. React.Kinet.Catal.Lett,2007,91 (2):213~221.
    [8]Perez A, Lopez M, O jeda M, et al. Chemical Strucures of Coprecipitated Fe-Ce Mixed Oxides[J]. Chem.Mater,2005,17(9):2329~2339.
    [9]Perez-Alonso F J, Fierro J L G, Kapteijn F, et al. Synergy of FexCe1-xO2 mixed oxides for N2O decomposition[J]. J.Catal,2006,239:340~346.
    [10]胡瑞生,吴海霞,马丽丽,等.Ce-O和Fe-Ce-O催化剂的固相合成及其CH4催化燃烧性能[J].石油化工,2006,35(4):319-323.
    [12]林红艳,马志强,丁玲等.纳米Ce1-xFexO2固溶体的模板法制备及水蒸气重整催化性能[J]. Chin.J.Catal,2008,29(5):418~420.
    [13]郭清华.我国汽车尾气污染现状及净化催化剂的研究.新疆环境保护,1999,21(2):39-42.
    [14]朱保伟,陈宏德,田群.汽车尾气催化剂的发展[J].中国环保产业,2003,(7):35-38.
    [15]王军,沈美庆,秦永宁,等.整体式催化剂的催化性能研究[J].化学工业与工程,2000,17(6):326-329.
    [16]沈迪新,陈宏德,田群.我国汽车尾气污染、污染控制与对策[J].环境科学进展,1997,5(6):23-33.
    [17]李英实,陈宏德.负载型汽车尾气催化剂简介[J].环境科学进展,1999,7(3):52-61.
    [18]Cooper B J,Challenges in emission control catalysis for the next decade. Plati.Met.Rev,1994,38(3):101~105.
    [19]黎维彬,林缨,张雨,等.含铂汽车尾气三效催化剂的研究[J].宁夏大学学报:自然科学版,2001,22(2):199-200.
    [20]章青,贺小昆,张荣光,等.汽车尾气净化Pd催化剂的研究现状、进展及展望[J].贵金属,2006,27(1):69-74.
    [21]Taylor K C.Nitricoxide catalysis in automotive exhaust systems[J]. Catal.Rev-Sci Eng,1993,35(4):457~481.
    [22]闫冬霞,田群,陈宏德.全钯汽车尾气催化剂[J].中国环保产业,2002,(10):28-30.
    [23]林河成.稀土在治理汽车尾气中的应用及发展[J].世界有色金属,2000,(2):40-41.
    [24]吴晓东,丁红梅,翁端.汽车尾气催化剂对稀土作用的要求[J].稀土信息,1999,(11):7-9.
    [25]王亚军,冯长根,王丽琼,等.稀土在汽车尾气净化中的应用[J].工业催化,2000,8(5):3-7.
    [26]李青.汽车尾气净化催化剂的结构及特性[J].环境保护1998,(4):19-22.
    [27]蔡明昌,王慧,税安泽,等.稀土在汽车尾气净化催化剂中的应用现状[J].稀有金属快报,2006,25(3):13-17.
    [28]俞守耕.钙钛矿型氧化物在净化汽车尾气催化剂中的应用[J].贵金属,2001,22(2):61-66.
    [29]Voorhoeve R J H. Rare earth oxide of manganese & cobalt rival platinum for the treatment of CO in auto exhaust[J]. Science,1972,177:353~356.
    [30]Voorhoeve R J H. Rare earth manganites:catalysts with low ammonia yield in the reduction of NOx[J]. Science,1973,180:62~66.
    [31]李英实,陈宏德,田群.稀土复合氧化物加少量贵金属的汽车尾气催化剂的初步研究[J].环境化学,1999,18(3):193-197.
    [32]盐川二朗.稀土的最新应用技术[M].翟羽伸,喻忠厚,译.北京:化学工业出版社,1993,89
    [33]郭建军,罗来涛,李松军.汽车尾气催化剂的研究进展[J].江西化工,2001,(2):3-7.
    [34]陈亚芍,董涛.汽车尾气净化催化剂技术面临的问题及发展[J].陕西师范大学学报(自然科学版),2005,33(4):111-114.
    [35]Schlatter J C, Mitchell P J. Three-way catalyst response to transients[J]. Industrial & Engineering Chemistry, Prod.Res.dev,1980,19(3):288~293.
    [36]Su E C, Montreuil C N, Rothschild W G. Oxygen storage capacity of monolith three-way catalysts[J]. Appl.Catal,1985,17(1):75~86.
    [37]王亚军,冯长根,王丽琼,等.汽车用催化剂技术[J].化工进展,2000,5(5):32-35.
    [38]Diwell A F, Rajaram R R, Shaw H A, et al. Role of ceria in three-way catalysts[J]. Stud.Surf.Sci.Catal,1991,71:139~143.
    [39]Munuera G, Fernandez A, Gonzales-Elipe A R. Role of the oxygen vacancies at the support in the CO oxidation on Rh/CeO2 and Rh/TiO2 autocatalysts[J]. Stud.Surf.Sci. Catal,1991,71:207~212.
    [40]Yao M H, Baird R J, Kunz F W, et al. An XRD and TEM investigation of the structure of alumina-supported ceria-zirconia[J]. J.Catal,1997,166:67~74.
    [41]杨遇春.稀土在汽车尾气净化的应用[J].稀有金属,1998,22(5):364-367.
    [42]Kaspar J, Fomasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis[J]. Catal.Taday,1999,50:113~126.
    [43]Gandhi H S, Otto K, Piken A G, et al. Sulfate formation:catalyst and gas-phase composition effects in pulsators and comparison of three-way with oxidation catalysis[J]. Environ.Sci.Technol,1977,11(2):170~174.
    [44]Summers J C, Hegedus L L. Modes of catalyst deactivation in stoichiometric automobile exhaust[J]. Ind. Eng.Chem.Res,1979,18(4):318-324.
    [45]Engler B, Koberstein E, Schubert P. Automotive exhaust gas catalysts:surface structure and activity[J]. Appl.Catal,1989,48(1):71~92.
    [46]Schmieg S J, Belton D N. Effect of hydrothermal aging on oxygen storage-release and activity in a commercial automotive catalyst[J]. Appl.Catal.B:Environ,1995,6(2):127~144.
    [47]Weibel M, Garin F, Maire G, et al. Influence of water in the activity of catalytic converters[J]. Stud.Surf.Sci.Catal,1991,71:195~199.
    [48]李凯,王学中,周卫华,等.CeO2基氧化物储氧材料研究(Ⅱ)添加贵金属改进储氧能力[J].中国稀土学报,2004,22(2):32-34.
    [49]Otto K, Weber W H, Graham G W, et al. Identification of dispersed platinum on y-alumina by laser-Raman spectroscopy[J]. Appl.Surf.Sci,1989,37(2):250-257.
    [50]Brogan M S, Dines T J, Caims J A. Raman spectroscopic study of the Pt-CeO2 interaction in the Pt/Al2O3-CeO2 catalyst[J]. J.Chem.Soc.,Faraday.Trans,1994, 90(10):1461~1466
    [51]Golunski S E, Hatcher H A, Rajaram R R, et al. Origins of low-temperature three-way activity in Pt/CeO2[J]. Appl.Catal.B:Environ,1995,5(4):367~376.
    [52]Diwell A F, Golunski S F, Taylor J R, et al. Role of sulphate decomposition in the emission and control of hydrogen sulphide from autocatalysts[J]. Stud.Surf.Sci.Catal,1991,71:417~422.
    [53]Shyu J Z, Weber W H, Gandhi H S. Surface characterization of alumini-supported ceria[J]. Journal.Phy.Chem:B,1988,92(17):4964-4970.
    [54]Inaba H, Tagawa H. Thermal expansion of Gd-doped ceria and reduced ceria[J]. Solid.State.Ionics,2002,132(3):227~233.
    [55]Miki T, Ogawa T, Haneda M, et al. Enhanced oxygen storage capacity of cerium oxides in CeO2/La2O3/Al2O3 containing precious metals[J]. J.Phy.Chem:B,1990, 94(16):6464~6470.
    [56]Bernal S, Cifredo G, Blanco G, et al. Reducibility of ceria-lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions[J]. Journal.of.Alloys and Compounds,1997,250(1):449~454.
    [57]Zhang Y, Andersson S, Muhammed M. Nanophase catalytic oxides:I. synthesis of doped cerium oxides as oxygen storage promoters[J]. Applied Catalysis B: Environ,1995,6(4):325~337.
    [58]Laachir A, Perrichon V, Badri A, et al. Reduction of CeO2 by Hydrogen Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurement[J]. J.Chem.Soc.Faraday Trans,1991, 87(10):1601~1613.
    [59]Li K Z, Wang H,Wei Y G, et al.Preparation and characterization of Ce1-xFexO2 complex oxides and its catalytic activity for methane selective oxidation[J]. J. Rare.Earths,2008,2(26):245~249.
    [60]Lii H, Tu H Y, Zhao B Y, et al.Synthesis andelectrochemical behavior of Ce1-xFexO2-δ as apossible SOFC anode materials[J]. Solid.State.Ionics,2007, 177(39~40):3467~3472.
    [61]Li G S, Richard L, Smith Jr. Synthesis of nanascale Ce1-xFexO2 solid solution via a low-temperature approach[J]. J.Am.Chem.Soc,2001,123(44):11091~11092.
    [62]胡瑞生,吴海霞,马丽丽,等.Ce-O和Fe-Ce-O催化剂的固相合成及其CH4催化燃烧性能[J].石油化工,2006,35(4):319-323
    [63]Lin H Y, Ma Z Q, Ding L, et al. preparation of nanoscale Ce1-xFexO2 solide solution catalyts by the template method and its catalytic properties for ethanol steam reforming[J]. Chin.J.Cata,2008,29(5):418~420..
    [64]Liang C H, Ma Z Q, Lin H Y,et al.Template preparation of nanoscaleCe1-xFexO2 solide solution and their catalytic properties for ethanol steam reforming[J]. J.Mater.Chem.2009,19:1417~1424.
    [65]John C H, Charles R M. A general template-based method for the Preparation of Nanomaterials[J]. Mater.Chem.1997,7(7):1075~1097.
    [66]Fang Z B, Wang Y Y, Peng X P, et al. A Structural and optical Properties of ZnO films grown on the AAO templates[J]. Mater.Lett.2003,57,4187~4190
    [67]Kaaek S.A, Redden M Onellion M. AAO nanopore arrays:A Practical entree to nanostructures[J]. Am.J.Phys.2004,72(7):856~859.
    [68]Pileni M.P.The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals[J]. Nat.Mater,2003, (2):145.
    [69]Yu Y Y, Chang S S, Le C L, et.al.Gold Nanorods:Electrochemical Synthesis and OPtieal Properties[J].J.Phys.Chem.B1997,101,6661.
    [70]El-Sayed M A.Some interesting properties of metals confined in time and nanometer space of different shapes[J]. Acc Chem.Res.2001,34(4):257~264.
    [71]Johnson C J, Dujardin E, et al. Growth and form of gold nanorods prepared by seed-mediated surfactant-directed synthesis[J]. J Mater Chem,2002, 12(6):1765~1770.
    [72]Pratibha L.Gai, Mark A.Harmer.Surface atomic defect structures and growth of gold nanorods[J]. Nano Lett.2002,2(7):771-774.
    [73]Nikhil R.Jana, Latha Gearheart, Catherine J. Murphy Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods[J]. Phys.Chem.B.2001,105(19): 4065.
    [74]李汶军,施尔畏,仲维卓,等.水热合成中负离子配位多面体生长基元模型与粉体的晶粒粒度[J].硅酸盐学报,1999,27(2):164-170.
    [75]Chen Q W, Qian Y T, Chen Z Y, etal. Hydrothermal deposition of magnetite thin films[J]. J.Mater.Chem,1995,24:85~87.
    [76]刘小华,孙荣林.水热与溶剂热合成技术在无机合成中的应用[J].盐湖研究,2008,16(2):60-65.
    [77]周海牛,庄志强,王歆.BaTiO3粉体的水热法合成[J].中国陶瓷,2001,37(3):44-47.
    [78]William J Dawson. Hydrothermal Synthesis of Advanced Ceramic Powers[J]. Cera Bull,1988,67:1673~1678.
    [79]郭延红,白丹江.TPR技术在催化研究中的应用现状[J].延安大学学报(自然科学版),2006,25(3):52-54.
    [80]陈瑜,叶代启,梁红,等.含CeO2催化剂用于柴油车尾气炭烟氧化的研究[J].工业催化,2008,8(16):65-69.
    [81]Apostolescu N,Geiger B,Hizbullah K,Jan M T,Kureti S.Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Appl Catal B: Envi,2006,62(1-2):104~112.
    [82]刘欣梅,阎子峰.介孔二氧化锆分子筛的合成机理评述[J].分子催化,2006,20(1):84-94.
    [83]丁彩凤,朱海涛,王海亭.表面活性剂在有序介孔材料合成中的应用[J].山东陶瓷,2003,26(3):10-14.
    [84]杜开峰,吕彤.表面活性剂在新型介孔分子筛上的应用新进展[J].化工进展,2004,7(4):23-27.
    [85]宋彩霞,王德宝,古国华,等.表面活性剂有序聚集体在纳米材料制备中的应用[J].材料导报,2002,16(9):56-59.
    [86]朱培旭,黄爱红.表面活性剂模板法制备中孔材料地探索[J].功能材料,2001,32(6):590-594.
    [87]Ying J Y, Mehnert C P, Michael S W. Synthesis and applications of supramolecular-templated mesoporous materials. Angew.Chem.Int.Ed,1999, 38:56~77
    [88]陈庆春,邓慧宇,马燕明.聚乙二醇在新材料制备中的作用及其机理[J].日用化学工业,2002,32(5):35-37.
    [89]应皆荣,万春荣,姜长印,等.聚乙二醇对无机盐的胶束增溶作用及其溶胶配制中的作用[J].功能材料,2001,32(2):118-120.
    [90]Moriya Y, Sonoyama M, Nishikawa F, et al. Preparation of polymer hybrids of the SiO2-PVA or SiO2-PEG system and porous materials made from hybrid gels[J]. J.Cera.Soc.Japa,1993,101:518~521.
    [91]李蔚,高濂,郭景坤.醇-水溶液加热法制备纳米ZrO2粉体及相关过程的研究[J].无机材料学报,2000,15(1):16-20.
    [92]许珂敬.表面活性剂在制备ZrO2粉体中的作用[J].材料研究学报,1999,13(4):434-436.
    [93]李巍,葛志平,刘志锋,等.溶胶-凝胶法制备ZnO多孔薄膜[J].硅酸盐学报,2005,33(6):693-697.
    [94]李娜,王超,朱苏敏,等.聚乙二醇作造孔剂制备大孔溶胶生物活性玻璃 [J].无机化学学报,2005,21(1):95-100.
    [95]Liu X M, Lu G Q, Yan Z F. Synthesis and stabilization of nanocrystalline zirconia with MSU mesostructure[J]. J Phy Chem:B,2004,108:15523~15528.
    [96]陈诵英,孙予罕,丁云杰,等.吸附与催化[M].河南:科学技术出版社,2001,2-3.
    [97]刘欣梅,刑伟,阎子峰.介孔二氧化锆分子筛比表面积和孔结构的调变[J].无机化学学报,2005,2:191-196.
    [98]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004,147-148.
    [99]Beck J S, Vartuli J C, Roth W J, et al.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992, 359:710~712.
    [100]Raman N K, Anderson M T, Brinker C J. Template-Based Approaches to the Preparation of Amorphous Nanoporous Silicas[J]. Chem Mater,1996, 8:1682~1688.
    [101]Huo Q, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Nature,1994,368:317-321.
    [102]愈建长,胡胜伟,徐卫军.阴离子表面活性剂辅助模板途径合成介孔结构氧化锆纳米晶[J].化学学报,2000,63(15):1429-1432.
    [103]陈吉祥,邱业君,张继炎,等.La2O3和CeO2对CH4-CO2重整Ni/MgO催化剂结构和性能的影响[J].物理化学学报,2004,20(1):76-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700