用户名: 密码: 验证码:
Aj-vasa全长cDNA的克隆及其在仿刺参(Apostichopus japonicus)生殖系中的发育表达图式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生殖细胞的发生是发育生物学研究的重要领域。vasa基因在许多动物生殖系细胞中具有表达特异性,被广泛用作生殖细胞的分子标记物,在动物生殖细胞发生和生殖调控等研究中起到了重要的作用。仿刺参(Apostichopus japonicus)俗称刺参,是我国主要的棘皮动物经济种类,然而迄今尚未见对其生殖系起源和性腺发生的研究报道。本文采用同源克隆策略和cDNA末端快速扩增(RACE)技术,克隆了刺参Aj-vasa全长cDNA序列,对其进行了序列特征和时空表达分析,并以Aj-vasa mRNA为标记,研究了刺参原生殖细胞的起源;进一步采用组织学技术,观察了刺参性腺的早期发生。
     克隆得到的Aj-vasa基因cDNA序列全长2167 bp,含有开放阅读框1593 bp,编码530个氨基酸。5′非翻译区(UTR)为449 bp,3′UTR为125 bp。推导的氨基酸序列具有DEAD-box家族蛋白的全部9个保守结构域以及GG重复序列。同时在该基因的蛋白序列中还发现了ARKF框,该框只在DEAD-box家族VASA和PL10蛋白中保守存在,而在其他亚家族中并未发现。同源性比对和进化分析显示该基因编码蛋白与其他物种的VASA相关蛋白具有较高的相似性,证明VASA蛋白在进化上高度保守。蛋白三维结构预测蛋白功能显示该蛋白Aj-VASA具备了DEAD-box家族蛋白RNA连接,ATP酶和解旋酶的功能。
     半定量RT-PCR分析显示,Aj-vasa基因在成体性腺组织中特异表达;原位杂交结果表明Aj-vasa mRNA主要在精原、精母细胞和卵母细胞的胞质中表达显著,推测该基因可能参与刺参两性配子的发生。胚胎和幼虫半定量RT-PCR分析检测到从未受精卵到耳状幼虫都含有Aj-vasa mRNA。表达量自未受精卵至囊胚期逐渐升高,原肠胚至耳状幼虫表达量逐渐降低。整体原位杂交结果显示:从未受精卵到囊胚期,Aj-vasa mRNA在各细胞胞质中均有分布,原肠胚阶段Aj-vasa阳性细胞集中在内、中胚层处,小耳状幼虫阶段阳性细胞分布在消化道及水体腔囊处,随后出现在水体腔及左右体腔处,并在樽形幼虫及五触手幼虫期分布在身体左右两侧的球状体处,到稚参期,强阳性信号前移至身体前端,到1mm幼参期,表达Aj-vasa的细胞已集中于背系膜处,这些细胞即为原始生殖细胞。
     对1mm至3cm的幼参进行石蜡切片,结果显示:1~3mm幼参中,原始生殖细胞数个集群被包在背系膜处,形成性腺原基;5mm幼参性腺原基中开始出现空腔,具有了性腺雏形;至3cm幼参,性腺开始出现分支,其形态接近成体性腺形态。
Ontogenesis of germ cells is an important field in developmental biology. Up to now, vasa expression is exclusively restricted to the germ line cells in most animals, so vasa gene provides the most reliable molecular marker for studies on the germ cell development and reproductive regulation. Sea cucumber, Apostichopus japonicus is one of the most commercially important Echinodermata in China. While, the germline origin and the gonad genesis of A. japonicus haven't been reported till now. In this thesis, full-length cDNA of Aj-vasa from A. japonicus was first cloned using a homologous cloning strategy and rapid amplification of cDNA end (RACE) technology, and then the spatio-temporal expression of Aj-vasa transcripts was analysed by RT-PCR and in situ hybrization. Furthermore, Aj-vasa mRNA was used as a molecular marker to establish the origin model of sea cucumber primordial germ cells (PGCs). Finally, early genesis of A. japonicus gonad was observed by histological technology.
     Aj-vasa cDNA was 2167 bp in length, comprising an open reading frame (ORF) of 1593 bp encoding 530 amino acids, a 5' untranslated region (UTR) of 449 bp and a 3' UTR of 125 bp. The putative amino acid sequence of Aj-VASA shared all the nine conserved motifs characteristic and GG repeats of the DEAD-box protein family. An ARKF motif, appeared in VASA and PL 10 proteins, but not in other DEAD-box helicases, was also found in the Aj-VASA protein. Homology and phylogenetic analysis showed that Aj-VASA appeared more closely related to the other members of VASA sub-familie, which indicates that this gene is highly conserved through evolution. The three-dimensional structure of Aj-VASA suggested that this protein should possess essential functions of DEAD-box proteins such as RNA binding, ATPase and helicase activities.
     Semi-quantitative RT-PCR showed that Aj-vasa was specifically expressed in the gonads of adult sea cucumbers and in situ hybridization analysis revealed that Aj-vasa mRNA located abundantly in the cytoplasm of spermatogonia, spermatocytes and oocytes, which suggested that Aj-vasa could be involved in gametogenesis of A. japonicus. Aj-vasa mRNA was detected by RT-PCR from fertilized eggs to auriculariaes. The expression level increased rapidly after fertilization, and reached the peak at blastulas, then gradually decreased from gastrulaes to auricularias. Whole-mount in situ hybridization showed that Aj-vasa mRNAs were detected in each cell in early developmental stage from unfertilized egg to blastula. Cells containing Aj-vasa mRNAs were observed in endoblast and mesoblast during gastrulation. At early auricularia, Aj-vasa mRNAs were detected in the cells of alimentary tract and hydroentorocoel. These positive cells subsequently appeared at hydroeoele and somatocoel and located symmetrically at hyaline spheres at both sides of the body during doliolaria and pentactula stage. Then the signals appeared at the forside of the body and finally centralized at the dorsal mesentery at juveniles. These cells were the primodial germ cells(PGCs).
     The gonad genesis was invesgated by observing serial sections of 1mm to 3 cm juveniles. The results suggested that several PGCs were embedded in the dorsal mesentery in 1-3mm juveniles, these PGCs and the dorsal mesentery composed the gonad rudiment. When A. japonicus developed to 5mm juvenile, a cavum occurred at the gonad rudiment and an embranchment appeared at 3cm juvenile. At this time, its configuration is very near to the adult's.
引文
1 Schupbach T, Wieschaus E. Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux's Arch Dev Biol, 1986,195:320-317.
    2 Roussell D L, Bennett K L. Glh-1, a germ-line putative RNA helicase from Caenorhabditis, has four zinc fingers. Proc Natl Acad Sci USA, 1993,90: 9300-9304.
    3 Komiya T, Itoh K, Ikenishi K, et al. Isolation and characterization of a novel gene of the DEAD box protein family which is specifically expressed in germ cells of Xenopus laevis. Dev Biol, 1994, 162:354-363.
    4 Fujiwara Y, Komiya T, Kawabata H, et al. Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci USA, 1994, 91: 12258-12262.
    5 Olsen L C, Aasland R, Fjose A. A vasa-like gene in zebrafish identifies putative primordial germ cells. Median Dev, 1997,66: 95-105.
    6 Yoon C, Kawakami K, Hopkins N. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development, 1997, 124: 3157-3166.
    7 Fabioux C, Stephane P, Frédérique L R, et al. The oyster vasa-like gene: a specific marker of the germline in Crassostrea gigas. Biochem Bioph Res Co, 2004,315: 897-904.
    8 Sagawa K, Yamagata H, Shiga Y. Exploring embryonic germ line development in the water flea, Daphnia magna, by zinc-finger-containing VASA as a marker. Gene Expr Patterns, 2005, 5: 669-678.
    9 Xu H Y, Gui J F, Hong Y H. Isolation and characterization of a vasa gene in gibel carp (Carassiu auratus gibelio). Dev Dynam, 2005, 233: 872-882.
    
    10 Rebscher N, Zelada-Gonzalez F, Banisch T U, et al. Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii. Dev Biol, 2007, 306: 599-611.
    11 Juliano C E, Voronina E, Stack C, et al. Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage. Dev Biol, 2006, 300: 406-415.
    12 Raz E. The function and regulation of vasa-like genes in germ-cell development. Genome Biol,2000,1 (3):1017.1-1017.6.
    13 Kiledjian M, Dreyfuss G. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box[J]. EMBO J, 1992,11: 2655-2664.
    14 Cordin O, Banroques J, Tanner N K, et al. Patrick Linder. The DEAD-box protein family of RNA helicases. Gene, 2006,367: 17-37.
    15 Jennifer E F, Edward E R. Primordial germ cells of Synaptula hydriformis (Holothuroidea; Echinodermata) are epithelial flagellated-collar cells their apical-basal polarity becomes primary egg polarity. Reference: Biol.Bull, 1996,191: 168-177
    16 Chiemi I, Hiroko S. Origin of Germ Cells and Early Differentiation of Gonads in the Starfish, Asterina pectinifera. Develop. Growth & Differ., 1991, 33 (3), 217-226
    17 Margaret S H, Ralph T H. The formation and early differentiation of sea urchin gonads. Reference: Biol. Bull., 1980,159:280-294.
    18 White, M H D. "Animal Cytology and Evolution", 2~(nd) ed. London and New York: Cambridge Univ. Press, 1954
    19 Raven C P. "Oogenesis: The storage of Developmental Information" , viii-274 pp. Pergamon, New York. 1961
    20 Bacci G. "Sex Determination"vii+306 pp. Pergamon: Oxford, 1965
    21 Arthur C Giese, John S Pearse, edited. Reproduction of marine invertebrates. New York: Academic press, INC. , 1974
    22 Medina A I, Lopez Delarosa. Ultrastructural comparison of the spermatozoa of Sicyonia carinata (Sicyonidae) and Penaeopsis serrata (Penacidae) shrimp (Crustaoca, Dendrobranchiata, with particular emphasis on the acrosomal structure. Submicrosc. Cyto. Pathol. , 1994, 28 (3): 395-403
    23 Jaramillo R. Ultrastructural analysis of spermatogenesis and sperm morphology in chorus giganteus (Prosobranchia : Muricidae) . Veliger, 29(2): 217-225
    24 Billard R. Spermatogenesis and spermatology of some teleost fish species. Reprod. Nutr. Develop, 1986, 26 (4): 877-920
    25 Roosen-Runge C E. The process of spermatogenesis in animals (Development and Cell Biology). London: Cambridge University Press, 1976.37-50
    26 Schuetz AW. Oogenesis: processes and their regulation. Advan. Reprod. Physil. , 1969a, 4: 99-148
    27 Schjeide O A, Galey F, Grellert E A, San Lim, et al.Macromoleules in oocyte maturation. Biol. Reprod. .Suppl. , 1970, 2: 14-43
    28 Davidson E H. Gene Activity in Early Development, xi+375 pp. New York: Academic Press, 1968
    
    29 Estampador E P. Scylla (Crustacea: Portunidae) I . Comparative studies on spermogenesis and oogenesis. Philip. Jour. Sci. , 1949, 78(3): 301-353
    30 Yano I. Oocyte development in the Kuruma prawn Penaeus japonicus. Mar. Biol. 1998, 99: 547-553
    31 Martin G G, Romero K, Miller Walker C. Fine structure of the ovary in the red abalone Haliotis rufescens (Mollusca: Gastropoda) . Zoomorphology, 1983, 103: 89-102
    32 Busson Mabillot S. Endosome transfer yolk proteins to lysosomes in the vitellogenic oocyte of the trout. Biol. Cell, 1984, 51: 53-66.
    33 Lasko P F, Ashbumer M. 1988.Nature,335:611-617
    34 Hay B,Jan L Y, Jan Y N.1998.cell, 55:577-587
    35 Styhler S, Nakamura A, Swan A, et al.1998.Development.125:1569-1578
    36 Carrera P, Johnstone O, Nakamura J, et al.2000.mol.cell,5:181 -187
    37 Saffman E E, Lasko P. 1999.cell.mol.life sci.55:1141-1163
    38 Erez R. The function and regulation of vasa-like genes in germ-cell development.Genome biology.2000.vol 1 .No.3:1017.1 -1017.6
    39 Gavis E, Lunsford L,Bergsten S et al. A conserved 90 nucleotide elementmediates translation of nanos RNA.Development 1996,122:2791-2800
    40 Deshpande G, Calhoun G, Yanowitz J,et al. Novel functions of nanos in downregulating mitosis and transcription during the development of the Drosophila germline. Cell 1999,99:271-281
    41 Seydoux G, Strome S.Launching the germline in Caemorhabditis elegans: regulation of gene expression in early germ cells.Development 1999,126:3275-3283
    42 Braat A, Zandbergen T,vande Water S, et al.Characterrization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA.Dev Dyn.1999,216:153-167
    43 Wylie C:Germ Cells.Cell.1999,96:165-174
    44 Zemicka-Goetz M. Fertile offspring derived from mammalian eggs lacking either animal or vegetal poles.Development,1999,126:5295-5307
    45 Tsimekawa N,Naito M,Sakai Y,et al.Isolation of chicken vasahomolog gene and tracing the origin of primordial germ cells.Development 2000,127:2741-2750
    46 Weidinger G, Wolke U,Koprunner M,et al.Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells.Development. 1999,126:5295-5307
    47 Cuenot L., 1891. Etudes morphologiques sur les Echinodermes. Arch. Biol., 11:313-380.
    
    48 Macbride, E. W., 1903. The development of Echinus esculentus, together with some points in the development of E. iniliaris and E. acutus. Philos. Trans. R. Soc. Lond. B.Biol., 195: 285-327.
    
    49 Prouho H., 1887. Recherches sur le Dorocidaris papillata et quelques autre echinoides de la Mediterranee. Arch. Zoo!. Exp. Gen., 15: 213-380.
    50 Russo A., 1894. Sul sistema genitale e madreporico degli F.cluinidi regolari. Boll. Soc. Nat. Napoli Ser. 1,8:90
    51 Delavault R, 1966. Determinism of sex. Pp. 615-638 in R. A. Boolootian, Ed., Physiology of Echinoderinata. Interscience Publishers, New York.
    52 Benz J, Trachsel H and Baumann U. Crystal structure of ATPase domain of translation initiation factor eIF4A from Saccharomyces cerevisiae—the prototype of the DEAD box protein family Structure[J]. Folding and Design. 1999, 7: 671-679.
    53 Tanner N K and Linder P. DexD/H box RNA helicases: from generic motors to specific dissociation functions[J]. Molecular Cell. 2001,8: 251-262.
    54 Matsui Y, ZaeboK, Hogan B L. Derivation of pluripotential embryonic stern cells from murine primordial germ cells in culture[J]. Cell, 1992, 70(5): 841 -847
    55 Chern Y R A , Mere I J. Evidence for p luripo tency of bovine primordial germ cell derived cell lines init iated in long-term culture [ J ]. Ther iogenology,1994,41 (1): 175.
    56 Shim H, Gu t ierrez2adon A , Chen L R, et al. Isolation of pluripotent stem cells from cultured porcine primordial germ cells [J ]. Biol Reprod, 1997, 57 (5): 1089-1095.
    57 Ku Hhol Zer B, Ba Gu Is Ia, Ov Erstrom E W.Long-term culture and characterization of goat primordial germ cells [ J ]. Theriogenology, 2000, 53(5): 1071-1079.
    58 Park T S, Han J Y. Derivation and characterization of pluripotent embryonic germ cells in chicken [J ]. Mol Reprod Dev, 2000, 56 (4): 475- 482.
    59 Shamblottm J, Axelman J ,Wan G S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells [J ]. Proc Natl Acad Sci, 1998,95 (23): 13726-13731.
    60 Tam, P. P. and Zhou, S. X. (1996). The allocation of epiblast cells to ectodermal and germ-line lineage is influenced by the position of the cells in the gastrulating mouse embryo. Dev. Biol. 178, 124-132.
    61 Zhou, Y. and King, M. L. (1996). Localization of Xcat-2 RNA, a putative germ plasm component, to the mitochondrial cloud in Xenopus stage I oocytes. Development 122, 2947-2953.
    62 Hogan, B. L. (1996). Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580-1594.
    63 Lawson, K. A., Dunn, N. R., Roelen, B. A., Zeinstra, L. M., Davis, A. M, Wright, C. V., Korving, J. P., and Hogan, B. L. (1999). Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13,424-436.
    64 Ying, Y. and Zhao, G. Q. (2001). Cooperation of endoderm-derived BMP2 and extra embryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev. Biol. 232,484-492.
    65 Saitou, M., Barton, S. C. and Surani, M. A. (2002). A molecular programme for the specification of germ cell fate in mice. Nature 418, 293-300.
    66 Annie Mercier, Roberto Ycaza Hidalgo and Jean-Francois Hamel. Aquaculture of the Galapagos sea cucumber, Isostichopus fuscus.
    67 Extavour, C. and Garcia-Bellido, A. (2001). Germ cell selection in genetic mosaics in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98, 11341-11346.
    68 Huettner, A. F. (1923). The origin of the germ cells in Drosophila melanogaster. J. Morphol. 2, 385-422.
    69 Technau, G. M. and Campos-Ortega, J. A. (1986). Lineage analysis of transplanted individual cells in embryos of Drosophila melanogaster Part III. Commitment and proliferative capabilities of pole cells and midgut progenitors. Roux's Arch. Dev. Biol. 195, 489-498.
    70 Williamson, A. and Lehmann, R. (1996). Germ Cell Development in Drosophila. Ann. Rev. Cell Dev. Biol. 12, 365-391
    71 Deppe, U., Schierenberg, E., Cole, T., Krieg, C., Schmitt, D., Yoder, B. and von Ehrenstein, G. (1978). Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 75,376-380.
    72 Strome, S. and Wood W. B. (1982). Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae and adults of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 79,1558-1562.
    73 Chiquoine, A. D. (1954). The identification, origin, and migration of the primordial germ cells in the mouse embryo. Anat. Rec. 2,135-146.
    74 Mochizuki, K., Nishimiya-Fujisawa, C., and Fujisawa, T. (2001). Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev. Genes Evol. 211,299-308.
    75 Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H., and Nusslein-Volhard, C. (2000). Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J. Cell Biol. 149, 875-888.
    76 Liang, L., Diehl-Jones, W., and Lasko, P. (1994). Localization of Vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120,1201-1211.
    77 Mochizuki, K., Nishimiya-Fujisawa, C., and Fujisawa, T. (2001). Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev. Genes Evol. 211,299-308.
    78 Kobayashi, T., Kajiura-Kobayashi, H., and Nagahama, Y. (2000). Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, Tilapia, Oreochromis niloticus. Mech. Dev. 99,139-142.
    79 Wylie, C. (2000). Germ cells. Curr. Opin. Genet. Dev. 10,410-413.
    80 Takagi Y,Talbot NC, Rexroad CE, et al.. Identification of pig primordial germ cells by immunocytochemistry and lectin binding. Mol Reprod Dev, 1997,46 (4):567-80.
    81 Linder P, Lasko P F, Ashburner M, et al.. Birth of the D-E-A-D box. Nature, 1989, 337: 121 -122.
    82 Rocak S and Linder P. DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol,2004,5:232-241.
    83 Tanaka,S.S.,Toyooka,Y.,Akasu,R.,Katoh-Fukui,Y.,Nakahara,Y.,Suzuki,R.,Yokoyama,M.,and Noce,T.The mouse homologue of Drosophila vasa is required for the development of male germ cells.Genes Dev.2000.14,841-853.
    84 Norito Shibata,Yoshihiko Umesono,Hidefumi Orii,Takashige Sakurai,Kenji Watanabe,and Kiyokazu Agata.Expression of vasa(vas)-Related Genes in Germline Cells and Totipotent Somatic Stem Cells of Planarians.Developmental Biology,1999,206,73-87.
    85 Kazufumi Mochizuki,Chiemi Nishimiya-Fujisawa,Toshitaka Fujisawa.Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra.Dev Genes Evol.2001,211,299-308.
    86 Norito Shibata,Yoshihiko Umesono,Hidefumi Orii,Takashige Sakurai,Kenji Watanabe,and Kiyokazu Agata.Expression of vasa(vas)-Related Genes in Germline Cells and Totipotent Somatic Stem Cells of Planarians.Developmental Biology,1999,206,73-87.
    87 陈大元主编.受精生物学.北京:科学出版社,2000
    88 张红卫,王子仁,张士璀.发育生物学.北京:高等教育出版社,2001.
    89 常亚青,丁君,宋坚,杨威.海参、海胆生物学研究与养殖.北京:海洋出版社,2004.10
    90 陈云贵,叶鼎,宋平,吕道远,桂建芳.金鱼配子发生中vasa基因的表达和分布特征。动物学研究,2005,Apr.26(2):179-183
    91 吕道远,宋平,陈云贵,彭茂宇,桂建芳.黄鳝性腺自然逆转过程中vasa基因的表达分析.动物学报,2005 51(3):469-475
    92 常亚青,丁君,宋坚等,海参、海胆生物学研究与养殖,海洋出版社,2004
    93 常亚青,仿刺参(Apostichopus japonicus)多倍体诱导的初步研究,大连水产学院,2002,17:4-7
    94 忠岳,刺参的增殖养殖技术,水产科技情报2003,30(3):125-127
    95 龙波,董志宁,陆瑶华。刺参消化系统的组织学和组织化学研究,动物学杂志,2000,35(6):2-4
    96 隋锡林,海参增养殖。北京:农业出版社,1990
    97 王兴章,邢信泽,中国北方刺参(Apostichopus japonicus Selenka)增养殖发展现状及技术探讨,现代渔业信息,2000,15(8)4
    98 洪水根,李祺福,郭永刚等.斑节对虾精子发生的超微结构.动物学报,1998,44(1):1-4
    99 洪水根,孙涛.中国鲎精子发生的研究:Ⅰ精子的发生过程.动物学报,1995,41(4):393-399
    100 杨万喜,应雪萍,竺俊全,等.硬骨鱼类精子发生及其在系统演化研究中的应用前景.东海海洋,2000,18(3):53-58
    101 杨万喜.日本沼虾三种细胞器在精子发生过程中变化的研究.应用与环境生物学报,1998,4(1):49-54
    102 杜晓东.3种珍珠贝精子发生及其超微结构的比较研究.湛江水产学院学报,1996,16(2):1-6
    103 李太武.三疣梭子蟹精子的发生及超微结构的研究.动物学报,1995,41(1):41-47
    104 朱冬发,李少菁,王桂忠.东方扁虾精子发生的超微结构.动物学报,2002,48(1):100-106
    105 杨万喜.日本沼虾三种细胞器在精子发生过程中变化的研究.应用与环境生物学报,1998,4(1):49-54
    106 杨万喜.十足类甲壳动物精子发生过程中细胞器变化和作用研究进展.东海海洋,1998,16(4):52-56
    107 代培芳,饶小珍,陈寅山.菲律宾蛤仔的精子发生和精子超微结构.动物学杂志,2004,39(2):26-32
    108 应雪萍.泥螺卵子发生的超微结构研究.Developmental & Reproductive Biology,2002,11(1):29-36
    109 颜素芬,上官步敏,李少菁.锯缘青蟹卵子发生的超微结构研究.厦门大学学报(自然科学版),1994,33(2):231-236
    110 刘德模,洪水根.栉孔扇贝卵母细胞卵黄发生的研究.厦门大学学报(自然科学版),1996,35(3):412-416
    111 王玉凤,堵南山,赖伟.罗氏沼虾(Macrobrachium rosenbergii)卵子发生的细胞化学研究.华东师范大学学报(自然科学版),1997,4:91-94
    112 刘卫东.栉孔扇贝卵发生的超微结构和细胞化学.应用与环境生物学报,1999,5(6):593-597
    113 张煜,刘永宏.国内外刺参研究的回顾、进展及其资源途径的探讨[J].海洋渔 业,1984,2:57-60.
    114 任素莲,王德秀,王如才.太平洋牡蛎卵母细胞发育及卵黄发生的超微结构.中国水产科学,1999,6(4):4-6
    115 任素莲,王德秀,王如才.栉孔扇贝成熟卵形态与超微结构的研究.青岛海洋大学学报,1999,29(3):436-440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700