用户名: 密码: 验证码:
基于改进介电常数模型的沥青路面面层压实度反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压实度是沥青混凝土路面面层质量控制中的一项重要技术指标。而目前我国对于沥青混凝土路面压实度的检测仍然依赖于钻芯取样等人工破坏性方法,这些方法速度慢,效率低,显然已经不能与我国道路建设日新月异的发展现状相适应。因此,急需研发快速、高效、无损的沥青混凝土路面压实度检测技术。
     探地雷达(GPR)是一种快速、高效的道路无损检测设备,目前代表了沥青混凝土路面面层压实度检测技术的发展方向。但是现阶段探地雷达应用于路面压实度检测主要是通过现场试验获得介电常数和压实度的相关关系,这种方法不仅对路面具有一定的破坏性,而且相关关系缺乏通用性。
     本文基于以上研究现状,开展沥青混凝土路面压实度的反演。主要研究内容和结论如下:
     (1)基于试验对几种经典的介电常数模型进行了改进,并研究了沥青混凝土材料复合介电特性和压实度的关系以及压实度与沥青混合料中骨料、沥青和空气三相体积比的关系。
     (2)基于雷达电磁波基本原理,针对沥青路面的结构特点,建立了具有复合介电特性的探地雷达电磁波在沥青混凝土路面中的传播模型,并编制了相应的程序。计算结果表明该模型是合理有效的。
     (3)基于建立的探地雷达电磁波在沥青混凝土路面中的传播模型,结合系统识别理论,研究了沥青混凝土路面复合介电特性反演方法,并根据路面压实度与介电常数的关系,提出了基于改进介电常数模型的沥青混凝土路面面层压实度反演方法,并编制了相应的程序。
     (4)通过试验,将基于改进介电常数模型的压实度反演结果与经典模型下的反演结果以及钻芯取样检测结果相对比。结果表明,本文方法具有精度高、快速、连续、无损伤等特点。
     本文研究成果为探地雷达在沥青混凝土路面压实度检测的应用提供了新的思路和可行性研究。
Compaction degree is the quality control of asphalt concrete pavement surface of an important technical indexes. But at present for the asphalt concrete pavement compaction test still rely on such destructive sampling method of artificial got the traditional method, and apparently had not road construction adapt to changing the status quo. Therefore, it is urgent to fast development of asphalt concrete pavement, nondestructive testing technology surface compaction degree.
     GPR is a new kind of nondestructive testing equipment, and the way of asphalt concrete pavement layer represents the compaction test technology development direction. But the present GPR application in pavement compaction test is mainly related to get through the field experiment, this method of pavement has certain destructive and lack of correlation.
     Based on the above of asphalt concrete pavement compaction test, the situation of asphalt concrete pavement compaction of inversion. The main research contents and the conclusions are as follows:
     (1) Based on the experiment on the dielectric constant of classical model. The study of asphalt concrete composite dielectric properties and the degree of compaction and the relationship between the degree of compaction and asphalt mixture asphalt aggregates, in three parts and air volume.
     (2) Based on the basic principle of electromagnetic wave radar, according to the structure characteristics, the characteristic of complex dielectric in GPR wave propagation models of asphalt concrete pavement, and the corresponding program Calculation results show that the model is reasonable and effective.
     (3) Based on the established in GPR wave propagation models of asphalt concrete pavement, system identification theory, the study of asphalt concrete pavement of dielectric properties of composite inversion, and according to the pavement compaction and the dielectric constant of the relationship, and puts forward the improved model based on the dielectric constant of asphalt-concrete surface course compaction inversion method, and the corresponding program.
     (4) Through the experiment, will be based on the improved model of dielectric constant of compaction inversion and classical model inversion and got test results compared, the results showed that this method is of high precision, fast and continuous, no damage, etc.
     This research for GPR in asphalt concrete pavement compaction test application provides new ideas and feasibility studies.
引文
[1][03330991]王子彬.沥青混凝土路面离析检测技术及防治措施研究[M].[硕士学位论文].郑州:郑州大学,2006.
    [2]邓学钧,张登良.路基路面工程[M].北京:人们交通出版社,2002.
    [3]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2005.
    [4]中华人民共和国交通部.公路路基路面现场测试规程(JTJ.059-95)[S].北京:人民交通出版社,2002.
    [5]中华人民共和国交通部.公路工程质量检验评定标准(JTJ.071-2004)[S].北京:人民交通出版社,2005.
    [6]周瑞丰,杨晓青,李彦杰.核子密度仪检测沥青混凝土路面压实度的应用[J].中外公路.2003,Vol.23(4):85-87
    [7]张蓓.无核密度仪PQI在沥青路面施工质量控制中的应用[J].公路交通科技应用技术版,2006,(4):16-18
    [8]付玉,吴少鹏,邱健等.无核密度仪在沥青路而压实度检测中的应用[J].武汉理工大学学报,2007(9):22-23
    [9]Amara Loulizi. Development of Ground Penetrating Radar Signal Modeling and Implementation for Transportation Infrastructure Assessment [D]. U.S.:the Virginia Polytechnic Institute and State University,2001.
    [10]孙军,应后强,王国群.探地雷达在公路检测中的应用[J].公路.2001,3:59-61
    [11]李大心.公路工程质量的探地雷达检测技术[J].地球科学—中国地质大学学报.1996,21(6):661-663
    [12]肖兵,周翔,汤井田.探地雷达技术及其应用和发展[J].物探与化探.1996,20(5):378-383
    [13]胡仁东.地质雷达在高速公路建设中的应用[J].公路.1999,12:70-71
    [14]郭云开,王礼尧.探地雷达在高等级公路质量无损检测中的应用研究[J].华东公路.2002,1:55-57
    [15]W. F. Brown. Dielectrics in Encyclopedia of Physics [M]. Berlin:Springer,1956.
    [16]杜树春.探地雷达及其在环境地质中的应用[J].物探与化探.1996,(5):384-392
    [17]J.A. Reynolds, J.Hough. Formulate for dielectric constant of mixtures [J].Proc.Phys.Soc. London.1957,708(452):765-769
    [18]白冰,周健.探地雷达测试技术发展概况及其应用现状[J].岩石力学与工程学报.2001,20(4):527-531
    [19]孙洪星,康永华.有耗介质探地雷达波传播衰减特性的研究[J].工程地质学报.1999,7(4):344-348
    [20]王旭东,应鹏程,何兆益.沥青混合料空隙率的研究[J].重庆交通学院学报.2000,19(4):18-21
    [21]刘世安,杨敬兰.路基填土压实质量指标空隙率浅析[J].铁道建筑技术.2001,增刊:20-22
    [22]沙庆林.公路压实与压实标准[M].第三版.北京:人民交通出版社,2000.
    [23]高福春.路面雷达在检测沥青混凝土面层密实度中的应用研究[D].长沙交通学院,硕士学位论文,2003.
    [24]沙庆林.孔隙率对沥青混凝土的重大影响[J].国外公路,2000(1):34-38
    [25]黎春林.探地雷达检测路面含水量、空隙率和压实度的应用研究[D].郑州大学,硕士学位论文,2003.
    [26]孙洪星,李凤明.探地雷达高频电磁波传播衰减机理与应用实例[J].岩石力学与工程学报.2002,21(3):413-417
    [27]毕德显.电磁场理论[M].北京:电子工业出版社,1985.
    [28]孙洪星.有耗介质高频电磁波传播衰减特性理论与应用实践的研究[J].煤炭学报.2001,26(6):567-572
    [29]王蔷,李国定,龚克.电磁场理论基础[M].北京:清华大学出版社,2001.
    [30]沈飚,于东海,孙忠良.有耗媒质中脉冲响应的研究[J].物探化探计算技术.1996,18(4):304-309.
    [31]何兵寿,张会星.地质雷达正演中的频散压制和吸收边界改进方法[J].地质与勘探.2000,36.(3):59-63
    [32]邓世坤.探地雷达图象的正演合成[J].地球科学—中国地质大学学报.1993,18(3):285-293
    [33]沈飚.探地雷达波波动方程研究及其正演模拟[J].物探化探计算技术.1994,16(1):29-48
    [34]Ziauddin A. Khan. Hamad I. AI-Abdul Wahab. Comparative Study of Asphalt Concrete Laboratory Compaction Method to Simulate Field Compaction [J]. Construction Building Material.1998,12:373-384
    [35]Lau,Chun Lok, Scullion,Tom, Chan, Paul. Modeling of Ground Penetrating Radar Wave Propagation In pavement Systems [C]. Prepared for Transportation Research Board,72nd Annual Meeting. Washington, D.C., Jan.1992.
    [36]邓世坤,王惠濂.探地雷达的正演合成与偏移处理[J].地球物理学报.1993,36(4):528-536
    [37]沈飚,石庆华,孙忠良.道路铺砌层中探地雷达波传播的正演模拟及应用[J].石油地球物理勘探.1997,32(增刊):135-140
    [38]谢雄耀,万明浩.复信号分析技术在地质雷达信号处理中的应用[J].物探化探计算技术.2000,22(2):108-112
    [39]G.S.Smith and W. R. Scott. The use of emulsions to represent dielectric materials in electromagnetic scale models[J]. IEEE Trans. On AP,1992,38:323-344
    [40]Zonghou Xiong, Alan C. Tripp. Ground Penetrating Radar Responses of Dispersive Models[J]. Geophysics.1997,62(4):1127-1131
    [41]Wang, Fuming, Lytton, R.L. System Identification Method for Backcalculating Pavement Layer Properties[C]. TRB,1384.1993:1-7
    [42]王复明,刘文廷.高等级公路无损检测与评价—工程力学反问题研究[C].杨卫,郑泉水,靳征谟主编.走向21世纪的中国力学.北京:清华大学出版社,1996.
    [43]方广有.探地雷达脉冲在平面分层媒质中反射和传播特性[J].电波科学学报.1993,9:40-45
    [44]孟美丽.路用探地雷达回波模拟分析[D].郑州:郑州大学,2002.
    [45]董晓龙,汪文秉.基于时域反射数据的分层媒质的参数反演[J].电子学报.1999,27(8):59-62
    [46]Tom Scullion, Chun-Lok Lau, Yiqing Chen. Implementation of the Texas Ground Penetrating Radar System[R]. Texas Transportation Institute Research Report 1233-1. Texas A&M University, College Station Texas, USA.1994.
    [47]张蓓.路面结构层材料介电特性及其厚度反演分析的系统识别方法[D].重庆:重庆大学,2003.
    [48]郭强.探地雷达信号处理的时-频分析法[D].北京:北京理工大学,1996.
    [49]Imad.L.AL-Qadi,Samer.Lahouar,Amara Loulizi. Ground-Penetrating Radar Calibration at the Virginia Smart Road and Signal Analysis to Improve Prediction of Flexible Pavement Layer Thicknesses[R]. VTRC05-CR7, January,2005.
    [50]Amara Loulizi. Development of Ground Penetrating Radar Signal Modeling and Implementation for Transportation Infrastructure Assessment [D]. U.S. the Virginia Polytechnic Institute and State University.2001.
    [51]Kenneth R. Maser. Ground Penetrating Radar Surveys to Characterize Pavement Layer Thickness Variations at GPS Sites[R]. Strategic Highway Research Program. SHRP-P-397. Washington D.C.. U.S.1994.
    [52]U.S. Department of Transportation, Federal Highway Administration. Ground Penetrating Radar for Measuring Pavement Layer Thickness[R]. Publication Number: FHWA-HIF-00-015.1996.
    [53]Jackie E.Hipp.Soil Electromagnetic parameters as functions of frequency,soil density,and soil moisture[J]. Proceeding of the IEEE.1974,62(1):98-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700