用户名: 密码: 验证码:
分段仿射系统的控制器设计及预测控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际工业过程中,大量存在着一类用分段仿射结构(PWA)表示的混杂系统,这类系统常用一组线性子模型与其相应的作用域凸多面体表示。该系统被证明完全等价于其它结构类型的混杂系统。混杂系统是由离散事件动态系统与连续时间动态系统或离散时间动态系统相互混合、相互作用而形成的统一动态系统。混杂系统理论的提出既是社会经济发展的需要,也是计算机科学和控制科学发展的必然结果。分段仿射系统是混杂系统的重要分支之一,它由若干子系统组成,即由切换将逻辑动态和连续动态连接在一起。理论上,分段仿射系统可以逼近任意的非线性系统。
     近十年来,国内外学者在分段仿射系统的理论与工程应用方面做了大量的工作,并取得了一系列的研究成果。由于分段仿射系统本质上是属于一类非光滑、非连续的复杂非线性系统,同时由于分段仿射系统具有广泛的工程背景,因此分段仿射系统的理论与应用研究是系统工程与自动控制领域当前研究的难点与热点之一,具有重要的理论价值和实际应用意义。
     本文在综述前人研究的基础上,对于分段仿射系统的理论与应用作了进一步研究和探索。本文的研究工作主要集中在以下五个方面:
     对分段仿射系统的产生背景,概念,以及研究的必要性和重要性作了综述,着重对分段仿射模型的建模方法作了研究,列举了基于分段仿射系统建模的工程应用实例。
     基于简化约束区域计算的目的,采用分段区域划分技术,把分段仿射系统的每个子系统的状态作用空间用椭圆集的形式表示出来,每个子系统在其相应的区域划分内发生作用,并且在不同的区域划分之间发生切换。基于分段Lyapunov函数设计出能使PWA系统在各个区域划分之间任意切换的稳定的控制器;并且研究了当分段仿射系统带有扇区不确定性或者参数摄动不确定性时系统的鲁棒控制器设计问题,给出相应的设计方法。
     在实际工程中,具有确定切换序列的分段仿射系统极其普遍,而且控制量带有饱和约束的分析和综合问题也是经常遇到的。针对这种具有确定切换序列的并且带有输入约束的分段仿射系统,为降低一般切换控制器设计的保守性,提出了多模预测控制方法。将多模型准无穷时域预测的指标函数分割成有限时域与无限时域两部分;其中有限时域性能指标优化求解出的自由变量可以使分段仿射系统按照确定的序列切换到指定的子系统模型区域内;无限时域性能指标优化求解出的反馈控制器使系统稳定到期望的平衡点;理论上将系统的稳定问题归结为线性矩阵不等式的凸优化求解可行性问题。在此基础上,通过附加的终端椭圆的渐近收敛约束保证系统更快收敛到平衡点,基于LMI解决了系统的输入受约束的问题。最后通过对一个聚合反应釜(CSTR)模型的仿真证实了上述两种算法的有效性。
     而实际系统中系统模型往往是不确定或者缓慢变化的,针对多胞型不确定分段仿射系统,提出了鲁棒预测控制算法。基于预测控制的凸组合理论,给出了多步鲁棒预测控制的性能指标上确界,并将上确界的最小化问题转化为LMI优化问题;该方法不但考虑了模型的不确定性,而且证明了闭环系统的鲁棒稳定性和算法滚动实现的可行性。最后通过仿真验证了算法的有效性。
     此外,针对切换顺序已知,并且输入受约束的子系统带有时滞项的分段仿射系统,提出基于椭圆集约束的模型预测控制。该算法基于Lyapunov-Krasovskii函数给出了性能指标上界和系统稳定的充分条件,将性能指标最小化、稳定性约束、输入约束转化为容易求解的LMI约束。通过陆地自主车的仿真验证了该方法的有效性。
In engineering practice, there are many hybrid systems described by piecewise affine systems (PWA) which are composed of linear subsystems and convex polytopic regions. Hybrid systems are composed of discrete event dynamic systems and continuous time dynamic systems or discrete time dynamic systems, which interact on each other. The hybrid system theory, which is proposed for the demand of the economic development, is the result of the development of computer science and control theory. Piecewise affine system is one of the most important branches of hybrid system, and is also straightforward. It consists of some subsystems that integrate the logical and continuous dynamics by switching. Theoretically, any nonlinear system can be approximated as piecewise affine system.
     For decades, scientists have conducted much research work in PWA system and its applications in many engineering problems, and make a series of satisfied achievements. But, because of the difficulty and the popularity of the PWA system (i.e. PWA is essentially a non-smooth and even non- continuous nonlinear system and hybrid system has a extensive engineering background), up to today, the topic of PWA system and its applications is one of the most difficult research work and also one of the hot spots of studies in the field of system and control science.
     On the basis of summarizing and reviewing previous research work, this dissertation makes some further research work and exploration in PWA and its applications in nonlinear systems. The research work of this thesis consists of following five aspects:
     The concept and the background of the development of PWA, the importance and necessity of studies of PWA are explained. Various widely used modeling approaches for hybrid systems, their characteristics and the equivalences of typical hybrid models are summarized. The work focuses mainly on important subclass of hybrid systems: piecewise affine systems (PWA). Typical examples of the applications of PWA in engineering practice are also illustrated.
     Using the convex polytopes technique, the corresponding operating region of the PWA systems in state space is described as ellipsoid which can be characterized by a set of vector inequalities. With these ellipsoid partitions, each model is valid in a given region of a certain space, and the PWA systems switches between different partitions. Based on the common Lyapunov and multiple Lyapunov functions, the stable controller is designed for the PWA systems involving mode switching between different operating regions. Furthermore, the design methods of the robust controllers are proposed for the PWA with sector uncertainty or parameter perturbation respectively.
     In practice, the PWA systems with certain switching order exist universally. Simultaneously, the analysis and synthesis of control systems with actuator saturation are met frequently. To decrease the conservation of the controller which designed for the PWA systems with constrained control input based on certain switching order, a multi-model predictive control (MPC) algorithm is developed by a sequence of piecewise models along the transition trajectory. The control algorithm is a receding horizon scheme with a quasi-infinite horizon objective function that has finite and infinite horizon cost components. The finite horizon cost consists of free input variables that direct the system towards a terminal region that contains the desired operating point. The infinite horizon cost has an upper bound and takes the system to the final operating point. The control problem is formulated as a convex optimization in terms of Linear Matrix Inequalities (LMIs). Furthermore, on the basis of former algorithm, an additional terminal ellipsoid is introduced to ensure the states converging to the equilibrium faster. The problem of constrained control input is solved by convex optimization involving LMIs. Lastly, a simulation involving Continuous Stirred Tank Reactor (CSTR) model results verify the effectiveness of these proposed methods.
     In practice, systems are generally uncertain and time-varying. A robust MPC is proposed for PWA systems with polytopic uncertainties. The problem of minimizing an upper bound on the worst-case objective function is reduced to a convex optimization involving LMIs. The feasible free input variables guarantee the PWA systems switching in certain order, and the receding horizon state-feedback control guarantees closed-loop robust asymptotic stability and input constraints. The approach allows explicit incorporation of the description of plant uncertainty. Furthermore, the closed-loop robust stability and feasibility of receding horizon implementation are proved. The simulation results verify the effectiveness of the proposed method.
     A model predictive control (MPC) is proposed for a time-delay PWA systems with constrained input and certain switching order. The corresponding operating region of the considered systems in state space is described as ellipsoid which can be characterized by a set of vector inequalities. The control law is obtained by convex optimization based on MPC involving linear matrix inequalities (LMIs). And the constrained control input of the considered systems is solved in terms of LMIs. The simulation results verify the effectiveness of the proposed method. It is shown that, based on LMI constraints, it is easy to get the MPC for the PWA systems with time-delay and a simulation involving Autonomous Land Vehicle (ALV) model results verify the effectiveness of these proposed methods.
引文
1 Gans NR, Hutchinson SA. Stable Visual Servoing Through Hybrid Switched-system Control. IEEE Transactions on robotics, 2007(3): 530-540.
    2 Milewski J, Miller A, Salacinski J. Off-design Analysis of SOFC hybrid System. International Journal of Hydrogen Energy. 2007,32(6):687-698.
    3 卢建宁. 基于 LMI 的若干混杂系统稳定性分析与综合研究. 浙江大学博士学位论文. 2006.
    4 张聚. 混杂系统理论及在非线性系统中的应用研究. 浙江大学博士学位论文. 2005.
    5 Lehrenfeld G, Naumann R. Integrated Design and Simulation of Hybrid Systems. Henziger TA (Eds), Hybrid Systems: Computation and Control (HSCC'98). Springer-Verlag, 1998:219-236
    6 M .S. Branichy, V.S.Borkar. A Unified Frame Work for Hybrid Control: Model and Optimal Control Theory. IEEE Transactions on Automatic control, 1998, 43(l): 31-45
    7 Ferrari-Trecate Giancarlo, Gallestey Eduardo, Letizia, Paolo. Modeling and Control of Co-generation Power Plants: A Hybrid System Approach. IEEE Transactions on Control Systems Technology, 2004, 12(5): 694-705.
    8 赵洪山,米增强. 混杂系统理论及其在电力系统中的应用前景. 华北电力大学学报,2002, 29( 2): 6-12
    9 Pettersson S, Lennartson B. Stability Analysis of Hybrid Systems Using LMIs- A gear-box application. Proc of HSCC’00. Pittsburgh: Springer-Verlag, 2000 :240-254
    10 Ren David, Hassane Alla. On Hybrid Petri Nets. Discrete Event Dynamic Systems: Theory and Applications. 2001,11:9-40
    11 Jan Lunze, Nixdorf, Henrik Richter. Process Supervision by Means of Hybrid Model. Journal of Process Control. 2000 (11):89-104
    12 Benporad A, Morari M. Control of Systems Integrating Logic, Dynamics, and constraints. Automatica, 1999, 35(3):407-427
    13 Shen Jinglai, Pang Jong-Shi. Linear Complementarity Systems: Zeno states. SIAM Journal on Control and Optimization, 2006, 44(3): 1040-1066.
    14 Gowda, M. Seetharama. On the Extended Linear Complementarity Problem. Mathematical Programming, Series B. 1996, 72(1):33-50.
    15 M. Johansson and A. Rantzer. Piecewise Linear Quadratic Optimal Control. IEEE Transactions on Automatic Control, 2000,45(4): 629-637
    16 Benporad A, Ferrari-Trecate G, Morari M. Observability and Controllability of Piecewise Affine and Hybrid systems. IEEE Transactions on Automatic Control, 2000, 45(10):1864-1876.
    17 L. Rodrigues and J.P. How. Automated Control Design for A Piecewise Affine Approximation of A Class of Nonlinear Systems. In Proceedings of the American Control Conference, 2001:3189-3194
    18 Johansson M, Rantzer A. Computation of Piecewise Quadratic Lyapunov Functions for Hybrid Systems. IEEE Tran. Automatic Control, 1998, 43(4):555-559
    19 Oldenburg Jan, Marquardt, Wolfgang. Mixed-Logic Dynamic Optimization Applied to Batch Distillation Process Design. AIChE Journal, 2003, 49(11): 2900-2917
    20 Yin Yingjie, Hosoe Shigeyuki. Tracking Control of Mixed Logic Dynamical Systems. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2004, E87-A(11): 2929-2936.
    21 Heemels W, De Schutter B, Bemporad A. Equivalence of Hybrid Dynamical Models. Automatica . 2001,37(7):1085-1091.
    22 H S Witsenhausen. A Class of Hybrid-state Continuous Time Dynamic Systems. IEEE Trans. On Automatic Control.1966, 11(6) :665-683
    23 Antsaklis P.J, Nerode A. Hybrid Control Systems: An Introductory Dis cussion to the Special Issue. IEEE Trans. Automat. Contr. 1998,43(4): 457-459
    24 程代展,郭宇骞. 切换系统进展. 控制理论与应用. 2005, 22(6): 954-960.
    25 郑大钟,赵千川. 离散事件动态系统. 清华大学出版社. 2001.
    26 Ji, Zhicheng, Zhu, Rongjia, Shen, Yanxia. Fuzzy Multiple Reference Models Adaptive Control Scheme Study. Lecture Notes in Computer Science. 2006, 3930: 387-396
    27 Cho, Jeongho, Principe, Jose C, Erdogmus, Deniz, Motter, Mark A. Quasi-sliding Mode Control Strategy Based on Multiple-linear Models.Neuro Computing. 2007, 70(4):960-974
    28 Kosmatopoulos Elias B, Ioannou Petros A. Robust Switching Adaptive Control of Multi-input Nonlinear Systems. IEEE Transactions on Automatic Control, 2002, 47(4):610-624
    29 Gonnet, Silvio, Chiotti, Omar. Modeling of The Supervisory Control System of A Multipurpose Batch Plant. Computers and Chemical Engineering, 1999,23(4): 611-622.
    30 Ahn, K.K, Thanh T.D.C, YangS.Y. Improvement of Control Performance of Pneumatic Artificial Muscle Manipulator Using Intelligent Switching Control. Proceedings of the SICE Annual Conference, SICE Annual Conference. 2004:91-96
    31 E.Skafidas, R.J. Evans and R.J. Savkin. Stability Results for Switched Control System. Automatica. 1999, 35(8):1208-1219
    32 Gao Huijun, Lam James, Wang Changhong. Model Simplification for Switched Hybrid Systems. Systems and Control Letters. 2006, 55(12): 1015-1021.
    33 Hanselmann Thomas, Zaknich Anthony, Noakes Lyle, Savkin Andrey A Hybrid Dynamical System with Robust Switching Control by Action Dependent Heuristic Dynamic Programming. 2004 IEEE International Joint Conference on Neural Networks – Proceedings. 2004: 1799-1804
    34 高军伟. 切换系统建模、控制理论与应用研究. 铁道部科学研究院博士学位论文. 2007.
    35 李浚圣. 线性切换系统的最优控制律. 东北大学博士学位论文. 2005.
    36 Luis Rodrigues. Dynamic Output Feedback Controller Synthesis for Piecewise-affine Systems. PhD thesis, Stanford University, 2002.
    37 A.A. Andronov and C. E. Chaikin. Theory of Oscillations. Princeton University Press, Princeton, NJ, 1949.
    38 Luis Rodrigues, Stephen Boyd. Piecewise-Affine State Feedback for Piecewise-Affine Slab Systems Using Convex Optimization. Systems and Control Letters. 2005, 54(9): 835-853.
    39 E. D. Sontag. Transactions on Nonlinear regulation: The Piecewise Linear Approach. IEEE Automatic Control. 1981,26:346-358
    40 N. B. O. L. Pettit. Analysis of Piecewise Linear Dynamical Systems.Research Studies Press Ltd, 1995.
    41 M. Jirstrand. Constructive Methods for Inequality Constraints in Control. PhD thesis, Department of Electrical Engineering, Linkoping University, Sweden, 1998.
    42 V. Einarsson. Model Checking Methods for Mode Switching Systems. PhD thesis, Department of Electrical Engineering, Linkoping University, Sweden, 2000.
    43 Johansson M. Piecewise Linear Control Systems. Springer-Verlag, 2003
    44 E. S. Pyatnitskii and V. 1. Skorodinskii. Numerical Methods of Lyapunov Function Construction and Their Application to The Absolute Stability Problem. Systems and Control Letters. 1982, 2(2):130-135
    45 俞立. 鲁棒控制-线性矩阵不等式的处理方法. 北京:清华大学出版社, 2002.
    46 P. Peleties and R. A. DeCarlo. Asymptotic Stability of M-switched Systems Using Lyapunov-Like Functions. Proceedings of the American Control Conference. 1991:1679-1684
    47 M. S. Branicky. General Hybrid Dynamical Systems: Modeling, Analysis, and Control. Lecture Notes in Computer Science, 1996,1066:186-200.
    48 R.A. DeCarlo, M.S. Branicky, S. Pettersson, and B. Lennartson. Perspectives and Results on The Stability and Stabilizability of Hybrid Systems. Proceedings of the IEEE. 2000, 88(7):915-929
    49 M. Johansson. Piecewise Linear Control Systems. PhD thesis, Department of Automatic Control, Lund Institute of Technology, Sweden, 1999
    50 S. Pettersson. Analysis and Design of Hybrid Systems. PhD thesis, Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden, 1999
    51 A. Hassibi. Lyapunov Methods in the Analysis of Complex Dynamical Systems. PhD thesis, Stanford University, Stanford, California, 2000.
    52 J. Goncalves. Constructive Global Analysis of Hybrid Systems. PhD thesis Massachusetts Institute of Technology, Cambridge, MA, 2000.
    53 洪奕光, 程代展. 非线性系统的分析与控制. 北京:科学出版社. 2005
    54 Liu Chien-Hung, Hwang Jiing-Dong, Tsai Zhi-Ren, Twu. An LMI-Based Stable T-S Fuzzy Model with Parametric Uncertainties Using MultipleLyapunov Function approach. 2004 IEEE Conference on Cybernetics and Intelligent Systems. 2004: 514-519.
    55 Chen C.W, Chiang W.L, Hsiao, F.H. Stability Analysis of T-S Fuzzy Models for Nonlinear Multiple Time-Delay Interconnected Systems. Mathematics and Computers in Simulation. 2004, 66(6): 523-537
    56 Eikes B, Karim M N. Process Identification with Multiple Neural Network Models. Int. J control. 1999, 72 (7/8):576-590
    57 Bontempi G, Birattari M, Bersini H. Lazy Learning for Local Modeling and Control Design. Int. J Control, 1999, 72 (7/8): 643-658
    58 Lashlee R W Jr, Maybeck P S. Space Structure Control Using Moving Bank Multiple Model Adaptive Estimation, Decision and Control. Proceedings of the 27th IEEE Conference. 1988:712-717.
    59 Gustafson J A, Maybeck P S. Flexible Space Structure Control via Moving-Bank Multiple Model Algorithms. IEEE Trans. Aerospace and Electronic Systems. 1994, 30(3): 750-757
    60 Zhivoglyadov P V, Middleton R H, Fu M Y. Further Results on Localization-Based Switching Adaptive Control. Automatica. 2001,37(2): 257-263
    61 孙维, 王伟, 朱瑞军. 即时学习算法在非线性系统迭代学习控制中的应用. 控制与决策. 2003, 18(3):263-266
    62 Fujinaka T, Omatu S. A Switching Scheme for Adaptive Control Using Multiple Models. IEEE SMC'99 Conference Proceedings. Tokyo, Japan, 1999:80-85
    63 Yu C, Roy R J, Kaufman H, et al. Multiple-Model Adaptive Predictive Control of Mean Arterial Pressure and Cardiac Output. IEEE Trans. Biomedical Engineering. 1992, 39(8): 765-778
    64 刘鲁源,吕伟杰,牟世忠. 基于在线优化的切换多模型自适应控制. 控制与决策,2002, 17(4): 407-410
    65 Aliyu M D S. A Transformation Approach for Solving the Hamilton-Jacobi-Bellman Equation in H2 Deterministic and Stochastic Optimal Control of Affine Nonlinear Systems. Automatica. 2003, 39: 1243-1249
    66 Vasilios Manousiouthakis, Donald J. Chmielewski. On ConstrainedInfinite-Time Nonlinear Optimal Control. Chemical Engineering Science. 2002, 57: 105-114
    67 R. E. Kalman. Contributions to the Theory of Optimal Control. Bol. de Soc. Math. Mexicana, 1960.
    68 Johansson M. Piecewise Linear Control Systems: Lecture Notes in Control and Information Sciences, Springer-Verlag, 2003:11-139
    69 Athans M, Castanon D, Dunn K Pet al. The Stochastic Control of the F-8C Aircraft Using a Multiple Model Adaptive Control (MMAC) Method-Part l: Equilibrium Fight. IEEE Trans. on Automat. Control. 1977, 22(5): 768-780
    70 Mealy G L, Tang W. Application of Multiple Height Correlation System Model Estimation to a Recursive Terrain. IEEE Trans. Automat Contr. 1983, 28(3): 323-331
    71 Diao Y X, Passino K M. Intelligent Fault Tolerant Control Using Adaptive Schemes Multiple Models. Proceedings of the American Control Conference. 2001:25-27
    72 Lane D W and Maybeck P S. Multiple Model Adaptive Estimation a Lied to the Lambda URV for Failure Detection and Identification. Proceeding of the 33th IEEE Conference on Decision and Control. 1994: 678-683
    73 Banerjee A, Arkun Y, Ogunnaike B, et al. Estimation of Nonlinear System Using Linear Multiple Models. AICHE Journal. 1997, 43(5): 1204-1226
    74 Eikes B, Karim M N. Process Identification with Multiple Neural Network Models. Int. J control. 1999, 72(7): 576-590
    75 Konstaintinov K B, Yoshida T. A Knowledge-Based Pattern Recognition Approach for Real-Time Diagnosis and Control of Fermentation Processes as Variable Structure Plants. IEEE Trans. System, Man and Cybernetics. 1994, 24(4): 908-914
    76 Pottmann M, Unbehauen H, Seborg D E. Application of a General Multi-Model Approach for Identification of Highly Nonlinear Processes: a Case of Study. Int. J Control, 1993, 57(1):97-120
    77 Nystrom R H, Sandstrom K Gustafsson T K. Multi-Model Robust Control of Nonlinear Plants: a Case Study. Journal of Process Control, 1999, 9(2): 135-150
    78 Ciliz M K, Narendra K S. Multiple Model Based Adaptive Control ofRobotic Manipulators. Proceeding of the 33th IEEE Conference on Decision and Control. 1994:1305-1310
    79 Zufiria P J, Fraile-ardanuy J, Riaza R. Neural Adaptive Control of Nonlinear Plants via a Multiple Inverse Model Approach. Int. J Adaptive Control Signal Process. 1999, 13:219-239
    80 Wyczalek F A. Hybrid Electric Vehicles Year 2000 Status. IEEE Trans. Aerospace and Electronic Systems Magazine. 2001,16(3): 15-25
    81 Wolpert D M, Kawato M. Multiple Paired Forward and Inverse Models for Motor Control. Neural Networks. 1998, 11:1317-1329
    82 Ferrari-Trecate G, Cuzzola F, Mignone D and Morari M. Analysis of Discrete-Time Piecewise Affine and Hybrid Systems. Automatica. 2002, 38(12):2139-2146
    83 Mignone D, Ferrari-Trecate G, and Morari M. Stability and Stabilization of Piecewise Affine and Hybrid Systems: an LMI approach. Proceedings of the IEEE Conference on Decision and Control, 2000(1):504-509.
    84 Chua L O, Deng A C. Canonical Piecewise-Linear Representation. IEEE Transactions on Circuits and Systems. 1998, 35(1):101-111
    85 Benporad A, Torrisi F D, Morari M. Optimization Based Verification and Stability Characterization of Piecewise Affine and Hybrid Systems. Lecture Notes in Computer Science. 2000, 1790:45-58
    86 Leyla ?zkan, Mayuresh V.Kothare. Stability Analysis of a Multi-Model Predictive Control Algorithm with Application to Control of Chemical Reactors. Journal of Process Control, 2006, 16:81-90
    87 Leyla ?zkan, Mayuresh V.Kothare. Control of a Solution Copolymerization Reactor Using Multi-Model Predictive Control. Chemical Engineering Science, 2003,58:1207-1221
    88 裴润,宋申民. 自动控制原理. 哈尔滨:哈尔滨工业大学出版社,2006.
    89 Leenaerts D.M.W. and Bokhoven W.M.G.V. Piecewise Linear Modeling and Analysis. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.
    90 Julian P.M. A High Level Canonical Piecewise Linear Representation: Theory and Applications. PhD thesis, Universidad National del Sur, 1999.
    91 Chou. H.M, Horng. R.F. The Effect of Grooved Pattern on Enhanced Boiling Heat Transfer in A Cylindrical Tank Base with A Constant Surface Area.International Communications in Heat and Mass Transfer, 2002, 29(7): 951-960
    92 张奇, 顾伟康. 陆地自主车姿态角误差分析. 浙江大学学报(工学版),1999,33(5): 525-530
    93 Durrant-Whyte, H. Autonomous land vehicles. Journal of Systems and Control Engineering, February, 2005,219(2):77-94
    94 F. Blanchini. Set Invariance in Control–A Survey. Automatica, 1999,35(11): 1747-1768
    95 J. I. Imura, A. van der Schaft. Characterization of Well-Posedness of Piecewise Linear Systems. IEEE Transactions on Automatic Control, 2000,45(9): 1600-1619
    96 Li. Z. G, Soh. C. B, Wen. C. Y. Stability of Uncertain Quasi-Periodic Hybrid Dynamic Systems. International Journal of Control, 2000, 73(1):63-73
    97 Branicky. M.S. Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems. IEEE Transactions on Automatic Control, 1998, 43(4):475-482
    98 Soh. C.B. Bobust Stability of Perturbed Periodic Hybrid Systems. International Journal of Systems Science, 1999, 30(8):811-821
    99 S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994.
    100 Blondel V and Tsitsiklis J. Complexity of Stability and Controllability of Elementary Hybrid Systems. Automatica, 1999,35(3):479-490
    101 李卫东. 混杂动态系统的分析与控制. 浙江大学博士学位论文. 2003.
    102 魏建峰, 郑毓蕃. 一类不确定非线性系统具有扇形非线性输入的鲁棒几乎干扰解耦控制. 控制理论与应用, 2000,17 (5):.747-750
    103 HSU.K. Variable Structure Control Design for Uncertain Dynamic Systems with Sector Nonlinearities, Automatica, 1998,34(4):505 -508
    104 Zuo Zhiqiang, Wang Jinzhi, Lin Huan. Robust Stabilization for Non-discrete Systems. International Journal of Control, 2004,77: 384-388
    105 Xie, D. Wang, L. Hao, F. Xie, G. LMI Approach to L2-gain Analysis and Control Synthesis of Uncertain Switched Systems. IEE Proc-Control Theory and Applications. 2004, 151(1):21-28
    106 L.P.Russo, B.W.Bequette. Operability of Chemical Reactors: MultiplicityBehavior of a Jacked Styrene Polymerization Reactor. Chemical Engineering Science, 1998, 53(1):27-45
    107 席裕庚. 预测控制. 北京: 国防工业出版社, 1993.
    108 舒迪前. 预测控制系统及其应用. 机械工业出版社, 1996.
    109 Slupphaug O, Foss B. Model Predictive Control for A Class of Hybrid Systems, Proceedings of the European Control Conference, 1997.
    110 Borrelli F. Optimal Control of Constrained Systems, PhD thesis, ETH Zurich, 2002.
    111 Bemporad A, Morari M, Dua V and Pistikopoulos E N. The Explicit Linear Quadratic Regulator for Constrained Systems. Automatica, 2002,38(1):3-20
    112 Tondel P, Johansen T A and Bemporad A. An Algorithm for Multiparametric Quadratic Programming and Explicit MPC Solutions. Automatica, 2003,39(3):489-497
    113 Tondel P, Johansen T A and Bemporad A. Evaluation of Piece-wise Affine Control via Binary Search Tree. Automatica, 2003,39(5):945-950
    114 Borrelli F, Baotic M, Bemporad A, Morari M. An Efficient Algorithm for Computing The State Feedback Optimal Control Law for Discrete Time Hybrid Systems. In Proc. Of the American Control Conference, 2003.
    115 V.Kothare, Manfred Morari. Robust Constrained Model Predictive Control Using Linear Matrix Inequalities. Automatica, 1996, 32 (10):1361~1379
    116 Lu Y, Arkun Y. Quasi-min-max MPC Algorithms for LPV Systems. Automatica, 2000,36(12):527-540
    117 Wan Zhaoyang, Kothare Mayuresh V. Efficient Robust Constrained Model Predictive Control with A Time Varying Terminal Constraint Set. Systems & Control Letters, 2003,48(5):375-383
    118 R. Rouhani, R.K. Mehra. Model Algorithmic Control(MAC). Basic Theoretical Properties. Automatica. 1982,18(4):401~414
    119 C.R. Culter, B.L. Ramaker.Dynamic Matrix Control—A Computer Control Algorithm.In Proc. of Joint Automatic Control Conference. San Francisco, CA, USA, 1980: WP5-B
    120 R.M.C. De Keyser, A.R. Van Cauwenberghe. Extended Prediction Self-Adaptive Control. Identification and System Paramter Estimation, Oxford. 1985:1255~ 1260
    121 D.W. Clarke, C. Mohtadi, P.S. Tuffs. Generalized Prodictive Control. Automatica. 1987,23(2):137~160
    122 王伟.广义预测控制——理论及其应用.北京:科学出版社, 1998.
    123 J.H. Lee, M. Morari, C.E. Garcia. State-Space Interpretation of Model Predictive Control.Automatica.1994,30(4):707~717
    124 H. Unbehauen, K. Krmer.Application of Adaptive Predictive Control to a Shaker Conveyor for Transportation of Plastic Beads.Int. J. of Adaptive Control and Signal Precessing.1997,11(3):217~230
    125 周建锁. 非线性模型预测控制算法研究.哈尔滨工业大学博士学位论文, 2001.
    126 B.L. Kleinman.An Easy Way to Stabilize A Linear Constraint System.IEEE Trans. Automat. Contr..1970,15(12):693~698
    127 Y.A. Thomas. Linear Quadratic Optimal Estimation and Control with Receding Horizon.Electronics Letters.1975,11(1):19~21
    128 W.H. Kwon, A.M. Bruckstein , T. Kailath.Stabilizing State Feedback Via the Moving Horizon Method.Int. J. of Control.1983,37(3):631~643
    129 胡国龙,孙优贤. 预测控制进展及其应用研究.电力系统及自动化学报.2003,15(1): 109-114.
    130 褚静.智能预测控制及其应用.浙江:浙江大学出版社,2002.
    131 J. Guckenheimer. A Robust Hybrid Stabilization Strategy for Equilibria. IEEE Transactions on Automatic Control. 1995, 40(2): 321-326
    132 C. Hom, P. Ramadge. Robustness Issues for Hybrid Systems. In Proceedings of the 34th conference of Decision and Control, New Orleans, LA, Dec. 1995: 1467-1472
    133 Li Zhengguo, C.B Soh, Xu Xinhe. Robust Stability of a Class of Hybrid Dynamic Uncertain Systems. International Journal of Robust and Nonlinear Control, 1998, 8:1059-1072
    134 C. B Soh. Robust Stability of Perturbed Periodic Hybrid Systems. International Journal of Systems Science, 1999, 30(8): 811-821
    135 Z. G.. Li, C. B. Soh, C. Y. Wen. Stability of Uncertain Quasi-Periodic Hybrid Dynamic Systems. International Journal of Control, 2000, 73(1):63-73
    136 Yaohui Lu.Quasi-Min-Max Algorithms for LPV Systems.Automatica.2000, 36(4):527~540
    137 B.Kouvaritakis, J.A.Rossiter.Efficient Robust Predictive Control.IEEE Trans. on Automatic Contr..2000,45 (8):1545~1549
    138 Y.I.Lee,B.Kouvaritakis,M.Cannon.Constrained Receding Horizon Predictive Control for Nonlinear Systems.Automatica.2002,38(12): 2093~2102
    139 Cuzzola F.C., Geromel J.C., Morari M. An Improved Approach for Constrained Robust Model Predictive Control. Automatica, 2002:1183-1189
    140 Daafouz J., Bernussou J. Parameter Dependent Lyapunov Functions for Discrete Time Systems with Time Varying Parameter Uncertainties. System and Control Letters, 2001,43:355-359
    141 Marlin T.E. Process Control: Designing Processes and Control Systems for Dynamic Performance. McGraw Hill, New York, 1995.
    142 关新平. 时滞系统的鲁棒稳定性与鲁棒控制. 哈尔滨工业大学工学博士论文. 1999.
    143 宋云霞,朱学峰. 大时滞系统过程控制方法及应用. 化工自动化及仪表. 2001, 28(4):9-15
    144 Yongyan Cao and P. M. Frank. Stability Analysis and Synthesis of Nonlinear Time-Delay Systems via Linear Takagi-Sugeno Fuzzy Model. Fuzzy Sets and Systems. 2001,54(2):213~219
    145 张颖, 段广仁, 贺亮. 一类含有时滞的离散切换系统鲁棒稳定性分析. 吉林大学学报(工学版),2006,36(5):740-744
    146 宋政一, 赵军. 不确定时滞线性离散切换系统的鲁棒 H_∞控制. 自动化学报, 2006,32(5):760-766
    147 Digham F F, Alouini M S. Variable-rate Noncoherent M-FSK Modulation for Power Limited Systems Over Nakagami-fading Channels. IEEE Trans. Wireless Commun, 2004, 3:1295-1304
    148 Kim D K, Park P G., Ko J W. Output-Feedback H_∞ Control of Systems Over Communication Networks Using A Deterministic Switching System Approach. Automatica, 2004, 40: 1205-1212
    149 Liberzon D, Morse A S. Basic Problems in Stability and Design of Switched Systems. IEEE Control System Magazine. 1999,19:59-70
    150 Branicky M S. Multiple Lyapunov Function and Other Analysis Tools for Switched and Hybrid Systems. IEEE Transactions on Automatic Control. 1998,43(4):475-482.
    151 Juloski A Lj, Heemels W P M H, Ferrari-Trecate G. Data-based Hybrid Modeling of The Component Placement Process in Pick-and-place Machines. Cotrol Engineering Practice, 2004, 12(10): 1241-1252.
    152 Fantuzzi C, Simani S, Beghelli S, Rovatti R. Identification of Piecewise Affine Models in Noisy Environment. International Journal of Control, 2002,75(18):1472-1485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700