用户名: 密码: 验证码:
低溶解氧对中国明对虾生长的影响及其机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了国内外关于缺氧对水生甲壳动物生理生态学影响的研究进展,并以中国明对虾为研究对象,采用实验生态学、生物能量学及生理学等方法,开展了低溶解氧(DO)对其生长、补偿生长、能量收支、呼吸代谢、行为选择及不同组织器官的氧化应激参数影响的实验研究,主要研究结果如下:
     1.第一部分实验对中国明对虾不同温度下的低氧耐受能力及其在缺氧水体中的行为及代谢反应进行了研究。共设计了4个实验对中国明对虾在不同温度下的窒息点、对不同溶解氧含量水体的探测和逃避和在不同溶解氧含量水体中的代谢率进行了观察和测定。结果表明水温高于20℃时,实验虾窒息点随水温上升而提高,回归分析推算得出实验虾最低窒息点和出现水温分别为0.59 mg/l和14.7℃;实验虾能探测到低氧区域的存在、完全避开DC<2.0 mg/l的区域并很少进入DO为2.0~2.5 mg/l的区域;在D0<4 mg/l时,实验虾的耗氧率和排氨率随DO降低而下降,O:N随溶解氧降低而上升;长期处于低氧水体的实验虾其能量代谢率和排泄能损失率都随DO降低而下降,由能量代谢率和排泄氮推算得到的O:N则未受到溶解氧含量的显著影响;长期处于低氧水体的实验虾身体水分含量升高,蛋白质、脂肪、能量和糖类能量含量显著降低。以上研究结果表明,中国明对虾对低溶解氧非常敏感,属于有限的溶解氧调节型,其临界溶解氧含量(COL)在4.0mg/l左右。在水体溶氧低于COL时,中国明对虾短期内可以改变代谢底物组成以获得更高的氧利用效率,而长期缺氧时代谢底物主要来源于食物,其组成不受溶解氧降低的影响。
     2.第二部分实验研究了5个溶解氧梯度下(2.09±0.15、3.10±0.29、4.13±0.25、4.73±0.12、5.48±0.09 mg/l)中国明对虾幼虾的生长及其能量学机制,实验共持续30 d。结果表明当水体DO低于4.13 mg/l时实验虾生长受到抑制。在较低DO处理,实验虾摄入能分配到代谢能、蜕皮能及排泄能的比例较高,而分配到生长能的比例较低,同时能量代谢率较低,导致其饲料转化效率及摄食率较低。在低DO处理组实验虾蜕皮能较高、存活率较低,死亡实验虾甲壳薄软、残食等现象较多,说明缺氧会延缓实验虾蜕皮后的恢复,导致残食和高死亡率。实验结果表明缺氧会使中国明对虾幼虾生长受到抑制、死亡率升高,由此推断缺氧是影响其群体数量和适合度的重要因素之一。
     3.第三部分实验对中国明对虾受低溶氧(DO 3.11±0.13、2.08±0.21 mg/l)胁迫10d后的补偿生长现象及能量学机制进行了研究,实验共持续50 d。研究发现实验虾在低氧胁迫期间代谢能和蜕皮能占摄入能比例较对照组高,但日能量代谢率(J/g/d)相对低,这导致饲料转化效率和摄食率降低,实验虾生长受到抑制。恢复正常溶解氧(5.59±0.19、5.63±0.22 mg/l)后20 d和30 d,两组实验虾分别出现完全补偿生长,主要原因是恢复阶段过量摄食效应,同时饲料转化效率提高也起到了一定作用。在恢复阶段,低氧胁迫后实验虾日能量代谢率比对照组高(P<0.05),意味着胁迫后实验虾有更多的能量可用于与摄食相关的行为。能量收支分析表明实验虾主要通过减少分配到排粪和蜕皮的能量来增加饲料转化效率。结果表明如果有足够的时间恢复生长,短期非致死低氧胁迫不会影响中国明对虾幼虾后期的生长;中国明对虾能承受和适应一定程度的溶解氧波动,短期非致死低氧胁迫对天然、放流或养殖群体产量不会有明显影响。
     4.第四部分实验通过测定3-24 h低氧暴露(DO 2.0±0.1 mg/l)和随后3-24 h恢复正常溶氧(DO 6.0±0.2 mg/l)期间中国明对虾肌肉、鳃、肝胰脏和血浆中乳酸含量、脂质过氧化物丙二醛含量、抗超氧阴离子活力及总抗氧化能力,对短期低氧胁迫及溶氧恢复过程中中国明对虾组织器官的抗氧化状态和氧化损伤进行了初步研究。对照组和各处理组实验虾各组织器官中所测得的氧化应激参数均存在一定差异。低氧胁迫6h和12h实验虾血浆和肌肉中的乳酸含量显著增加,胁迫24 h时乳酸含量降到对照组水平;肌肉的乳酸含量在溶氧恢复后升高,12h显著增加;低氧胁迫对实验虾肝胰脏及鳃中乳酸含量、肌肉、鳃及肝胰脏中总抗氧化能力、肝胰脏及鳃中抗超氧阴离子活力、肌肉、肝胰脏、鳃及血浆中的丙二醛含量均无显著影响,而恢复正常溶氧后肝胰脏总抗氧化能力、鳃的抗超氧阴离子活力、肌肉、鳃及血浆中的丙二醛含量在不同时间显著增加,可能会造成不同程度的氧化损伤,表明实验虾在恢复正常溶氧后比低氧胁迫时的氧化应激反应强烈;恢复正常溶氧24 h时,除肌肉中的乳酸含量、鳃的抗超氧阴离子活力、鳃及血浆中的丙二醛含量高于对照组,其余指标均与对照组无显著差异。结果表明中国明对虾在水温26.0±1.0℃、盐度30~31、pH7.9±0.2的条件下,对DO为2.0±0.1 mg/l的急性低氧胁迫和溶氧恢复有一定的耐受和调节能力。
The domestic and foreign research advances regarding the effects of hypoxia on physiological ecology in crustacean were reviewed in this thesis. Menthods of ecology, energetics, and physiology were used to investigate the effects of low dissolved oxygen (DO) content on the growth, compensatory growth, energy allocation, oxygen consumption, metabolism, behavior, and oxidative stress of Chinese shrimp, Fenneropenaeus chinensis. The main results are as follows:
     1 Tolerance and response of behavior and metabolism to low dissolved oxygen of Chinese shrimp, Fenneropenaeus chinensis
     The tolerance of low DO content and the responses of behavior and metabolism to hypoxia are important strategies for aquatic organisms to adapt to variable DO in water environment. In this chapter, four experiments were designed to investigate the tolerance of low DO and the responses of behavior and metabolism to hypoxia of Chinese shrimp, F. chinensis. The results of experiment I showed that the lethal dissolved oxygen (LDO) content of small shrimp (2.29±0.06 g) and large shrimp (12.21±0.09 g) were positively related to temperature above 20℃. The regression analysis showed that the temperature at minimum LDO (0.59 mg/l) was 14.7℃for small shrimp. In experimentⅡ, the small (9.03±1.32 g) and the large (19.21±1.86 g) shrimp could detect hypoxic water area and absolutely avoided the water area with DO below 2.0 mg/l. The shrimp seldom entered the water area with DO 2.0~2.5 mg/l. In experimentⅢ, the oxygen consumption and ammonia excretion of the shrimp (15.69±0.91 g) exposed to different DO for eight hours was measured. The oxygen consumption and ammonia excretion were positively related to DO below 4 mg/l. However, O:N was negatively related to DO. In experimentⅣ, an energy budget method was adopted to calculate the daily energy metabolic rate (R, J/g/d), daily energy lost rate of nitrogen excretion (U, J/g/d), and O:N. R and U diminished as DO decreasing and no significant effects of DO on O:N. Being exposed to hypoxic water for 30 days induced an increase of moisture content of the shrimp and decrease of protein, lipid, energy, and energy of glucide. The above results indicated that F. chinensis was sensitive to low DO content and it should be a limited oxygen-regulator. The critical dissolved oxygen (COL) content was about 4.0 mg/1 and when DO was below COL for a short period, F. chinensis could adjust the composition of metabolic substrate to achieve a higher oxycalorific coefficient. But for a long term low DO, the metabolic substrate was from feed and its composition would not be changed by DO decrease.
     2 Effects of limited dissolved oxygen supply on the growth and energy allocation of juvenile Chinese shrimp, Fenneropenaeus chinensis
     Information about the effect of hypoxia exposure on energy allocation is helpful for better understanding how aquatic animals tolerate and adapt to the hypoxic environment. The growth, molting, and energy allocation were investigated in juvenile F. chinensis exposed to five different dissolved oxygen seawaters (DO 2.09±0.15,3.10±0.29,4.13±0.25,4.73±0.12, and 5.48±0.09 mg/1) for 30 days. When DO was below 4.13 mg/l, the growth of shrimp was depressed. Feeding rate and feed conversion efficiency decreased with DO decrease. Less feed ingestion was caused by lower daily metabolic energy. Higher proportion of ingested energy lost in metabolism, exuviations, and nitrogen excretion caused lower feed conversion efficiency. More energy lost in exuviations, lower survival rate, soft carapaces of dead shrimp, and cannibalism were found in oxygen deficient groups and it implicated that hypoxia could delay the shrimp recovering from molting and cause cannibalism and higher mortality. The results indicated that hypoxia was an important factor affecting the amount and fitness of shrimp stock because it could cause a high rate of mortality and growth depression.
     3 Compensatory growth of Chinese shrimp, Fenneropenaeus chinensis following hypoxic exposure
     Compensatory growth following stress is a strategy which aquatic animals use to adjust themselves to a variable environment. Studies on the recovery growth of aquatic animals are not only of theoretical value in ecophysiology and evolution, but also important to applications in aquaculture and fisheries resource management. In this experiment, juvenile F. chinensis with an initial average body weight of about 3.72 g were exposed to hypoxic water (DO about 2.08 and 3.11 mg/1) for 10 days and then switched to normoxic water (DO about 5.63 and 5.59 mg/1). Compared to the juveniles in normoxia, juveniles in the hypoxia period allocated a greater proportion of energy to metabolism and exuviations, but allocated less energy to daily metabolism per gram shrimp weight (J/g/d). This reduced feed conversion efficiency and feeding rate. Finally, F. chinensis suffered growth depression. The juveniles completely compensated for hypoxia-induced growth depression in 30 days after being switched into normoxic water and the compensation was achieved mainly by hyperphagia and slightly by improvement of feed conversion efficiency. During the recovery period, the hypoxic-stressed shrimp showed higher daily metabolic energy (J/g/d) than controls (P<0.05). This means the stressed shrimp had more energy for feeding-related activities. So hyperphagia was observed. Energy analysis indicated that F. chinensis improved feed-conversion efficiency mainly by reducing the percentage of energy lost in feces and exuviations. The results showed that short-term non-lethal hypoxia would not affect the growth of juvenile F. chinensis if there were enough time for the stressed shrimp to recover. It suggested F. chinensis was able to adapt to DO fluctuation to some extent and short-term non-lethal hypoxia would not have an obvious effect on natural, released, and cultured shrimp stock.
     4 Hypoxia and recovery perturb oxidative stress of Chinese shrimp, Fenneropenaeus chinensis
     The effects of hypoxia exposure 3-24 h and following normoxic recovery 3-24 h on the levels of lactic acid, lipid peroxidation (malondialdehyde), activities of anti-superoxide radical and the total antioxidant capacity status were measured in muscle, gill, hepatopancreas, and plasma of the Chinese shrimp, F. chinensis. Results indicated differences among tissues, even under control conditions. Under hypoxia 12 h and 6 h, lactic acid levels in muscle and plasma were increased significantly, but decreased to the same levels as control in hypoxia 24 h. Followed by 12 h of normoxic recovery, lactic acid levels in muscle increased significantly. Hypoxia exposure did not show a significant effect on the lactic acid levels in hepatopancreas and gills, total antioxidant capacity status in muscle, gills and hepatopancreas, activities of anti-superoxide radical in hepatopancreas and gills, malondialdehyde levels in muscle, hepatopancreas, gills and plasma. But during reoxygenation, the total antioxidant capacity status in hepatopancreas, activities of anti-superoxide radical in gills, and levels of malondialdehyde in muscle, gills and plasma increased significantly at different time, which could cause tissue damage. The results showed that the oxidative stress during normoxic recovery was greater than during hypoxia exposure. After 24 h of normoxic recovery, most parameters were at the same levels as control, but the lactic acid levels in muscle, activities of anti-superoxide radical in gills, malondialdehyde levels in gills and plasma were still higher than control groups. Under the condition of 26.0±1.0℃, salinity 30~31, pH 7.9±0.2, Chinese shrimp showed a certain degree of ability to to tolerate and adapte to acute hypoxia (DO 2.0±0.1 mg/l) and following reoxygenation.
引文
[1]陈琴 陈晓汉 罗永巨 黄钧 李福贵 宁良坤,2001.南美白对虾耗氧率和窒息点的初步测定.水利渔业21(2),14-15.
    [2]戴庆年 王军 李琪,1994.日本对虾Penaeus japonicus耗氧率研究.厦门水产学院学报16(1),25-29.
    [3]甘居利 林钦,2004.柘林湾网箱养殖海域溶解氧分布及其影响因素.海洋水产研究69-74.
    [4]甘居利 林钦 黄洪辉 杨美兰 蔡文贵 王增焕 贾晓平,2004.大鹏澳网箱养殖海域海水溶解氧浓度影响因素分析.海洋环境科学23(3),1-3.
    [5]李道季 黄大吉,2002.长江口外氧的亏损.中国科学(D辑),686-694.
    [6]李健 孙修涛 赵法箴,1993.水温和溶解氧含量对中国对虾摄食影响的观察.水产学报17(4),333-336.
    [7]林卫强李适宇,2002.夏季伶仃洋COD、DO的垂向分布及其影响因素.中山大学学报(自然科学版)41,82-86.
    [8]刘璐 吴立新 张伟光 吴垠 刘瑜 邓宏相,2007.饥饿及再投喂对日本囊对虾糖代谢的影响.应用生态学报18(3),697-700.
    [9]刘栋辉 何建国 刘永坚 郑石轩 田丽霞,2005.极低盐度下饲料蛋白质量分数对凡纳对虾生长表现和免疫状况的影响.中山大学学报(自然科学版)44(增刊2),217-223.
    [10]罗琳 李适宇 厉红梅,2005.夏季珠江口水域溶解氧的特征及影响因素.中山大学学报(自然科学版)44(6),118-122.
    [11]宁修仁 史君贤 蔡昱明 刘诚刚,2004.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报26(6),96-106.
    [12]王慧 来琦芳 房文红,2007.K+对中国明对虾幼虾生存及耗氧率、窒息点的影响.中国水产科学14(3),493-497.
    [13]张跃平 杜庆红 苏国成 陈水土 陈然 李福东,1998.虾池赤潮的初步探讨.海洋科学1,58-61.
    [14]周歧存 郑石轩 高雷 齐雪娟,2003.投喂频率对南美白对虾(Penaeus vannamei Boone)生长、饲料利用及虾体组成影响的初步研究.海洋湖沼通报2,64-68.
    [15]周绪霞 李卫芬 王彦波,2005.精养虾池溶解氧变化规律的研究.饲料工业26(2),31-32.
    [16]Allan G.L.& G.B. Maguire,1991. Lethal levels of low dissolve oxygen and effects of short-term oxygen stress on subsequent growth of juvenile Penaeus monodon. Aquaculture 94,27-37.
    [17]Allan G.L., G.B. Maguire & S.J. Hopkins,1990. Acute and chronic toxicity of ammonia to juvenile Metapenaeus macleayi and Penaeus monodon and the influence of low dissolved-oxygen levels. Aquaculture 91(3/4),265-280.
    [18]Anderson S.J., A.C. Taylor & R.J.A. Atkinson,1994. Anaerobic metabolism during anoxia in the burrowing shrimp Calocaris macandreae Bell (Crustacea:Thalassinidea). Comparative Biochemistry and Physiology A 108(4),515-522.
    [19]Anderson S.J., R.J.A. Atkinson & A.C. Taylor,1991. Behavioural and respiratory adaptations of the mud-burrowing shrimp Calocaris macandreae Bell (Thalassinidea:Crustacea) to the burrow environment. Ophelia 34,143-156.
    [20]Ansaldo M., R. Najle & C.M. Luquet,2005. Oxidative stress generated by diesel seawater contamination in the digestive gland of the Antarctic limpet Nacella concinna. Marine Environmental Research 59,381-390.
    [21]Ansaldo M., H. Sacristan & E. Wider,2007. Does starvation influence the antioxidant status of the digestive gland of Nacella concinna in experimental conditions?. Comparative Biochemistry and Physiology C 146,118-123.
    [22]Atkinson R.J.A.& A.C. Taylor,2005. Aspects of the physiology, biology and ecology of thalassinidean shrimps in relation to their burrow environment. Oceanography and Marine Biology. An Annual Review 43:173-210.
    [23]Bagnyukova T.V., K.B. Storey & V.I. Lushchaka,2003. Induction of oxidative stress in Rana ridibunda during recovery from winter hibernation. Journal of Thermal Biology 28,21-28.
    [24]Bagnyukova T.V., O.I. Chahrak & V.I. Lushchak,2006. Coordinated response of goldfish antioxidant defenses to environmental stress. Aquatic Toxicology 78,325-331.
    [25]Bagnyukovaa T.V., O.V. Lushchaka, K.B. Storeyb & V.I. Lushchak,2007. Oxidative stress and antioxidant defense responses by goldfish tissues to acute change of temperature from 3 to 23℃. Journal of Thermal Biology 32,227-234.
    [26]Baltz D.M.& R.F. Jones,2003. Temporal and Spatial Patterns of Microhabitat Use by Fishes and Decapod Crustaceans in a Louisiana Estuary. Transactions of the American Fisheries Society 132(4), 662-678.
    [27]Barclay M.C., W. Dall & D.M. Smith,1983. Changes in lipid and protein during starvation and the moulting cycle in the tiger prawn, Penaeus esculentus Haswell. Journal of Experimental Marine Biology and Ecology 68,229-244.
    [28]Bickler P.E.& L.T. Buck,2007. Hypoxia tolerance in reptiles, amphibians, and fishes:Life with variable oxygen availability. Annual Review of Physiology 69,145-170.
    [29]Brouwer M., N.J. Brown-Peterson, P. Larkin, V. Patel, N. Denslow, S. Manning, T. H. Brouwera, 2007. Molecular and whole animal responses of grass shrimp, Palaemonetes pugio, exposed to chronic hypoxia. Journal of Experimental Marine Biology and Ecology 341,16-31.
    [30]Brix O., S. Borgund, T. Barnung, A. Colosimo & B. Giardina,1989. Endothermic oxygenation of hemocyanin in the krill Meganyctiphanes norvegica. Letters of Federation of European Biochemical Societies 247(2),177-180.
    [31]Brooke O.G.& A. Ashworth,1972. The influence of malnutrition on the postprandial metabolic rate and respiratory quotient. Britain Journal of Nutrition 27,407.
    [32]Brouwer M., C. Bonaventura & J. Bonaventura,1978. Analysis of the effect of three different allosteric ligands on oxygen binding by hemocyanin of the shrimp, Penaeus setiferus. Biochemistry 17(11),2148-2154.
    [33]Burnett L.E., J. Boyd, C. Milardo, T. Mikulski, L. Wilson & K. Burnett,1999. The effects of hypoxia and hypercapnia on cellular defenses of oysters, shrimp, and fish. Journal of Shellfish Research 18(1),321.
    [34]Butler P.J., E.W. Taylor & B.R. McMahon,1978. Respiratory and circulatory changes in the lobster (Homarus vulgarus) during long term exposure to moderate hypoxia. Journal of Experimental Marine Biology and Ecology 73,131-146.
    [35]Charmantier G., C. Soyez & Aquacop,1994. Effect of molt stage and hypoxia on osmoregulatory capacity in the penaeid shrimp Penaeus vannamei. Journal of Experimental Marine Biology and Ecology 178(2),233-246.
    [36]Cheng W., C. Liu, J. Hsu & J. Chen,2002. Effect of hypoxia on the immune response of giant freshwater prawn Macrobrachium rosenbergii and its susceptibility to pathogen Enterococcus. Fish & Shellfish Immunology 13(5),351-365.
    [37]Cheng W., C.H. Liu & C.M. Kuo,2003. Effects of dissolved oxygen on hemolymph parameters of freshwater giant prawn, Macrobrachium rosenbergii (de Man). Aquaculture 220,843-856.
    [38]Chen J.C.& C.Y. Lin,1995. Responses of oxygen consumption, Ammonia-N excretion and Urea-N excretion of Penaeus chinensis exposed to ambient ammonia at different salinity and pH levels. Aquaculture 136(3-4),243-255.
    [39]Chen J.C.& F.H. Nan,1992. Effects of temperature, salinity and ambient ammonia on lethal dissolved oxygen of Penaeus chinensis. Comparative Biochemistry and Physiology 101C,459-461.
    [40]Chen J.C.& F.H. Nan,1993. Changes of oxygen consumption and ammonia-N excretion by Penaeus chinensis Osbeck at different temperature and salinity levels. Journal of Crustacean Biology 13, 706-712.
    [41]Chen J.C.& S.H. Lai,1993. Effects of temperature and salinity on oxygen consumption and ammonia-N excretion of juvenile Penaeus japonicus Bate. Journal of Experimental Marine Biology and Ecology 165,161-170.
    [42]Chen N., X. Yang, X. Li, H. Liu, G. Lin, F. Li, H. Zhang & L. Lin (translators),1992. The biology of the peaeidae (Original book edited by Dall W., Hill B.J., Rothlisberg P.C., Starples D.J.,1990). Ocean University of Qingdao Press, Qingdao.
    [43]Clark J.V.,1986. Inhibition of moulting in Penaeus semisulcatus (De Haan) by long-term hypoxia. Aquaculture 52(4),253-254.
    [44]Cochran R.E.& L.E. Burnett,1996. Respiratory responses of the salt marsh animals, Fundulus heteroclitus, Leiostomus xanthurus, and Palaemonetes pugio to environmental hypoxia and hypercapnia and to the organophosphate pesticide, azinphosmethyl. Journal of Experimental Marine Biology and Ecology 195,125-144.
    [45]Coiro L.L., S.L. Poucher & D.C. Miller,2000. Hypoxic effects on growth of Palaemonetes vulgaris larvae and other species:Using constant exposure data to estimate cyclic exposure response. Journal of Experimental Marine Biology and Ecology 247(2),243-255.
    [46]Craig J.K.,2002. Effects of large-scale hypoxia on the distribution of brown shrimp (Farfantepenaeus aztecus) and Atlantic croaker(Micropogonias undulatus) in the northwestern Gulf of Mexico. Dissertation Abstracts International B:Science and Engineering 63(2),634.
    [47]Craig J.K.& L.B. Crowder,2005. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf. Marine Ecology Progress Series 294, 79-94.
    [48]Craig J.K., L.B. Crowder & T.A. Henwood,2005. Spatial distribution of brown shrimp (Farfantepenaeus aztecus) on the northwestern Gulf of Mexico shelf:effects of abundance and hypoxia. Canadian Journal of Fisheries and Aquatic Sciences 62(6),1295-1308.
    [49]Dai X., W. Zang, W. Wang, Y. Shi, W. Liu, G. Xu & S. Li,1999. Effects of temperature and dissolved oxygen content on oxygen consumption rate of Chinese prawn, giant tiger prawn and giant freshwater prawn. Chinese Journal of Oceanology and Limnology 17(2),119-124.
    [50]Dall W.,1986. Estimation of routine metabolic rate in a penaeid prawn, Penaeus esculentus Haswell. Journal of Experimental Marine Biology and Ecology 96,57-74.
    [51]Dall W.& D.M. Smith,1986. Oxygen consumption and ammonia-N excretion in fed and starved tiger prawns Penaeus esculentus Haswell. Aquaculture 55,23-33.
    [52]Dandapat J., G.B.N. Chainy & K.J. Rao,2003. Lipid peroxidation and antioxidant defence status during larval development and metamorphosis of giant prawn, Macrobrachium rosenbergii. Comparative Biochemistry and Physiology C 135 221-233.
    [53]De Wachter B.& B.R. McMahon,1996. Temperature and Regional Effects on Heart Performance Hemolymph Flow in the Crab Cancer magister. Comparative Biochemistry and Physiology A 114(1), 27-33.
    [54]De Almeida E.A., A.C. Dias Bainy, A.P. de Melo Loureiro, G.R. Martinez, S. Miyamoto, J. Onuki, L.F. Barbosa, C.C.M. Garcia, F.M. Prado, G.E. Ronsein, C.A. Sigolo, C.B. Brochini, A.M.G. Martins, M.H.G. de Medeiros & P.D. Mascio,2007. Review:Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: Antioxidants, lipid peroxidation and DNA damage. Comparative Biochemistry and Physiology A 146,588-600.
    [55]d'Hondt J., L. Moens, J. Heip, A. d'Hondt,& M. Kondo,1978. Oxygen-binding characteristics of three extracellular haemoglobins of Artemia salina. Biochemistry Journal 171(3),705-710.
    [56]Diaz J.R.& R. Rosenberg,1995. Marine benthic hypoxia:a review on its ecological effects and the behavioral responses of benthic macrofauna. Oceanography and Marine Biology:An Annual Review 33,245-303.
    [57]Di Giulio R.T., PC. Washburn, J.R. Wenning, G.W. Winston,& C.S. Jewell,1989. Biochemical responses in aquatic animals:A review of determinants of oxidative stress. Environmental Toxicology and Chemistry 8,1103-1123.
    [58]Egusa S.,1961. Studies on the respiration of the 'kuruma' prawn, Penaeus japonicus Bate. Ⅱ. Preliminary experiments on its oxygen consumption. Bulletin of Japanese Society Science of Fishery 27,650-659.
    [59]Felder D.L.1979. Respiratory adaptations of the estuarine mud shrimp Callianassa jamaicense (Schmitt 1935) (Crustacea, Decapoda, Thalassinidea). Biological Bulletin157,125-137.
    [60]Florey E.& M.E. Kriebel,1974. The effects of temperature, anoxia and sensory stimulation on the heart rate of unrestrained crabs. Comparative Biochemistry and Physiology A 48(2),285-300.
    [61]Fotheringham N.& G.H. Weissberg,1979. Some causes, consequences and potential environmental impacts of oxygen depletion in the Northern Gulf of Mexico. Proceedings of eleventh annual offshore technology conference, held Houston, TX April 30-May 3,1979. Volume 4, p 2205-2208. Offshore Technology Conference, Dallas, TX 1979.
    [62]Freeman B.M.,1964. The effect of diet and breed upon the oxygen requirements of the domestic fowl during the first fornight of post-embryonic life. Britain Poultry Science 5,263.
    [63]Ganga U.& P.S.B.R. James,1993. Influence of different levels of ambient oxygen on growth and metabolite changes in laboratory reared Penaeus indicus. CMFRI special publication.1993.
    [64]Gopalakrishnan P.,1995. Influence of abiotic factors in the growth and production of white shrimp, Penaeus indicus (H. Milne Edwards) in culture. Dissertation Tamil Nadu Veterinary and Animal Science University, Chennai (India),1995.
    [65]Guadagnoli J.A.& C.L. Reiber,2005. Changes in caridac output and hemolymph flow during hypoxic exposure in the gravid grass shrimp, Palaemonetes pugio. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 175(5),313-22.
    [66]Guppy M., C.J. Fuery & J.E. Flanigan,1994. Biochemical principles of metabolic depression. Comparative Biochemistry and Physiology B 109,175-189.
    [67]Haefner P.,1970. The effect of low dissolved oxygen concentrations on temperature-salinity tolerance of the sand shrimp, Crangon septempinosa Say. Physiological Zoology 43(1),30-37.
    [68]Haefner P.A.,1971. Avoidance of anoxic conditions by the sand shrimp, Crangon septemspinosa Say. Chesapeake Science 12,50-51.
    [69]Hagerman L.,1986. Haemocyanin concentration in the shrimp Crangon crangon (L.) after exposure to moderate hypoxia. Comparative Biochemistry and Physiology A 85(4),721-724.
    [70]Hagerman. L.1982. Heart rate and ventilatory behaviour of young lobsters, Homarus gammarus L. during hypoxia. Ophelia 21,223-229.
    [71]Hagerman L.& A. Szaniawska,1986. Behaviour, tolerance and anaerobic metabolism under hypoxia in the brackish-water shrimp Crangon crangon. Marine ecology progress series 34(1-2),125-132.
    [72]Hagerman L.& R.F. Uglow,1981. Ventilatory behaviour and chloride regulation in relation to oxygen tension in the shrimp Palaemon adspersus Rathke maintained in hypotonic medium. Ophelia 20(2),193-200.
    [73]Hagerman L.& R.F. Uglow,1982. Effects of hypoxia on osmotic and ionic regulation in the brown shrimp Crangon crangon (L.) from brackish water. Journal of Experimental Marine Biology and Ecology 63(1),93-104.
    [74]Hagerman L.& R.F. Uglow,1984. The influence of hypoxia on the blood regulation of the brackish water shrimp Palaemonetes varians Leach. Journal of Experimental Marine Biology and Ecology 76, 157-165.
    [75]Hagerman L.& R.F. Uglow,1985. Effects of hypoxia on the respiratory and circulatory regulation of Nephrops norvegicus. Marine Biology 87,273-278.
    [76]Hagerman L.& R.E. Weber,1981. Respiratory Rate, Haemolymph Oxygen Tension and Haemocyanin Level in the Shrimp Palaemon adspersus Rathke. Journal of Experimental Marine Biology and Ecology 54(1),13-20.
    [77]Hagerman L., T. Sondergaard, K. Weile, D. Hosie & R.F. Uglow,1990. Aspects of blood physiology and ammonia excretion in Nephrops norvegicus. Comparative Biochemistry and Physiology A 97, 51-55.
    [78]Hagerman L.& A. Szaniawska,1994. Haemolymph nitrogen compounds and ammonia efflux rates under anoxia in the brackish water isopod Saduria entomodon. Marine Ecology Progress Serials 103, 285-289.
    [79]Hall M.R.& E.H. Van Ham,1998. The effects of different types of stress on blood glucose in the giant tiger prawn Penaeus monodon. Journal of the World Aquaculture Society 29(3),290-299.
    [80]Harper S.L.& C. Reiber,1999. Influence of hypoxia on cardiac functions in the grass shrimp (Palaemonetes pugio Holthuis). Comparative Biochemistry and Physiology A 124(4),569-573.
    [81]Harper S.L.& C.L. Reiber,2006. Metabolic, respiratory and cardiovascular responses to acute and chronic hypoxic exposure in tadpole shrimp Triops longicaudatus. Journal of Experimental Biology 209(9),1639-1650.
    [82]Hermes-Lima M., J.M. Storey & K.B. Storey,1998. Review:Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comparative Biochemistry and Physiology B 120,437-448.
    [83]Hogendoorn H.,1983. Growth and production of African catfish, Clarias lazera (C. and V.). Ⅲ. Bioenergetic relations of body weight and feeding level. Aquaculture 35,1-7.
    [84]Hopkins J.S., A.D. Stokes, C.L. Browdy & P.A. Sandifer,1991. The relationship between feeding rate, paddle-wheel aeration rate and expected dawn dissolved oxygen in intensive shrimp ponds. Aquacultural Engineering 10,281-290.
    [85]Huddart R.& D.R. Arthur,1971. Shrimps in relation to oxygen depletion and its ecological significance in a polluted estuary. Environment Pollution 2,13-35.
    [86]Jiang J.,1999. Study of oxygen consumption rate, CO2 exhaust, respiratory quotient and tolerance to low dissolved oxygen in four shrimps species. Journal of Zhanjiang Ocean University 19 (1),10-16.
    [87]Johnson D.A.& Welsh B.L.1985. Detrimental effects of Ulva lactuca (L.) exudates and low oxygen on estuarine crab larvae. Journal of Experimental Marine Biology and Ecology 86(1),73-83.
    [88]Jokumsen A., R.M.G. Wells, H.D. Ellerton & R.E. Weber,1981. Hemocyanin of the giant antarctic isopod, Glyptonotus antarcticus:Structure and effects of temperature and pH on its oxygen affinity. Comparative Biochemistry and Physiology A 70(1),91-95.
    [89]Kang J.C.& O. Matsuda,1994. Combined effects of hypoxia and hydrogen sulfide on early developmental stages of white shrimp Metapenaeus monoceros. Applied biological science 33(1), 21-27.
    [90]Kang J.C., O. Matsuda & N. Imamura,1995. Avoidance and behavior of prawn Macrobrachium nipponense by oxygen depletion and hydrogen sulfide. Nippon Suisan Gakkaishi 61(6),827-831.
    [91]Kumaraguru vasagam K.P., S. Ramesh & T. Balasubramanian,2005. Dietary value of different vegetable oil in black tiger shrimp Penaeus monodon in the presence and absence of soy lecithin supplementation:Effect on growth, nutrient digestibility and body composition. Aquaculture,250, 317-327.
    [92]LeBlanc B.D.& R.M. Overstreet,1991. Efficacy of calcium hypoclorite as a disinfectant against the shrimp virus Baculouirus penaei. Journal of Aquatic Animal Health 3,141-145.
    [93]Le Moullac G., C. Soyez, D. Saulnier, D. Ansquer, J. Avarre & P. Levy,1998. Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish & Shellfish Immunology 8(8),621-629.
    [94]Liao I.-C.& Y.-H. Chien,1994. Culture of kuruma prawn in Asia. World Aquaculture 25(1),18-33.
    [95]Liao I.-C.& T. Murai,1986. Effects of dissolved oxygen, temperature and salinity on the oxygen consumption of the grass shrimp, Penaeus monodon. Asian Fisheries Forum, Manila (Philippines), 1986.
    [96]Liao I.C.& H.J. Huang,1975. Studies on the respiration of economic prawns in Taiwan. I. Oxygen consumption and lethal dissolved oxygen of egg up to young prawn of penaeus monodon Fabricius. Journal of Fisheries Society of Taiwan 4(1),33-50.
    [97]Li E., L. Chen, C. Zeng, X. Chen, N. Yu, Q. Lai, J. G. Qin,2007. Short communication:Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities. Aquaculture,265,385-390.
    [98]Lin B., L. Huang & G. Shen,1995. A study on dissolved oxygen and its supplement and consumption in shrimp ponds. Journal of oceanography in Taiwan Strait 14(1),9-14.
    [99]Liu H., K. Qu, Q. Zhang & J. Li,2005. Study on dissolved oxygen consumption both in industrial and pond cultures of shrimps. Marine fisheries research 26(5),52-56.
    [100]Li Y., J. Li & Q. Wang,2006. The effects of dissolved oxygen concentration and stocking density on growth and non-specific immunity factors in Chinese shrimp, Fenneropenaeus chinensis. Aquaculture 256(1-4),608-616.
    [101]Lushchak V.I., L.P. Lushchak, A.A. Mota & M. Hermes-Lima,2001. Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. American Journal of Physiological-Regulatory, Integrative and Comparative Physiology 280,100-107.
    [102]Lushchak V.I.& T.V. Bagnyukova,2006a. Temperature increase results in oxidative stress in goldfish tissues.1. Indices of oxidative stress. Comparative Biochemistry and Physiology C 143, 30-35.
    [103]Lushchak V.I.& T.V. Bagnyukova,2006b. Temperature increase results in oxidative stress in goldfish tissues.2. Antioxidant and associated enzymes. Comparative Biochemistry and Physiology C 143,36-41.
    [104]Lushchak V.I.& T.V. Bagnyukova,2006c. Effects of different environmental oxygen levels on free radical processes in fish. Comparative Biochemistry and Physiology B 144,283-289.
    [105]Lushchak V.I.& T.V. Bagnyukova,2007. Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii. Comparative Biochemistry and Physiology B 148,390-397.
    [106]Lushchak V.I., T.V. Bagnyukova, O.V. Lushchak, J.M. Storey & K.B. Storey,2005a. Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. The International Journal of Biochemistry & Cell Biology 37,1319-1330.
    [107]Lushchak V.I., T.V. Bagnyukova, V.V. Husak, L.I. Luzhna, O.V. Lushchak & K.B. Storey,2005b. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. The International Journal of Biochemistry & Cell Biology 37,1670-1680.
    [108]MacKay R.D.,1974. A note on minimal levels of oxygen required to maintain life in Penaeus schmitti. Proceedings of the fifth Annual Workshop (of the) World Mariculture Society.1974.
    [109]Madenjian C.P.,1990. Patterns of oxygen production and consumption in intensively managed marine shrimp ponds. Aquaculture and fishery management 21(4),407-417.
    [110]Martinez Palacios C.A., L.G. Ross & L. Jimenez Valenzuela,1996. The effects of temperature and body weight on the oxygen consumption of Penaeus vannamei, Boone,1931. Journal of aquaculture in the tropics 11(1),59-65.
    [111]Martinez, E., Aguilar, M., Trejo, L., Hernandez, I., Diaz-Iglesia, E., Soto, L.A., Sanchez, A., Rosas, C.,1998. Lethal low dissolved oxygen concentrations for postlarvae and early juvenile Penaeus setiferus at different salinities and pH. Journal of the World Aquaculture Society 29 (2),221-229.
    [112]Mathew S., K. A. Kumar, R. Anandan, P.G. V. Nair & K. Devadasan,2007. Changes in tissue defence system in white spot syndrome virus (WSSV) infected Penaeus monodon. Comparative Biochemistry and Physiology C 145,315-320.
    [113]Mayzaud P.& R.J.Conover,1988. O:N atomic ratio as a tool to describe zooplankton metabolism. Marine Ecology Progress Series 45,289-302.
    [114]McCulloch D.L.,1990. Metabolic response of the grass shrimp Palaemonetes kadiakensis Rathbun, to acute exposure of sublethal changes in pH. Aquatic Toxicology 17(3),263-274.
    [115]McGraw W., D.R. Teichert-Coddington, D.B. Rouse & C.E. Boyd,2001. Higher minimum dissolved oxygen concentrations increase penaeid shrimp yields in earthen ponds. Aquaculture 199(3-4), 311-321.
    [116]Miller K.& K.E. van Holde,1974. Oxygen binding by Callianassa californiensis hemocyanin. Biochemistry 13(8),1668-1674.
    [117]Mohankumar K.& P. Ramasamy,2006. White spot syndrome virus infection decreases the activity of antioxidant enzymes in Fenneropenaeus indicus. Virus Research 115,69-75.
    [118]Morris S.& S. Oliver,1999. Respiratory gas transport, haemocyanin function and acid-base balance in Jasus edwardsii during emersion and chilling:simulation studies of commercial shipping methods. Comparative Biochemistry and Physiology A 122,309-321.
    [119]Mugnier C.& C. Soyez,2005. Response of the blue shrimp Litopenaeus stylirostris to temperature decrease and hypoxia in relation to molt stage. Aquaculture 244(1-4),315-322.
    [120]Nohl H., V. Koltover & K. Stolze,1993. Ischemia/reperfusion impairs mitochondrial energy conservation and triggers O2'release as a by-product of respiration. Free Radical Research Communication 18,127-137.
    [121]Ocampo Victoria L.,1998. Effect of dissolved oxygen and temperature on the growth, respiratory metabolism and energetics of brown shrimp (Penaeus californiensis) juveniles. Cent. de Investigaciones Biologicas del Noroeste, La Paz, Baja California Sur, (Mexico).32.
    [122]Paterson B.D.& M.J. Thorne,1993. The effect of oxygen tension on the swimmeret rate of Callianassa australiensis and C. arenosa (Crustacea, Decapoda, Thalassinidea). Marine Behavior and Physiology 24,15-24.
    [123]Paterson B.D.& M.J. Thorne,1995. Measurements of oxygen uptake, heart and gill bailer rates of the callianassid burrowing shrimp Trypaea australiensis Dana and its responses to low oxygen tensions. Journal of Experimental Marine Biology and Ecology 194(1),39-52.
    [124]Pavela J.S., J.L. Ross & M.E. Jr Chittenden,1983. Sharp reductions in abundance of fishes and benthic macroinvertebrates in the Gulf of Mexico off Texas associated with hypoxia. Northeast Gulf Science 6(2),167-173.
    [125]Perez-Rostr C.I., I.S. Racotta & A.M. Ibarra,2004. Decreased genetic variation in metabolic variables of Litopenaeus vannamei shrimp after exposure to acute hypoxia. Journal of Experimental Marine Biology and Ecology 302,189-200.
    [126]Pihl L., S.P. Baden & R.J. Diaz,1991. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Marine biology 108(3),349-360.
    [127]Powell M.L.& S.A. Watts,2006. Effect of temperature acclimation on metabolism and hemocyanin binding affinities in two crayfish, Procambarus clarkii and Procambarus zonangulus. Comparative Biochemistry and Physiology A 144,211-217.
    [128]Racotta I.S.& R. Hernandez-Herrera,2000. Metabolic responses of the white shrimp, Penaeus vannamei, to ambient ammonia. Comparative Biochemistry and Physiology A,125,437-443.
    [129]Rameshthangam P.& P. Ramasamy,2006. Antioxidant and membrane bound enzymes activity in WSSV-infected Penaeus monodon Fabricius. Aquaculture 254,32-39.
    [130]Regnault M.,1979. Ammonia excretion of sand shrimp Crangon crangon (L) during the moult cycle. Journal of Comparative Physiology 133,199-204.
    [131]Regnault M.,1981. Respiration and ammonia excretion of the shrimp Crangon crangon L. metabolism response to prolonged starvation. Journal of Comparative Physiology 141,549-555.
    [132]Regnault M.,1993. Effect of a severe hypoxia on some aspects of nitrogen metabolism in the crab Cancer pagurus. Marine Behavior and Physiology 22,131-140.
    [133]Regnault M.& J.C. Aldrich,1988. Short-term effect of hypoxia and ammonia excretion and respiration rates in the crab Carcinus maenas. Marine Behavior and Physiology 13,257-271.
    [134]Regoli F., S. Gorbi, G. Frenzilli, M. Nigro, I. Corsi, S. Focardi & G.W. Winston,2002. Oxidative stress in ecotoxicology:From the analysis of individual antioxidants to a more integrated approach. Marine Environmental Research 54,419-423.
    [135]Renaud M.L.,1986a. Detecting and avoiding oxygen deficient sea water by brown shrimp, Penaeus aztecus (Ives), and white shrimp Penaeus setiferus (linnaeus). Journal of Experimental Marine Biology and Ecology 98 (3),283-292.
    [136]Renaud M.L.,1986b. Hypoxia in Louisiana coastal waters during 1983:Implications for fisheries. Fishery Bulletin.84(1),19-26.
    [137]Richardson J., E.K. Williams & C.W. Hickey,2001. Avoidance behaviour of freshwater fish and shrimp exposed to ammonia and low dissolved oxygen separately and in combination. New Zealand Journal of Marine and Freshwater Research 35(3),625-633.
    [138]Romero M.C., M. Ansaldo & G.A. Lovrich,2007. Effect of aerial exposure on the antioxidant status in the subantarctic stone crab Paralomis granulosa (Decapoda:Anomura). Comparative Biochemistry and Physiology C 146,54-59.
    [139]Rosas C., A. Sanchez, E. Diaz-Iglesia, L.A. Soto, G. Gaxiola & R. Brito,1996. Effect of dietary protein level on apparent heat increment and post-prandial nitrogen excretion of Penaeus setiferus, P. schmitti, P. duorarum and P. notialis postlarvae. Journal of the World Aquaculture Society 27, 92-102.
    [140]Rosas C., A. Sanchez, E. Diaz-Iglesia, L.A. Soto, G. Gaxiola, R. Brito, M. Bacs & R. Pcdroza,1995. Oxygen consumption and ammonia excretion of Penaeus setiferus, P. schmitti, P. duorarum and P. notialis postlarvae fed purified test diets:effect of protein level on substrate metabolism. Aquatic Living Resource 8,161-169.
    [141]Rosas C., A. Sanchez, E. Diaz-Iglesia, R. Brito, E. Martinez & L.A. Soto,1997. Critical dissolved oxygen level to Penaeus setiferus and P. schmitti postlarvae (PL10-18) exposed to salinity changes. Aquaculture 152,259-272.
    [142]Rosas C., E. Martinez, G. Gaxiola, R. Brito, E. Diaz-Iglesia & L.A. Soto,1998. Effect of dissolved oxygen on the energy balance and survival of Penaeus setiferus juveniles. Marine Ecology Progress Series 174,67-75.
    [143]Rosas C., E. Martinez, G. Gaxiola, R. Brito, E. Diaz-Iglesia & L.A. Soto,1999. The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion and osmotic pressure of Penaeus setiferus (Linnaeus) juveniles. Journal of Experimental Marine Biology and Ecology 234, 41-57.
    [144]Sanna M.T., A. Olianas, M. Castagnola, L. Sollai, B. Manconi, S. Salvadoric, B. Giardinab & M. Pellegrini,2004. Oxygen-binding modulation of hemocyanin from the slipper lobster Scyllarides latus. Comparative Biochemistry and Physiology B 139,261-268.
    [145]Sanders N.K., A.J. Arp & J.J. Childress,1988. Oxygen binding characteristics of the hemocyanins of two deep-sea hydrothermal vent crustaceans. Respiration Physiology 71(1),57-67.
    [146]Schembri P.J.,1979. Oxygen consumption and the respiratory responses to declining oxygen tension in the crab Ebalia tuberosa (Pennant) (Crustacea:Decapoda:Leucosiidae). Journal of Experimental Marine Biology and Ecology 41(2),133-142.
    [147]Scholnick D.A.& G.K. Snyder,1996. Response of the tadpole shrimp Triops longicaudatus to hypoxia. Crustaceana 69(8),937-948.
    [148]Seidman E.R.& A. Lawrence,1985. Growth, feed digestibility and proximate body composition of juvenile Penaeus uannamei and Penaeus monodon grown at different dissolved oxygen levels. Journal of World Mariculture Society 16,333-346.
    [149]Shaylaja K.& K. Rengarajan,1993. Tolerance limits of salinity, temperature, oxygen and pH by the juveniles of prawn Penaeus indicus H. Milne Edwards. CMFRI special publication.
    [150]Sies H.,1985. Oxidative stress:Introductory remarks. In:Sies, H. (Ed.), Oxidative Stress. Academic Press, London and Harcourt Brace Jovanovich Publishers, New York, pp 1-8.
    [151]Spicer J.I.& M.M. El-Gamal,1999. Hypoxia accelerates the development of respiratory regulation in brine shrimp-but at a cost. Journal of Experimental Biology 202(24),3637-3646.
    [152]Spoek G.L.,1974. The relationship between blood haemocyanin level, oxygen uptake, and the heart-beat and scaphognathite-beat frequencies in the lobster Homarus gammarus. Netherland Journal of Sea Research 8(1),1-26.
    [153]Staniek K.& H. Nohl,1999. H2O2 detection from intact mitochondria as a measure for one-electron reduction of dioxygen requires a non-invasive assay system. Biochimica et Biophysica Acta 1413, 70-80.
    [154]Sun Y., S. Zhang, J. Chen & Y. Song,2001. Supplement and consumption of dissolved oxygen and their seasonal variations in shrimp pond. Marine Science Bulletin 3(2),89-96.
    [155]Taylor E.W.& P.J. Butler,1973. The behaviour and physiological responses of the shore crab Carcinus maenas during changes in environmental oxygen tension. Netherland Journal of Sea Research 7,496-505.
    [156]Taylor A.C.& J.I. Spicer,1987. Metabolic responses of the prawns Palaemon elegans and P. serratus (Crustacea:Decapoda) to acute hypoxia and anoxia. Marine Biology 95,521-530.
    [157]Tian X.L., S.L. Dong, F. Wang & L.X. Wu,2004. The effects of temperature changes on the oxygen consumption of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck. Journal of Experimental Marine Biology and Ecology 310,59-72.
    [158]Torres J.J., D.L. Gluck & J.J. Childress,1977. Activity and physiological significance of the pleopods in the respiration of Callianassa californiensis (Dana) (Crustacea, Thalassinidea). Biological Bulletin 152,134-146.
    [159]Truchot J.P.,1975. Factors controlling the in vitro and in vivo oxygen affinity of the hemocyanin in the crab Carcinus maenas (L.). Respiration Physiology 24(2),173-189.
    [160]Truchot J.P.& A. Jouve-Duhamel,1985. Oxygen consumption of Penaeus japonicus at various oxygenation levels:Effects of temperature and acclimation to hypoxic environmental conditions. IFREMER Centre de Brest. Actes de Colloques.1985.
    [161]Villareal H.& J.A. Rivera,1993. Effects of temperature and salinity on oxygen consumption of laboratory produced Penaeus californiensis postlarvae. Comparative Biochemistry and Physiology A 106(1),103-107.
    [162]Villareal H.& L. Ocampo,1993. Effects of size and temperature on the oxygen consumption of the brown shrimp Penaeus californiensis (Holmes,1900). Comparative Biochemistry and Physiology A 106(1),97-101.
    [163]Villareal H., P. Hinojosa & J. Naranjo,1994. Effect of temperature and salinity on the oxygen consumption of laboratory produced Penaeus vannamei postlarvae. Comparative Biochemistry and Physiology A 108,331-336.
    [164]Wajcman H., P. McMahill & H.S. Mason,1977. Automatic measurement of the oxygen affinity of Cancer magister hemocyanin. Comparative Biochemistry and Physiology B 57(2),139-141.
    [165]Wajsbrot N., A. Gasith, M.D. Krom & T.M. Samocha,1990. Effect of dissolved oxygen and the molt stage on the acute toxicity of ammonia to juvenile green tiger prawn Penaeus semisulcatus. Environmental Toxicology and Chemistry 9(4),497-504.
    [166]Wannamaker C.M.& J.A. Rice,2000. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. Journal of Experimental Marine Biology and Ecology 249,145-163.
    [167]Wachter B. de, J.van den Abbeele & G. Wolf,1994. Effect of oxygen and salt on haemolymph oxygen binding in the brine shrimp Artemia franciscana. Marine biology 118(2),263-269.
    [168]Wen X., Y. Ku,& J. Luo,2003. Studies on the oxygen consumption rate and asphyxiant point of the red swamp crawfish, Procambrus clarkii. Journal of Dalian Fisheries University 18(3),170-174.
    [169]Wheatley M.G.,1989. Standard rate of O2 uptake and body size in the Crayfish Pacifastacus leniusculus (Dana 1852). Journal of Crustacean Biology 9,212-216.
    [170]Wootton R J.,1990. Ecology of teleost fishes. London, Chapman and Hall Press,1990,404.
    [171]Wu L.& S. Dong,2002. Effects of protein restriction with subsequent realimentation on growth performance of juvenile Chinese shrimp(Fenneropenaeus chinensis). Aquaculture 210,343-358.
    [172]Wu R.S.S., P.K.S. Lam & K.L. Wan,2002. Tolerance to, and avoidance of, hypoxia by the penaeid shrimp(Metapenaeus ensis). Environmental Pollution 118,351-355.
    [173]Xie X.& R. Sun,1992. The daily total metabolism and specific dynamic action in the southern catfish (Silurus meridionalis). Acta Hydrobiologica Sinica 16(3),200-207.
    [174]Yamochi S.& M. Sano,1992. Changes of dissolved oxygen concentration and its effect on the mortality of southern rough shrimp at Tanigawa fishing port, Osaka Bay. Bulletin of the Japanese Society of Fisheries Oceanography 56(1),1-12.
    [175]Yamochi S., H. Ariyama & M. Sano,1995. Occurrence and hypoxic tolerance of the juvenile Metapenaeus ensis at the mouth of the Yodo River, Osaka. Fisheries science 61(3),391-395.
    [176]Zainal K. A. Y, A. C. Taylor & R. J. A. Atkinson,1992. The effect of temperature and hypoxia on the respiratory physiology of the squat lobsters, Munida rugosa and Munida sarsi (anomura, galatheidae). Comparative Biochemistry and Physiology A 101(3),557-567.
    [177]Zenteno-Savin T., R. Saldierna & M. Ahuejote-Sandoval,2006. Superoxide radical production in response to environmental hypoxia in cultured shrimp. Comparative Biochemistry and Physiology C 142(3-4),301-308.
    [178]Zhang P., X. Zhang, J. Li & G. Huang,2006. The effects of body weight, temperature, salinity, pH, light intensity and feeding condition on lethal DO levels of whiteleg shrimp, Litopenaeus vannamei (Boone,1931). Aquaculture 256,579-587.
    [179]Zhang Q., F. Li, B. Wang, J. Zhang, Y. Liu, Q. Zhou & J. Xiang,2007a. The mitochondrial manganese superoxide dismutase gene in Chinese shrimp Fenneropenaeus chinensis:Cloning, distribution and expression. Developmental and Comparative Immunology 31,429-440.
    [180]Zhang Q., F. Li, J. Zhang, B. Wang, H. Gao, B. Huang, H. Jiang & J. Xiang,2007b. Molecular cloning, expression of a peroxiredoxin gene in Chinese shrimp Fenneropenaeus chinensis and the antioxidant activity of its recombinant protein. Molecular Immunology 44,3501-3509.
    [1]陈琴 黄景 王邕,2002.罗氏沼虾仔虾耗氧率与窒息点的初步测定.湖北农学院学报22(1),33-35.
    [2]李爱杰主编,1998.水产动物营养与饲料学.北京,中国农业出版社,pp 67.
    [3]李健 孙修涛 赵法箴,1993.水温和溶解氧含量对中国对虾摄食影响的观察.水产学报17(4),333-336.
    [4]林洪瑛 刘胜 韩舞鹰,2001.珠江口底层海水季节性缺氧及其引发CTB的潜在威胁.湛江海洋大学学报,21(增刊):25-29.
    [5]王玢,1999.人体及动物生理学.北京,高等教育出版社,1999,282-283.
    [6]王岩,1999.温度对蒙古裸腹溞耗氧率的影响.汕头大学学报(自然科学版)14(1),59-63.
    [7]温小波库夭梅罗静波,2003.温度、体重及摄食状态对克氏原螯虾代谢的影响.华中农业大学学报22(2),152-156.
    [8]徐家声,2003.近海与虾池赤潮.北京,海洋出版社,pp 113-116.
    [9]徐永健李德尚王伟良刘剑昭,2000.海水养殖池海洋原甲藻水华前后水化条件的变化.海洋湖沼通报1,41-46.
    [10]朱小明 李少菁 宋星宇,2003.温度对锯缘青蟹状幼体呼吸和排泄的影响.厦门大学学报(自然科学版)42(1),92-96.
    [11]朱小明 吴荔生 马志勇 李少菁,2001.日本对虾仔虾呼吸和排泄的初步研究.台湾海峡20(1),37-42.
    [12]Allan G.L.& G.B. Maguire,1991. Lethal levels of low dissolve oxygen and effects of short-sterm oxygen stress on subsequent growth of juvenile Penaeus monodon. Aquaculture 94,27-37.
    [13]Barclay M.C., W. Dall & D.M. Smith,1983. Changes in lipid and protein during starvation and the moulting cycle in the tiger prawn, Penaeus esculentus Haswell. Journal of Experimental Marine Biology and Ecology 68,229-244.
    [14]Brix O., S. Borgund, T. Barnung, A. Colosimo & B. Giardina,1989. Endothermic oxygenation of hemocyanin in the krill Meganyctiphanes norvegica. Letters of Federation of European Biochemical Societies 247(2),177-180.
    [15]Chen J.C.& Nan F.H.,1992. Effects of temperature, salinity and ambient ammonia on lethal dissolved oxygen of Penaeus chinensis juveniles. Comparative Biochemistry and Physiology C 101(3),459-461.
    [16]Chen J.C.& Nan F.H.,1993. Changes of oxygen consumption and ammonia-N excretion by Penaeus chinensis Osbeck at different temperature and salinity levels. Journal of Crustacean Biology 13, 706-712.
    [17]Chen J.C.& S.H. Lai,1993. Effects of temperature and salinity on oxygen consumption and ammonia-N excretion of juvenile Penaeus japonicus Bate. Journal of Experimental Marine Biology and Ecology 165,161-170.
    [18]Chen N., Yang X., Li X., Liu H., Lin G., Li F., Zhang H.& Lin L. (translators) (1992) The biology of the peaeidae (Original book edited by Dall W, Hill BJ, Rothlisberg PC, Starples DJ 1990). Ocean University of Qingdao Press, Qingdao.
    [19]Cochran R.E.& L.E. Burnett,1996. Respiratory responses of the salt marsh animals, Fundulus heteroclitus, Leiostomus xanthurus, and Palaemonetes pugio to environmental hypoxia and hypercapnia and to the organophosphate pesticide, azinphosmethyl. Journal of Experimental Marine Biology and Ecology 195,125-144.
    [20]Craig J.K.& L.B. Crowder,2005. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf. Marine Ecology Progress Series 294, 79-94.
    [21]Dall W.& D.M. Smith,1986. Oxygen consumption and ammonia-N excretion in fed and starved tiger prawns Penaeus esculentus Haswell. Aquaculture 55,23-33.
    [22]De Wachter B.& B.R. McMahon,1996. Temperature and Regional Effects on Heart Performance Hemolymph Flow in the Crab Cancer magister. Comparative Biochemistry and Physiology A 114(1), 27-33.
    [23]Egusa S.,1961. Studies on the respiration of the 'kuruma' prawn, Penaeus japonicus Bate. Ⅱ. Preliminary experiments on its oxygen consumption. Bulletin of Japanese Society Science of Fishery 27,650-659.
    [24]Egusa S.& T. Yamaoto,1961. Studies on the respiration of "Kumura" prawn Penaeus japonicus Bate. I. Burrowing behaviour, with special reference to its relation to environmental oxygen concentration. Bulletin of Japanese Society of Sciences of Fishery 27(1),22-27.
    [25]Elliott J.M.,1976. Energy lost in the waste products of brown trout (Salmo trutta L.). Journal of Animal Ecology 45(2),561-580.
    [26]Florey E.& M.E. Kriebel,1974. The effects of temperature, anoxia and sensory stimulation on the heart rate of unrestrained crabs. Comparative Biochemistry and Physiology A 48(2),285-300.
    [27]Guppy M., C.J. Fuery & J.E. Flanigan,1994. Biochemical principles of metabolic depression. Comparative Biochemistry and Physiology B 109,175-189.
    [28]Hagerman L., T. Sondergaard, K. Weile, D. Hosie & R.F. Uglow,1990. Aspects of blood physiology and ammonia excretion in Nephrops norvegicus. Comparative Biochemistry and Physiology A 97, 51-55.
    [29]Hagerman L.& A. Szaniawska,1994. Haemolymph nitrogen compounds and ammonia efflux rates under anoxia in the brackish water isopod Saduria entomodon. Marine Ecology Progress Serials 103, 285-289.
    [30]Hagerman L.& R.F. Uglow,1979. Heart and scaphognathite activity in the shrimp, Palaemon adspersus Rathke. Ophelia 18(1),89-96.
    [31]Harper S.L.& C.L.Reiber,2006. Metabolic, respiratory and cardiovascular responses to acute and chronic hypoxic exposure in tadpole shrimp Triops longicaudatus. Journal of Experimental Biology 209(9),1639-1650.
    [32]Jiang J.,1999. Study of oxygen consumption rate, CO2 exhaust, respiratory quotient and tolerance to low dissolved oxygen in four shrimps species. Journal of Zhanjiang Ocean University 19(1),10-16.
    [33]Jokumsen A., R.M.G. Wells, H.D. Ellerton & R.E. Weber,1981. Hemocyanin of the giant antarctic isopod, Glyptonotus antarcticus:Structure and effects of temperature and pH on its oxygen affinity. Comparative Biochemistry and Physiology A 70(1),91-95.
    [34]Kang J., O. Matsuda & N. Imamura,1995. Avoidance and behavior of prawn Macrobrachium nipponense by oxygen depletion and hydrogen sulfide. Nippon Suisan Gakkaishi 61(1),827-831.
    [35]Klein B.W.C.M.,1975. Food consumption, growth and energy metabolism of juvenile shore crab (Carcinus maenas). Netherland Journal of Sea Research 9,255-272.
    [36]Kennish M.J.,2002. Environmental threats and environmental future of estuaries. Environmental Conservation 29(1),78-107.
    [37]LeBlanc B.D.& R.M. Overstreet,1991. Efficacy of calcium hypoclorite as a disinfectant against the shrimp virus Baculouirus penaei. Journal of Aquatic Animal Health 3,141-145.
    [38]Lemos D.& V.N. Phan,2001. Energy partitioning into growth, respiration, excretion and exuviae during larval development of the shrimp Farfantepenaeus paulensis. Aquaculture 199,131-143.
    [39]Levine D.M.& S.D. Sulkin,1979. Partitioning and utilization of energy during the larval development of the xanthid crab, Rithropanopeus harrisii (Gould). Journal of Experimental Marine Biology and Ecology 40,247-257.
    [40]Liao I.C.& H.J. Huang,1975. Studies on the respiration of economic prawns in Taiwan. I. Oxygen consumption and lethal dissolved oxygen of egg up to young prawn of penaeus monodon Fabricius. Journal of Fisheries Society of Taiwan 4(1),33-50.
    [41]Liao I.C.& T. Murai,1986. Effects of dissolved oxygen, temperature and salinity on the oxygen consumption of the grass shrimp, Penaeus monodon. Asian Fisheries Forum, Manila (Philippines), 1986.
    [42]Liao I.-C.& Y.-H. Chien,1994. Culture of kuruma prawn in Asia. World Aquaculture 25 (1),18-33.
    [43]Lim C.,1997. Replacement of marine animal protein with peanut meal in diets for juvenile white shrimp, Penaeus vannamei. Journal of Applied Aquaculture 7(3),67-68.
    [44]MacKay R.D.,1974. A note on minimal levels of oxygen required to maintain life in Penaeus schmitti. Proceedings of the fifth Annual Workshop of the World Mariculture Society.1974.
    [45]Martinez E., M. Aguilar, L. Trejo, I. Hernandez, E. Diaz-Iglesia, L.A. Soto, A. Sanchez,& C. Rosas, 1998. Lethal low dissolved oxygen concentrations for postlarvae and early juvenile Penaeus setiferus at Different Salinities and pH. Journal of the World Aquaculture Society 29 (2),221-229.
    [46]Mayzaud P.& R.J. Conover,1988. O:N atomic ratio as a tool to describe zooplankton metabolism. Marine Ecology Progress Series 45,289-302.
    [47]Morris S.& S. Oliver,1999. Respiratory gas transport, haemocyanin function and acid-base balance in Jasus edwardsii during emersion and chilling:simulation studies of commercial shipping methods. Comparative Biochemistry and Physiology A 122,309-321.
    [48]Nagasoe S., D. Kim, Y. Shimasaki, Y. Oshima, M. Yamaguchi & T. Honjo,2006. Effects of temperature, salinity and irradiance on the growth of the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee. Harmful Algae 5,20-25.
    [49]Paterson B.D.& M.J. Thorne,1995. Measurements of oxygen uptake, heart and gill bailer rates of the callianassid burrowing shrimp Trypaea australiensis Dana and its responses to low oxygen tensions. Journal of Experimental Marine Biology and Ecology 194,39-52.
    [50]Pihl L.,1994. Changes in the diet of demersal fish due to eutrophication-induced hypoxia in the Kattegat, Sweden. Canada Journal of Fishery and Aquatic Sciences 51(2),321-336.
    [51]Pihl L., S.P. Baden & R.J. Diaz,1991. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Marine Biology 108(3),349-360.
    [52]Powell M.L.& S.A. Watts,2006. Effect of temperature acclimation on metabolism and hemocyanin binding affinities in two crayfish, Procambarus clarkii and Procambarus zonangulus. Comparative Biochemistry and Physiology A 144,211-217.
    [53]Renaud M.L.,1986. Detecting and avoiding oxygen deficient sea water by brown shrimp, Penaeus aztecus (Ives), and white shrimp, Penaeus setiferus (Linnaeus). Journal of Experimental Marine Biology and Ecology 98,283-292.
    [54]Regnault M.,1979. Ammonia excretion of sand shrimp Crangon crangon (L) during the moult cycle. Journal of Comparative Physiology 133,199-204.
    [55]Regnault M.,1981. Respiration and ammonia excretion of the shrimp Crangon crangon L.: metabolism response to prolonged starvation. Journal of Comparative Physiology 141,549-555.
    [56]Regnault M.,1993. Effect of a severe hypoxia on some aspects of nitrogen metabolism in the crab Cancer pagurus. Marine Behavior and Physiology 22,131-140.
    [57]Regnault M.& J.C. Aldrich,1988. Short-term effect of hypoxia and ammonia excretion and respiration rates in the crab Carcinus maenas. Marine Behavior and Physiology 13,257-271.
    [58]Richardson J., E.K. Williams & C.W. Hickey,2001. Avoidance behaviour of freshwater fish and shrimp exposed to ammonia and low dissolved oxygen separately and in combination. New Zealand Journal of Marine and Freshwater Research 35(3),625-633.
    [59]Rosas C., A. Sanchez, E. Diaz-Iglesia, L.A. Soto, G. Gaxiola & R. Brito,1996. Effect of dietary protein level on apparent heat increment and post-prandial nitrogen excretion of Penaeus setiferus, P. schmitti, P. duorarum and P. notialis postlarvae. Journal of the World Aquaculture Society 27, 92-102.
    [60]Rosas C., A. Sanchez, E. Diaz-Iglesia, L.A. Soto, G. Gaxiola, R. Brito, M. Bacs & R. Pcdroza,1995. Oxygen consumption and ammonia excretion of Penaeus setiferus, P. schmitti, P. duorarum and P. notialis postlarvae fed purified test diets:effect of protein level on substrate metabolism. Aquatic Living Resource 8,161-169.
    [61]Rosas C., A. Sanchez, E. Diaz-Iglesia, R. Brito, E. Martinez & L.A. Soto,1997. Critical dissolved oxygen level to Penaeus setiferus and P. schmitti postlarvae (PL10-18) exposed to salinity changes. Aquaculture 152,259-272.
    [62]Rosas C., E. Martinez, G. Gaxiola, R. Brito, E. Diaz-Iglesia & L.A. Soto,1998. Effect of dissolved oxygen on the energy balance and survival of Penaeus setiferus juveniles. Marine Ecology Progress Series 174,67-75.
    [63]Rosas C., E. Martinez, G. Gaxiola, R. Brito, E. Diaz-Iglesia & L.A. Soto,1999. The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion and osmotic pressure of Penaeus setiferus (Linnaeus) juveniles. Journal of Experimental Marine Biology and Ecology 234, 41-57.
    [64]Sanna M.T., A. Olianas, M. Castagnola, L. Sollai, B. Manconi, S. Salvadoric, B. Giardinab & M. Pellegrini,2004. Oxygen-binding modulation of hemocyanin from the slipper lobster Scyllarides latus. Comparative Biochemistry and Physiology B 139,261-268.
    [65]Sanders N. K., A. J. Arp & J. J. Childress,1988. Oxygen binding characteristics of the hemocyanins of two deep-sea hydrothermal vent crustaceans. Respiration Physiology 71(1),57-67.
    [66]Seidman E.R.& A. Lawrence,1985. Growth, feed digestibility and proximate body composition of juvenile Penaeus uannamei and Penaeus monodon grown at different dissolved oxygen levels. Journal of World Mariculture Society 16,333-346.
    [67]Shaylaja K.& K. Rengarajan,1993. Tolerance limits of salinity, temperature, oxygen and pH by the juveniles of prawn Penaeus indicus H. Milne Edwards. CMFRI special publication.1993.
    [68]Stuck K.C., S.A. Watts & S.Y. Wang,1996a. Biochemical responses during starvation and subsequent recovery in postlarval Pacific white shrimp, Penaeus vannamei. Marine Biology 125(1), 33-45.
    [69]Stuck K.C., L.M. Stuck, R.M. Overstreet & S.Y. Wang,1996b. Relationship between BP (Baculovirus penaei) and energy reserves in larval and postlarval Pacific white shrimp Penaeus vannamei. Diseases of Aquatic Organisms 24(3),191-198.
    [70]Taylor A.C.& J.I. Spicer,1987. Metabolic responses of the prawns Palaemon elegans and P. serratus (Crustacea:Decapoda) to acute hypoxia and anoxia. Marine Biology 95,521-530.
    [71]Taylor E. W.& P. J. Butler,1973. The behaviour and physiological responses of the shore crab carcinus maenas during changes in environmental oxygen tension. Netherlands Journal of Sea Research 7,496.
    [72]Tian X.L., S.L. Dong, F. Wang & L.X. Wu,2004. The effects of temperature changes on the oxygen consumption of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck. Journal of Experimental Marine Biology and Ecology 310,59-72.
    [73]Truchot J.P.,1975. Factors controlling the in vitro and in vivo oxygen affinity of the hemocyanin in the crab Carcinus maenas (L.). Respiration Physiology 24(2),173-189.
    [74]Villareal H.& J.A. Rivera,1993. Effects of temperature and salinity on oxygen consumption of laboratory produced Penaeus californiensis postlarvae. Comparative Biochemistry and Physiology A 106(1),103-107.
    [75]Villareal H.& L. Ocampo,1993. Effects of size and temperature on the oxygen consumption of the brown shrimp Penaeus californiensis (Holmes,1900). Comparative Biochemistry and Physiology A 106(1),97-101.
    [76]Wajcman H., P. McMahill & H.S. Mason,1977. Automatic measurement of the oxygen affinity of Cancer magister hemocyanin. Comparative Biochemistry and Physiology B 57(2),139-141.
    [77]Wang S.Y.& W.B. Stickle,1988. Biochemical composition of the blue crab Callinectes sapidus exposed to the water-soluble fraction of crude oil. Marine biology 98(1),23-30.
    [78]Wang Y., H. Zhang & Z. Qi,1998. Occurrence and effects of harmful bloom caused by Prorocentrtum micans in seawater experimental enclosures. Journal of Fisheries of China 22(3), 218-222.
    [79]Wannamaker C.M.& J.A. Rice,2000. Effects off hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. Journal of Experimental Marine Biology and Ecology 249(2),145-163.
    [80]Wen X., Y. Ku & J. Luo,2003. Studies on the oxygen consumption rate and asphyxiant point of the red swamp crawfish, Procambrus clarkii. Journal of Dalian Fisheries University 18(3),170-174.
    [81]Wu R.S.S., P.K.S. Lam & K.L. Wan,2002. Tolerance to, and avoidance of, hypoxia by the penaeid shrimp (Metapenaeus ensis). Environmental Pollution 118,351-355.
    [82]Yamochi S., H. Ariyama & M. Sano,1995. Occurrence and hypoxic tolerance of the juvenile Metapenaeus ensis at the mouth of the Yodo River, Osaka. Fisheries science 61(3),391-395.
    [83]Yu J., D. Tang, S. Wang, J. Lian & Y. Wang,2007. Changes of Water Temperature and Harmful Algal Bloom in the Daya Bay in the Northern South China Sea. Marine Sciences Bulletin 9(2),25-33.
    [84]Zainal K. A. Y, A. C. Taylor & R. J. A. Atkinson,1992. The effect of temperature and hypoxia on the respiratory physiology of the squat lobsters, Munida rugosa and Munida sarsi (anomura, galatheidae). Comparative Biochemistry and Physiology A 101(3),557-567.
    [85]Zaitsev Y.P.,1992. Recent changes in the trophic structure of the Black Sea. Fisheries Oceanography 1 (2),180-189.
    [86]Zang W., Z. Zhu, X. Dai, F. Zhao, Y. Lu, G. Xu & R. Xu,1992. Studies on the correlation between the instantaneous velocity of consumed oxygen of Chinese prawn and the aquatic environment. Fisheries Science & Technology Information 19 (4),100-103.
    [87]Zhang P., X. Zhang, J. Li & G. Huang,2006. The effects of body weight, temperature, salinity, pH, light intensity and feeding condition on lethal DO levels of whiteleg shrimp, Litopenaeus vannamei (Boone,1931). Aquaculture 256,579-587.
    [1]Allan G.L.& G.B. Maguire,1991. Lethal levels of low dissolved oxygen and effects of short-term oxygen stress on subsequent growth of juvenile Penaeus monodon. Aquaculture 94(1),27-37.
    [2]Bayer R., J. Riley & D. Donahue,1998. The effect of dissolved oxygen levels on the weight gain and shell hardness of new-shell American lobster, Homarus americanus. Journal of the World Aquaculture Society 29(4),491-493.
    [3]Brooke O.G.& A. Ashworth,1972. The influence of malnutrition on the postprandial metabolic rate and respiratory quotient. Britain Journal of Nutrition 27,407.
    [4]Chen N., X. Yang, X. Li, H. Liu, G. Lin, F. Li, H. Zhang & L. Lin, translators.1992. The Biology of the Peaeidae (Original book edited by Dall W., Hill B.J., Rothlisberg P.C.& Starples D.J.1990). Ocean University of Qingdao Press, Qingdao, China.
    [5]Clark J.V.,1986. Inhibition of moulting in Penaeus semisulcatus (De Haan) by long-term hypoxia. Aquaculture 52(4):253-254.
    [6]Coiro L.L., S. L. Poucher & D.C. Miller,2000. Hypoxic effects on growth of Palaemonetes vulgaris larvae and other species:Using constant exposure data to estimate cyclic exposure response. Journal of Experimental Marine Biology and Ecology 247(2),243-255.
    [7]Craig J.K.,2002. Effects of large-scale hypoxia on the distribution of brown shrimp (Farfantepenaeus aztecus) and Atlantic croaker (Micropogonias undulatus) in the northwestern Gulf of Mexico. Dissertation Abstracts International B:Science and Engineering 63(2),634.
    [8]Craig J.K.& L.B. Crowder,2005. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf. Marine Ecology Progress Series 294, 79-94.
    [9]Elliott, J.M.1976. Energy lost in the waste products of brown trout(Salmo trutta L.). Journal of Animal Ecology 45(2),561-580.
    [10]Fotheringham N.& G.H. Weissberg,1979. Some causes, consequences and potential environmental impacts of oxygen depletion in the Northern Gulf of Mexico. pp 2205-2208. In:Kusakin, O.G. (ed.) Proceedings of Eleventh Annual Offshore Technology Conference. Eleventh annual Offshore Technology Conference, Houston, TX April 30-May 3,1979.
    [11]Freeman B.M.,1964. The effect of diet and breed upon the oxygen requirements of the domestic fowl during the first fortnight of post-embryonic life. Britain Poultry Science 5:263.
    [12]Ganga U.& P.S.B.R. James,1993. Influence of different levels of ambient oxygen on growth and metabolite changes in laboratory reared Penaeus indicus. Central Marine Fisheries Research Institute special publication.1993.
    [13]Guppy M., C.J. Fuery & J.E. Flanigan,1994. Biochemical principles of metabolic depression. Comparative Biochemistry and Physiology B 109,175-189.
    [14]Haefner P.A.,1971. Avoidance of anoxic conditions by the sand shrimp, Crangon septemspinosa Say. Chesapeake Science 12,50-51.
    [15]Harper S.L.& C.L. Reiber,2006. Metabolic, respiratory and cardiovascular responses to acute and chronic hypoxic exposure in tadpole shrimp Triops longicaudatus. Journal of Experimental Biology 209(9),1639-1650.
    [16]Hogendoorn H.,1983. Growth and production of African catfish, Clarias lazera (C. and V.). Ⅲ. Bioenergetic relations of body weight and feeding level. Aquaculture 35,1-7.
    [17]Jiang J.,1999. Study of oxygen consumption rate, CO2 exhaust, respiratory quotient and tolerance to low dissolved oxygen in four shrimp species. Journal of Zhanjiang Ocean University 19(1),10-16.
    [18]Jobling M.,1994. Fish Bioenergetics. Chapman & Hall Press, London.
    [19]Kang J.C.& O. Matsuda,1994. Combined effects of hypoxia and hydrogen sulfide on early developmental stages of white shrimp Metapenaeus monoceros. Applied Biological Science 33(1, 21-27.
    [20]Kang J.C., O. Matsuda & N. Imamura,1995. Effects of hypoxia and hydrogen sulfide on survival of the prawn Macrobrachium nipponense in Lake Kojima, Japan. Nippon Suisan Gakkaishi 61(6), 821-826.
    [21]Kennish M.J.,2002. Environmental threats and environmental future of estuaries. Environmental Conservation 29(1),78-107.
    [22]Kiφrboe T., P. Munk & K. Richardson,1987. Respiration and growth of larval herring Clupea harengus:relation between specific dynamic action and growth efficiency. Marine Ecology Progress Series 40,1-10.
    [23]Klein B.W.C.M.,1975. Food consumption, growth and energy metabolism of juvenile shore crab (Carcinus maenas). Netherland Journal of Sea Research 9,255-272.
    [24]Lemos D.& V.N. Phan,2001. Energy partitioning into growth, respiration, excretion and exuviae during larval development of the shrimp Farfantepenaeus paulensis. Aquaculture 199,131-143.
    [25]Levine D.M.& S.D. Sulkin,1979. Partitioning and utilization of energy during the larval development of the xanthid crab, Rithropanopeus harrisii (Gould). Journal of Experimental Marine Biology and Ecology 40,247-257.
    [26]Liao I.C.& T. Murai,1986. Effects of dissolved oxygen, temperature and salinity on the oxygen consumption of the grass shrimp, Penaeus monodon. In:Maclean J.L., Dizon L.B., Hosilos L.V. (eds) The First Asian Fisheries Forum, Manila, Philippines,1986.
    [27]Li J., X. Sun & F. Zhao,1993. Observation on effects of temperature and dissolved oxygen on ingestion of Penaeus chinensis. Journal of Fisheries of China 17(4),333-336.
    [28]Lim C.,1997. Replacement of marine animal protein with peanut meal in diets for juvenile white shrimp, Penaeus vannamei. Journal of Applied Aquaculture 7(3),67-68.
    [29]Li Y., J. Li & Q. Wang,2006. The effects of dissolved oxygen concentration and stocking density on growth and non-specific immunity factors in Chinese shrimp, Fenneropenaeus chinensis. Aquaculture 256,608-616.
    [30]MacKay R.D.,1974. A note on minimal levels of oxygen required to maintain life in Penaeus schmitti. In Avault, J.W. Jr (ed.) Proceedings of the fifth Annual Workshop of the World Mariculture Society. Workshop of the World Mariculture Society, Charleston, SC USA,21 Jan 1974.
    [31]Martinez E., M. Aguilar, L. Trejo, I. Hernandez, E. Diaz-Iglesia, L. A. Soto, A. Sanchez & C. Rosas, 1998. Lethal low dissolved oxygen concentrations for postlarvae and early juvenile Penaeus setiferus at different salinities and pH. Journal of the World Aquaculture Society 29(2),221-229.
    [32]McGraw W., D.R. Teichert-Coddington, D.B. Rouse & C.E. Boyd,2001. Higher minimum dissolved oxygen concentrations increase penaeid shrimp yields in earthen ponds. Aquaculture 199(3-4),311-321.
    [33]Ocampo Victoria L.,1998. Effect of dissolved oxygen and temperature on the growth, respiratory metabolism and energetics of brown shrimp (Penaeus californiensis) juveniles. pp 32. In:Cent. de Investigaciones Biologicas del Noroeste, La Paz, Baja California Sur, Mexico.
    [34]Pavela J.S., J.L.Ross & M.E. Jr Chittenden,1983. Sharp reductions in abundance of fishes and benthic macroinvertebrates in the Gulf of Mexico off Texas associated with hypoxia. Northeast Gulf Science 6(2),167-173.
    [35]Pihl L., S.P. Baden & R.J. Diaz,1991. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Marine Biology 108(3),349-360.
    [36]Renaud M.L.,1986. Detecting and avoiding oxygen deficient sea water by brown shrimp, Penaeus aztecus (Ives), and white shrimp Penaeus setiferus (Linnaeus). Journal of Experimental Marine Biology and Ecology 98(3),283-292.
    [37]Richardson J., E.K. Williams & C.W. Hickey,2001. Avoidance behaviour of freshwater fish and shrimp exposed to ammonia and low dissolved oxygen separately and in combination. New Zealand Journal of Marine and Freshwater Research 35(3),625-633.
    [38]Rosas C., E. Martinez, G. Gaxiola, R. Brito, E. Diaz-Iglesia & L.A. Soto,1998. Effect of dissolved oxygen on the energy balance and survival of Penaeus setiferus juveniles. Marine Ecology Progress Series 174,67-75.
    [39]Rosas C., E. Martinez, G. Gaxiola, R. Brito, E. Diaz-Iglesia & L.A. Soto,1999. The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion and osmotic pressure of Penaeus setiferus (Linnaeus) juveniles. Journal of Experimental Marine Biology and Ecology 234, 41-57.
    [40]Rosas C., A. Sanchez, E. Diaz-Iglesia, R. Brito, E. Martinez & L.A. Soto,1997. Critical dissolved oxygen level to Penaeus setiferus and P. schmitti postlarvae (PL10-18) exposed to salinity changes. Aquaculture 152,259-272.
    [41]Scholnick D.A.& G.K. Snyder,1996. Response of the tadpole shrimp Triops longicaudatus to hypoxia. Crustaceana 69(8),937-948.
    [42]Seidman E.R.& A.L. Lawrence,1985. Growth, feed digestibility, and proximate body composition of juvenile Penaeus vannamei and Penaeus monodon grown at different dissolved oxygen levels. Journal of World Mariculture Society 16,333-346.
    [43]Stuck K.C., S.A. Watts & S.Y. Wang,1996a. Biochemical responses during starvation and subsequent recovery in postlarval Pacific white shrimp, Penaeus vannamei. Marine Biology 125(1), 33-45.
    [44]Stuck K.C., L.M. Stuck, R.M. Overstreet & S.Y. Wang,1996b. Relationship between BP (Baculovirus penaei) and energy reserves in larval and postlarval Pacific white shrimp Penaeus vannamei. Diseases of Aquatic Organisms 24(3),191-198.
    [45]Tacon A. G.J.& A.M.P. Rodrigues,1984. Comparison of chromic oxide, crude fibre, polyethylene and acid-insoluble ash as dietary markers for the estimation of apparent digestibility coefficients in rainbow trout. Aquaculture 43(4),391-399.
    [46]Thetmeyer H., U. Waller, K.D. Black, S. Inselmann & H. Rosenthal,1999. Growth of European sea bass (Dicentrachus labrax L.) under hypoxic and oscillating oxygen conditions. Aquaculture 174, 355-367.
    [47]Wang S.Y.& W.B. Stickle,1988. Biochemical composition of the blue crab Callinectes sapidus exposed to the water-soluble fraction of crude oil. Marine Biology 98(1),23-30.
    [48]Wang Y., H. Zhang & Z. Qi,1998. Occurrence and effects of harmful bloom caused by Prorocentrtum micans in seawater experimental enclosures. Journal of Fisheries of China 22(3), 218-222.
    [49]Wannamaker C.M.& J.A. Rice,2000. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. Journal of Experimental Marine Biology and Ecology 249(2),145-163.
    [50]Wen X., Y. Ku & J. Luo,2003. Studies on the oxygen consumption rate and asphyxiant point of the red swamp crawfish, Procambrus clarkii. Journal of Dalian Fisheries University 18(3),170-174.
    [51]Wu, R.S.S., P.K.S. Lam, and K.L. Wan.2002. Tolerance to, and avoidance of, hypoxia by the penaeid shrimp(Metapenaeus ensis). Environmental Pollution 118(3),351-355.
    [52]Xie X.& R. Sun,1992. The daily total metabolism and specific dynamic action in the southern catfish (Silurus meridionalis). Acta Hydrobiologica Sinica 16(3),200-207.
    [53]Yamochi S., H. Ariyama & M. Sano,1995. Occurrence and hypoxic tolerance of the juvenile Metapenaeus ensis at the mouth of the Yodo River, Osaka. Fisheries Science 61(3),391-395.
    [54]Yamochi S.& M. Sano,1992. Changes of dissolved oxygen concentration and its effect on the mortality of southern rough shrimp at Tanigawa fishing port, Osaka Bay. Bulletin of the Japanese Society of Fisheries Oceanography 56(1),1-12.
    [55]Zaitsev Y.P.,1992. Recent changes in the trophic structure of the Black Sea. Fisheries Oceanography 1(2),180-189.
    [56]Zang W., Z. Zhu, X. Dai, F. Zhao, Y. Lu, G. Xu & R. Xu.1992. Studies on the correlation between the instantaneous velocity of consumed oxygen of Chinese prawn and the aquatic environment. Fisheries Science & Technology Information 19(4),100-103.
    [1]Bayer R., J. Riley & D. Donahue,1998. The effect of dissolved oxygen levels on the weight gain and shell hardness of new-shell American lobster, Homarus americanus. Journal of the World Aquaculture Society 29(4),491-493.
    [2]Bilton H.T.& G.L. Robins,1973. The effect of starvation and subsequent feeding on survival and growth of Fulton Channel sockeye salmon fry, Oncorhynchus nerka. Journal of Fisheries Research Board of Canada 30(1),1-5.
    [3]Blake R.W.& K.H.S. Chan,2006. Cyclic feeding and subsequent compensatory growth do not significantly impact standard metabolic rate or critical swimming speed in rainbow trout. Journal of Fish Biology 69(3),818-827.
    [4]Bostworth B.G.& W.R. Wolters,1995. Compensatory growth in juvenile red swamp crayfish, Procambarus clarkii. Freshwater Crayfish 1,648-656.
    [5]Boyle P.C., L.H. Storlien, A.E. Harper & R.E. Keesey,1981. Oxygen consumption and locomotor activity during restricted feeding and realimentation. American Journal of Physiology 241,392-397.
    [6]Brooke O.G.& A. Ashworth,1972. The influence of malnutrition on the postprandial metabolic rate and respiratory quotient. Britain Journal of Nutrition 27,407.
    [7]Bull C.D.& N.B. Metcalf,1997. Regulation of hyperphagia in response to varying energy deficits in overwintering juvenile Atlantic salmon. Journal of Fish Biology 50,498-510.
    [8]Chen N., X.Yang, X. Li, H. Liu, G. Lin, F. Li, H. Zhang & L. Lin (translators),1992. The biology of the peaeidae (Original book edited by Dall W., Hill B.J., Rothlisberg P.C., Starples D.J.1990). Ocean University of Qingdao Press, Qingdao, pp 232.
    [9]Clark J.V.,1986. Inhibition of moulting in Penaeus semisulcatus (De Haan) by long-term hypoxia. Aquaculture 52(4),253-254.
    [10]Coiro L.L., S.L. Poucher & D.C. Miller,2000. Hypoxic effects on growth of Palaemonetes vulgaris larvae and other species:using constant exposure data to estimate cyclic exposure response. Journal of Experimental Marine Biology and Ecology 247(2),243-255.
    [11]Cui Y.,1989. Bioenergetics of fishes:theory and methods. Acta Hydrobiol Sin (in Chinese) 13, 369-383.
    [12]Dobson S.H.& R.M. Holmes,1984. Compensatory growth in the rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology 25,649-656.
    [13]Elliott J.M.,1976. Energy lost in the waste products of brown trout(Salmo trutta L.). Journal of Animal Ecology 45(2),561-580.
    [14]Fotheringham N.& G.H. Weissberg,1979. Some causes, consequences and potential environmental impacts of oxygen depletion in the Northern Gulf of Mexico. In:Proceedings of eleventh annual offshore technology conference, Houston, TX, April 30-May 3,1979, vol 4, pp 2205-2208.
    [15]Freeman B.M.,1964. The effect of diet and breed upon the oxygen requirements of the domestic fowl during the first fortnight of post-embryonic life. Britain Poultry Science 5,263.
    [16]Ganga U.& P.S.B.R. James,1993. Influence of different levels of ambient oxygen on growth and metabolite changes in laboratory reared Penaeus indicus. CMFRI special publication, Cochin, India.
    [17]Guppy M., C.J. Fuery & J.E. Flanigan,1994. Biochemical principles of metabolic depression. Comparative Biochemistry and Physiology B 109,175-189.
    [18]Hayward R.S., D.B. Noltie & N. Wang,1997. Use of compensatory growth to double hybrid sunfish growth rates. Transaction of American Fisheries Society 126,316-322.
    [19]Heide A., A. Foss, S.O. Stefansson, I. Mayer, B. Norberg, B. Roth, M.D. Jenssen, R. Nortvedt & A.K. Imsland,2006. Compensatory growth and fillet crude composition in juvenile Atlantic halibut: effects of short term starvation periods and subsequent feeding. Aquaculture 261(1),109-117.
    [20]Hogendoorn H.,1983. Growth and production of African catfish, Clarias lazera (C. and V.). Ⅲ. Bioenergetic relations of body weight and feeding level. Aquaculture 35,1-7.
    [21]Jobling M.,1994. Fish bioenergetics. Chapman & Hall, London, pp 107-109.
    [22]Jobling M., O.H. Meloy, J. Santos & B. Christiansen,1994. The compensatory growth response of the Atlantic cod:effects of nutritional history. Aquaculture International 2(2),75-90.
    [23]Kang J.C.& O. Matsuda,1994. Combined effects of hypoxia and hydrogen sulfide on early developmental stages of white shrimp Metapenaeus monoceros. Applied Biological Science 33(1), 21-27.
    [24]Kang J.C., O. Matsuda & N. Imamura,1995. Effects of hypoxia and hydrogen sulfide on survival of the prawn Macrobrachium nipponense in Lake Kojima, Japan. Nippon Suisan Gakkaishi 61(6), 821-826.
    [25]Kennish M.J.,2002. Environmental threats and environmental future of estuaries. Environment Conservation 29(1),78-107.
    [26]Kim M.K.& R.T. Lovell,1995. Effects of restricted feeding regimens on compensatory weight gain and body tissue changes in channel catfish Ictalurus punctatus in ponds. Aquaculture 135,285-293.
    [27]Kiorboe T., P. Munk & K. Richardson,1987. Respiration and growth of larval herring Clupea harengus:relation between specific dynamic action and growth efficiency. Marine Ecology Progress Series 40,1-10.
    [28]Klein Breteler W.C.M.,1975. Food consumption, growth and energy metabolism of juvenile shore crab (Carcinus maenas). Netherland Journal of Sea Research 9,255-272.
    [29]Le-Francois N.R., P.U. Blier, L.T. Adambounou & M. Lacroix,1999. Exposures to low-level ionizing radiation:effects of biochemical and whole-body indices of growth in juvenile brook charr (Salvelinus fantinalis). Journal of Experimental Zoology 283(3),315-325.
    [30]Lemos D.& V.N. Phan,2001. Energy partitioning into growth, respiration, excretion and exuviae during larval development of the shrimp Farfantepenaeus paulensis. Aquaculture 199,131-143.
    [31]Levine D.M.& S.D. Sulkin,1979. Partitioning and utilization of energy during the larval development of the xanthid crab, Rithropanopeus harrisii (Gould). Journal of Experimental Marine Biology and Ecology 40,247-257.
    [32]Lin X., X. Zhou, H. Yu, J. Lin & Z. Xu,2004. The effects of starvation on biochemical composition and compensatory growth in Penaeus vannamei. Journal of Fishery of China 28(1),47-53.
    [33]McGraw W., D.R. Teichert-Coddington, D.B. Rouse & C.E. Boyd,2001. Higher minimum dissolved oxygen concentrations increase penaeid shrimp yields in earthen ponds. Aquaculture 199(3-4),311-321.
    [34]Miglvas I.& M. Jobling,1989. The effects of feeding regime on proximate body composition and patters of energy deposition in juvenile Arctic charr, Salvelinus alpinus. Journal of Fish Biology 35, 1-11.
    [35]Montserrat N., J.C. Gabillard, E. Capilla, M.I. Navarro & J. Gutie'rrez,2007. Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout (Oncorhynchus mykiss). General and Comparative Endocrinology 150(3),462-472.
    [36]Mortensen A.& B. Damsgard,1993. Compensatory growth and weight segregation following light and temperature manipulation of juvenile Atlantic salmon(Salmo salar L.) and Arctic charr (Salvelinus alpinus L.). Aquaculture 114,261-272.
    [37]Nicieza A.& N.B. Metcalfe,1997. Growth compensation in juvenile Atlantic salmon:responses to depressed temperature and food availability. Ecology 78,2385-2400.
    [38]Ocampo Victoria L.,1998. Effect of dissolved oxygen and temperature on the growth, respiratory metabolism and energetics of brown shrimp (Penaeus californiensis) juveniles. Cent. de Investigaciones Biologicas del Noroeste, La Paz, Baja California Sur, (Mexico), Sep.1998, pp 32.
    [39]Pavela J.S., J.L. Ross & M.E. Jr Chittenden,1983. Sharp reductions in abundance of fishes and benthic macroinvertebrates in the Gulf of Mexico off Texas associated with hypoxia. Northeast Gulf Science 6(2),167-173.
    [40]Quinton J.C.& R.W. Blake,1990. The effects of feed cycling and ration level on the compensatory growth response in rainbow trout, Oncorhynchus mykiss. Journal of Fish Biology 37,33-41.
    [41]Renaud M.L.,1986. Detecting and avoiding oxygen deficient sea water by brown shrimp, Penaeus aztecus (Ives), and white shrimp Penaeus setiferus (Linnaeus). Journal of Experimental Marine Biology and Ecology 98(3),283-292.
    [42]Rosas C., A. Sanchez, E. Diaz-Iglesia, R. Brito, E. Martinez & L.A. Soto,1997. Critical dissolved oxygen level to Penaeus setiferus and P. schmitti postlarvae (PL10-18) exposed to salinity changes. Aquaculture 152,259-272.
    [43]Rosas C., E. Martinez, G. Gaxiola, R. Brito, E. Diaz-Iglesia & L.A. Soto,1998. Effect of dissolved oxygen on the energy balance and survival of Penaeus setiferus juveniles. Marine Ecology Progress Series 174,67-75.
    [44]Rosas C., E. Martinez, G. Gaxiola, R. Brito, E. Diaz-Iglesia & L.A. Soto,1999. The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion and osmotic pressure of Penaeus setiferus (Linnaeus) juveniles. Journal of Experimental Marine Biology and Ecology 234, 41-57.
    [45]Russell N.R.& R.J. Wootton,1992. Appetite and growth compensation in European minnows (Phoxinus phoxinus) following short periods of food restriction. Environmental Biology of Fish 34, 277-285.
    [46]Russell N.R.& R.J. Wootton,1993. Satiation, digestive tract evacuation and return of appetite in the Europe minnow, Phoxinus phoxinus (Cyprinidae) following short period of pre-prandial starvation. Environmental Biology of Fish 38,385-390.
    [47]Tacon A.G.J.& A.M.P. Rodrigues,1984. Comparison of chromic oxide, crude fibre, polyethylene and acidinsoluble ash as dietary markers for the estimation of apparent digestibility coefficients in rainbow trout. Aquaculture 43(4),391-399.
    [48]Thetmeyer H., U. Waller, K.D. Black, S. Inselmann & H. Rosenthal,1999. Growth of European sea bass (Dicentrachus labrax L.) under hypoxic and oscillating oxygen conditions. Aquaculture 174, 355-367.
    [49]Wang Y., H. Zhang & Z. Qi,1998. Occurrence and effects of harmful bloom caused by Prorocentrtum micans in seawater experimental enclosures. Journal of Fishery of China 22(3), 218-222.
    [50]Wang J., Z. Li & S. Xie,2005. Effects of starvation on growth and biochemical composition in shrimp Macrobrachium niponense. Journal of Hebei University (Natural Science Edition) 25(6), 644-649.
    [51]Weatherley A.H.& H.S. Gill,1981. Recovery growth following periods of restricted rations and starvation in rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology 18,195-208.
    [52]Wilson P.N.& D.F. Osbourn,1960. Compensatory growth after undernutrition in mammals and birds. Biological Review 35,324-363.
    [53]Wootton R.J.,1990. Ecology of teleost fishes. Chapman and Hall, London.
    [54]Wu L.& S. Dong,2001. The effects of repetitive'starvation-and-refeeding' cycles on the compensatory growth response in Chinese shrimp, Fenneropenaeus chinensis (Osbeck,1765) (Decapoda, Penaeidae). Crustaceana 74(11),1225-1239.
    [55]Wu L.& S. Dong,2002. Compensatory growth responses in juvenile Chinese shrimp, Fenneropenaeus chinensis, at different temperatures. Journal of Crustacean Boilogy 22(3),511-520.
    [56]Wu L., S. Dong, F. Wang & X. Tian,2000. Compensatory growth response following periods of starvation in Chinese shrimp, Penaeus chinensis Osbeck. Journal of Shellfish Research 19(2), 717-722.
    [57]Wu L., S. Dong & X. Tian,2001a. The compensatory growth in the Chinese shrimp (Penaeus chinensis) following starvation. Acta Ecologia Sinica 21(3),452-457.
    [58]Wu L., S. Dong, F. Wang, X. Tian & S. Ma,2001b. The effect of previous feeding regimes on the compensatory growth response in Chinese shrimp, Fenneropenaeus chinensis. Journal of Crustacean Boilogy 21(3),559-565.
    [59]Xie X.& R. Sun,1992. The daily total metabolism and specific dynamic action in the southern catfish (Silurus meridionalis). Acta Hydrobiologia Sinica 16(3),200-207.
    [60]Yambayamba E.S.K., M.A. Price & G.R. Foxcroft,1996. Hormonal status, metabolic changes and resting metabolic rate in beef heifers undergoing compensatory growth. Journal of American Science 74,57-69.
    [61]Yamochi S.& M. Sano,1992. Changes of dissolved oxygen concentration and its effect on the mortality of southern rough shrimp at Tanigawa fishing port, Osaka Bay. Bulletin of Japonese Society of Fishery and Oceanography 56(1),1-12.
    [62]Zaitsev Y.P.,1992. Recent changes in the tropic structure of the Black Sea. Fishery Oceanography 1(2),180-189.
    [63]Zhu X., F. Miao & W. Xian,2001. The effects of compensatory growth on patterns of fisheries ecology. Journal of Fishery of China 25(3),265-269.
    [1]Albert J.& W. Ellington,1985. Patterns of energy metabolism in the stone crab, Menippe mercenaria, during severe hypoxia and subsequent recovery. Journal of Experimental Zoology 234, 175-183.
    [2]Anderson S.J., A.C. Taylor & R.J. Atkinson,1994. Anaerobic metabolism during anoxia in the burrowing shrimp Calocaris macandreae Bell (Crustacea:Thalassinidae). Comparative Biochemistry and Physiology A 108,515-522.
    [3]Ansaldo M., R. Najle & C.M. Luquet,2005. Oxidative stress generated by diesel seawater contamination in the digestive gland of the Antarctic limpet Nacella concinna. Marine Environmental Research 59,381-390.
    [4]Bagnyukova T.V., K.B. Storey & V.I. Lushchaka,2003. Induction of oxidative stress in Rana ridibunda during recovery from winter hibernation. Journal of Thermal Biology 28,21-28.
    [5]Bagnyukovaa T.V., O.V. Lushchaka, K.B. Storeyb & V.I. Lushchak,2007. Oxidative stress and antioxidant defense responses by goldfish tissues to acute change of temperature from 3 to 23℃. Journal of Thermal Biology 32,227-234.
    [6]Bickler P.E.& L.T. Buck,2007. Hypoxia tolerance in reptiles, amphibians, and fishes:Life with variable oxygen availability. Annual Review of Physiology 69,145-170.
    [7]Bridges C.R.& A.R. Brand,1980. The effect of hypoxia on oxygen consumption and blood lactate levels of some marine Crustacea. Comparative Biochemistry and Physiology A 65(4),399-409.
    [8]Brusca R.C.& G.J. Brusca,1990. Invertebrates. Sinauer Inc., Sunderland, MA, pp 922.
    [9]Di Giulio R.T., PC. Washburn, J.R. Wenning, G.W. Winston,& C.S. Jewell,1989. Biochemical responses in aquatic animals:A review of determinants of oxidative stress. Environmental Toxicology and Chemistry 8,1103-1123.
    [10]Duan S.,2002. Oxidative stress. In:Fang Y, Zheng R (eds) Theory and application of free radical biology. Science Press, Beijing, pp 465-466.
    [11]Fang Y.,2002. Reactive oxygen species in organisms. In:Fang Y.& Zheng R. (eds), Theory and application of free radical biology. Science Press, Beijing, pp 122-126.
    [12]Gade G.,1983. Energy metabolism of arthropods and mollusks during environmental and functional anaerobiosis. Journal of Experimental Zoology 228,415-429.
    [13]Gade G.,1984. Effects of oxygen deprivation during anoxia and muscular work on the energy metabolism of the crayfish, Orconectes limosus. Comparative Biochemistry and Physiology A 77, 495-502.
    [14]Gibson R.& P.L. Barker,1979. The decapod hepatopancreas. Oceanography and Marine Biology: An Annual Review 17,285-346.
    [15]Groussard C., K. Rouger, A. Gratas-Delamarche, I. Morel, M. Chevagne, J. Cillard & P. Delamarche, 1999. Lactate effect on free radical production:an in vitro study, Science & Sports 14,149-52.
    [16]Guppy M., C.L. Fuery & J.E. Flanigan,1994. Biochemical principles of metabolic depression. Comparative Biochemistry and Physiology B 109(2-3),175-189.
    [17]Hagerman L.& R.F. Uglow,1981. Ventilatory behaviour and chloride regulation in relation to oxygen tension in the shrimp Palaemon adspersus Rathke maintained in hypotonic medium. Ophelia 20(2),193-200
    [18]Halliwell B.& J.M.C. Gutteridge,1989. Free Radicals in Biology and Medicine,2nd ed. Clarendon Press, Oxford, UK.
    [19]Hermes-Lima M.,2004. Oxygen in biology and biochemistry:role of free radicals. In:Storey, K.B. (Ed.), Functional Metabolism:Regulation and Adaptation. Wiley-Liss, Hoboken, pp 319-368.
    [20]Hermes-Lima M., J.M. Storey & K.B. Storey,1998. Review:Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. Comparative Biochemistry and Physiology B 120,437-448.
    [21]Hill A.D., A.C. Taylor & R.H.C. Strang,1991. Physiological and metabolic responses of the shore crab Carcinus maenas (L.) during environmental anoxia and subsequent recovery. Journal of Experimental Marine Biology and Ecology.150:31-50
    [22]Hochachka P.W.& G.N. Somero,1984. Biochemical adaptation. Princeton, New Jersey:Princeton University Press.
    [23]Koehn R.K.& B.L. Bayne,1989. Towards a physiological and genetic understanding of the energetics of the stress response. Biological Journal of Linnean Society 37,157-171.
    [24]Laurence M., E. Palacios, A.I. Campa-Cordova, D. Tovar-Ramirez, R. Hernandez-Herrera & I.S. Racotta,2006. Metabolic and immune responses in Pacific whiteleg shrimp Litopenaeus vannamei exposed to a repeated handling stress. Aquaculture 258(1-4),633-640.
    [25]Lushchak V.I.,2002. Oxidative stress in bacteria. In P. Johnston & A. A. Boldyrev (Eds.), Oxidative stress at molecular, cellular and organ levels (pp 45-65). Trivandrum, India:Research Signpost.
    [26]Lushchak V.I., L.P. Lushchak, A.A. Mota & M. Hermes-Lima,2001. Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. American Journal of Physiological-Regulatory, Integrative and Comparative Physiology 280,100-107.
    [27]Lushchak V.I.& T.V. Bagnyukova,2006a. Temperature increase results in oxidative stress in goldfish tissues.1. Indices of oxidative stress. Comparative Biochemistry and Physiology C 143, 30-35.
    [28]Lushchak V.I.& T.V. Bagnyukova,2006b. Temperature increase results in oxidative stress in goldfish tissues.2. Antioxidant and associated enzymes. Comparative Biochemistry and Physiology C 143,36-41.
    [29]Lushchak V.I.& T.V. Bagnyukova,2006c. Effects of different environmental oxygen levels on free radical processes in fish. Comparative Biochemistry and Physiology B 144,283-89.
    [30]Lushchak V.I.& T.V. Bagnyukova,2007. Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii. Comparative Biochemistry and Physiology B 148,390-397.
    [31]Lushchak V.I., T.V. Bagnyukova, O.V. Lushchak, J.M. Storey & K.B. Storey,2005a. Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp(Cyprinus carpio) tissues. The International Journal of Biochemistry & Cell Biology 37,1319-1330.
    [32]Lushchak V.I., T.V. Bagnyukova, V.V. Husak, L.I. Luzhna, O.V. Lushchak & K.B. Storey,2005b. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. The International Journal of Biochemistry & Cell Biology 37,1670-1680.
    [33]Lutz P.L.& G.E. Nilsson,1997. Contrasting strategies for anoxic brain survival. Glycolysis up or down. Journal of Experimental Biology 200,411-419.
    [34]McMahon B.R.,2001. Respiratory and circulatory compensation to hypoxia in crustaceans. Respiration physiology 128(3),349-364.
    [35]Mugnier C., E. Zipper, C. Goarant & H. Lemonnier,2008. Combined effect of exposure to ammonia and hypoxia on the blue shrimp Litopenaeus stylirostris survival and physiological response in relation to molt stage. Aquaculture 274(2-4),398-407.
    [36]Nagaoka S., Y. Okauchi, S. Urano & U. Nagashima,1990. Kinetic and ab initio study of the prooxidation of vitamin E:hydrogen abstraction from fatty esters and egg yolk lecithin. Journal of American Chemistry Society 112,8921-8924.
    [37]Pannunzio T.M.& K.B. Storey,1998. Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod Littorina littorea. Journal of Experimental Marine Biology and Ecology 221(2),277-292.
    [38]Perez-Rostro C.I., I.S. Racotta & A.M. Ibarra,2004. Decreased genetic variation in metabolic variables of Litopenaeus vannamei shrimp after exposure to acute hypoxia. Journal of Experimental Marine Biology and Ecology 302(2),189-200.
    [39]Racotta I.S., E. Palacios & L. Mendez,2002. Metabolic responses to short and long-term exposure to hypoxia in white shrimp (Penaeus vannamei). Marine Freshwater Behaviour Physiology 35(4), 269-275.
    [40]Regoli F., S. Gorbi, G. Frenzilli, M. Nigro, I. Corsi, S. Focardi & G.W. Winston,2002. Oxidative stress in ecotoxicology:From the analysis of individual antioxidants to a more integrated approach. Marine Environmental Research 54,419-423.
    [41]Romero M.C., M. Ansaldo & G.A. Lovrich,2007. Effect of aerial exposure on the antioxidant status in the subantarctic stone crab Paralomis granulosa (Decapoda:Anomura). Comparative Biochemistry and Physiology C 146,54-59.
    [42]Ruppert E.E., R.S. Fox & R.D. Barnes,2003. Invertebrate Zoology a Functional Ecology Approach. Brooks Cole College Publishing, Orlando, FL, pp1008.
    [43]Rychter A.,1997. Effects of anoxia on the behaviour, haemolymph lactate and glycogen concentrations in the mud crab Rhithropanopeus harrisii ssp. tridentatus (Maitland) (Crustacea: Decapoda). Oceanologia 39(3),325-335.
    [44]Sies H.,1991. Oxidative stress:Introduction. In H. Sies (Ed.), Oxidative stress:Oxidants and antioxidants. San Diego:Academic Press. pp 21-48.
    [45]Storey K.B.,1996. Oxidative stress:Animal adaptations in nature. Brazilian Journal of Medical and Biological Research 29,1715-1733.
    [46]Virani N.A.& B.B. Rees,2000. Oxygen consumption, blood lactate and interindividual variation in the gulf killifish, Fundulus grandis, during hypoxia and recovery. Comparative Biochemistry and Physiology A 126,397-405.
    [47]Wang X. (Ed.),2001. Biochemistry. The Press of Qinghua University, Beijing. pp 226.
    [48]Zebe E.,1982. Anaerobic metabolism in Upogebia pugettensis and Callianassa californiensis (Crustacea, Thalassinidea). Comparative Biochemistry and Physiology B 72,613-617.
    [49]Zenteno-Savin T., R. Saldierna & M. Ahuejote-Sandoval,2006. Superoxide radical production in response to environmental hypoxia in cultured shrimp. Comparative Biochemistry and Physiology C 142(3-4),301-308.
    [50]Zou E., N. Du & W. Lai,1996. The Effects of Severe Hypoxia on Lactate and Glucose Concentrations in the Blood of the Chinese Freshwater Crab Eriocheir sinensis (Crustacea:Decapoda). Comparative Biochemistry and Physiology A 114(2),105-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700