用户名: 密码: 验证码:
中国原产完全甜柿自然脱涩机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
完全甜柿不需人工脱涩即可脆食,较涩柿的商品价值更高,因而是柿育种主要目标。但完全甜柿资源稀少,分布狭窄,遗传一致度高,世界范围内遗传改良计划已面临近交退化的困境。近年来,在我国中部大别山区发现以‘罗田甜柿’为代表的新的完全甜柿类型,但其遗传背景以及作为完全甜柿育种亲本的价值尚不清楚。可溶性单宁是柿果实呈现涩味的主要物质。本研究以我国原产完全甜柿为试材,并与非完全甜柿和日本原产完全甜柿作比较,探讨单宁细胞发育模式以及单宁生物合成和凝固的关键基因表达及其与果实脱涩的关系,以期为完全甜柿自然脱涩机理的研究及其遗传改良提供科学依据。主要研究结果如下:
     1.供试我国原产完全甜柿单宁细胞在果实发育早期(武汉地区7月10日左右)停止膨大,最大面积小于30×103μm2,单宁细胞内单宁积累持续到果实发育中后期(武汉地区9月10日左右),在果实发育整个过程中伴随着可溶性单宁向不溶性单宁的转化,且在果实发育后期(武汉地区9月到10月上旬)转化尤为明显。可能说明我国原产完全甜柿单宁细胞发育介于日本原产完全甜柿和非完全甜柿之间,且存在可溶性单宁的‘凝固’现象。
     2.通过同源克隆和快速扩增cDNA末端(RACE)技术从‘罗田甜柿’(Diospyros kaki Thunb.'Luotian-tianshi',中国原产完全甜柿)幼果中扩增出长1379 bp包含ORF的无色花色素还原酶(leucoanthocyanidin reductase, LAR)基因cDNA全长序列,其编码349个氨基酸残基,命名为DkLAR。该序列有LAR蛋白所特有的THD、RFLP和ICCN保守序列和还原酶—异构酶—脱氢酶家族所特有的Rossmann二核苷酸结合位点。DkLAR表达水平变化趋势与我国原产完全甜柿单宁积累趋势相一致。
     3.通过RACE和热不对称交错RT-PCR (TAIL-PCR)等技术从‘磨盘柿’(Diospyros kaki Thunb.'Mopanshi',中国原产完全涩柿)幼果中分离到4个丙酮酸脱羧酶(pyruvate decarboxylase, PDC)基因家族成员,分别命名为DkPDC1、DkPDC2、DkPDC3和DkPDC4;得到2个乙醇脱氢酶(alcohol dehydrogenase, ADH)基因家族成员,分别命名为DkADHl和DkADH2。通过qRT-PCR分析结果表明,在供试我国原产完全甜柿可溶性单宁向不溶性单宁主要转化时期,果肉中DkPDC2基因表达活性升高,DkADH1基因表达活性降低,维持在较低表达水平,可能与我国原产完全甜柿自然脱涩相关。
     4乙醇处理‘罗田甜柿’、‘小果甜柿’(D. kaki Thunb.'Xiaoguo-tianshi',中国原产完全甜柿)、‘骏河’(D. kaki Thunb.'Suruga',日本原产完全甜柿)和‘禅寺丸’(D. kaki Thunb.'Zenjimaru',日本原产非完全甜柿)果实,除‘骏河’不受乙醇处理影响外其它材料果实6天内完成脱涩,且其可溶性单宁含量下降量和不溶性单宁含量上升量基本相等。DkADH和DkPDC基因在‘骏河’果皮、果肉和果心部位转录活性均极低,乙醇处理后其表达水平无明显变化,与乙醇处理对单宁含量无影响相一致。DkADH和DkPDC基因在‘罗田甜柿’果皮、果肉、果心和种子中表达活性均较低,但高于在‘骏河’中的表达水平,经乙醇处理后DkADH1和DkPDC2基因表达水平在种子部位明显升高而在果皮、果肉和果心部位的变化不明显,与乙醇处理后其可溶性单宁含量迅速下降和不溶性单宁含量迅速上升相一致。DkADH1和DkPDC2基因在‘小果甜柿’和‘禅寺丸’种子部位高效表达,乙醇处理后DkADH1基因在这两个品种的种子部位表达水平均明显下调,DkPDC2基因在‘小果甜柿’种子中表达活性升高,而在‘禅寺丸’种子中的转录活性影响较小,DkADH2和DkPDC1、DkPDC3和DkPDC4在‘小果甜柿’和‘禅寺丸’中总体表达水平较低,且无明显组织特异性,乙醇处理反应变化较小。可能说明与单宁‘凝固’有关的关键基因为DkADH1和DkPDC2,转录活性主要在种子部位,且自然脱涩过程中单宁‘凝固’能力大小顺序:‘禅寺丸’>‘小果甜柿’>‘罗田甜柿’。
     综上所述,中国原产完全甜柿单宁细胞发育特点介于日本原产完全甜柿和非完全甜柿之间,其单宁细胞在果实发育早期停止膨大,单宁积累持续到果实发育中后期,且存在可溶性单宁向不溶性单宁转化过程。单宁生物合成关键基因DkLAR表达水平变化趋势与单宁细胞内单宁积累趋势相一致,单宁凝固相关基因DkPDC和DkADH两基因家族中DkPDC2和DkADH1基因表达模式与单宁凝固相关。因此,中国原产完全甜柿自然脱涩既有单宁细胞‘稀释效应’又有可溶性单宁的‘凝固作用’,且在凝固过程中DkPDC2和DkADH1基因起关键作用。
Pollination-constant and non-astringent (PCNA) fruit can be eaten like an apple without any postharvest treatment and is the most desirable for fresh consumption. So, it has been the main breeding objective. However, there are only a few cultivars of PCNA type, and they have very narrow genetic variability. The project of persimmon breeding is cornerd. Recentaly, a series of new PCNA types including'Luotian-tianshi' were found in Luotian country Hubei province. But it was not reported about genetic background and the value as parents for the breeding projects in persimmon. In this study, PCNA type origined in China was the main material, and non-PCNA and PCNA typesorigined in Japan were the materials as compared with Chinese PCNA types. The development pattern of tannin cell and the expreesion pattern of the genes related with tannin biosynthesis and tannin cogulation during the development of the fruit were studied, and its relationship with nature loss of astringency was analyzed. These studies would be provided scientific insights on the mechanism of the PCNA nature loss of astringency and genetic improvement in Japanese persimmon. The main results of this study are as follows:
     1. Tannin cell size in Chinese PCNA type was not distinctly increased after July and the biggest area was smaller than 30×103μm2; the accumulation of tannin continued until September, and some tannin were coagulated during the stage of accumulation. These results suggested development pattern of tannin in Chinese PCNA type between Japanese PCNA and non-PCNA type.
     2. The full length cDNA of LAR gene named DkLAR was cloned from the young fruit of'Luotian-tianshi'(Diospyros kaki Thunb., Chinese PCNA type) using degenerate PCR and Rapid amplication cDNA End (RACE) method, and registered in NCBI (GenBank accession number:EU747876). The 1356 bp long DkLAR cDNA contained a 1047 bp open reading frame (ORF) and encoded 349 amino acids. The DkLAR protein contained the THD, RFLP and ICCN motifs conserved in LAR protein, and include the Rossmann dinucleotide-binding domain. Expression pattern of DkLAR was coincident with the tannin cell development.
     3. Four PDC cDNA fragments (named DkPDCl, DkPDC2, DkPDC3 and DkPDC4) and two full length cDNA of ADH gene (named DkADH1 and DkADH2) were cloned from the young fruit of 'Mopanshi' (Diospyros kaki Thunb., Chinese PCA type) using degenerate PCR, RACE and TAIL-PCR method. The expression patterns of DkPDC and DkADH were performed in the pulp of the fruit during the throughout of the fruit development. DkPDC2 expression level increased and DkADH1 expression level decrease at the late development stage of the fruit in which soluble tannin was converted into insoluble tannin. It suggested that the transcritive activity of DkPDC2 and DkADH1 was relatived with the PCNA nature loss astrigency.
     4. The fruits of the'Luotian-tianshi' (Diospyros kaki Thunb., Chinese PCNA type), 'xiaoguo-tianshi' (Diospyros kaki Thunb., Chinese PCNA type),'Suruga' (Diospyros kaki Thunb., Japanese PCNA type) and'Zenjimaru' (Diospyros kaki Thunb., Japanese non-PCNA type) were enclosed in polyethylene bags containing small amount ethanol on the tree to remove astringency. The astringency of the fruits from all materials except 'Suruga' disappered completely in 6 days, and the decrease of soluble tannin were correlated with a increase of insoluble tannin in treated fruits. The expressions of DkPDC and DkADH in peel, pulp, core and seed of the'Suruga' were low and not related with treatment of ethanol. The expression pattern of DkPDC and DkADH gene in 'Luotian-tianshi' was similar to in'Suruga', but after treatment, DkPDC2 and DkADHl expression level in seed was increased significantly. In 'Xiaoguo-tianshi' and 'Zenjimaru', the expreesion level of DkADH1 was very high, but decreased after treatment using ethanol; the DkPDC2 expression was high in seeds of the'Xiaoguo-tianshi' and 'Zenjimaru', after treatment using ethanol, increased in'Xiaoguo-tianshi' and changed little in'Zenjimaru'. DkADH2, DkPDCl, DkPDC3 and DkPDC4 expression level was low and no specific in pulp, peel, core and seed in 'Xiaoguo-tianshi' and 'Zenjimaru'. These results suggested that DkPDC2 and DkADHl gene in seeds played an important role in tannin congulation, and the order of ability of removing astringency during nature loss of astringency was'Zenjimaru'>'Xiaoguo-tianshi'>'Luotian-tianshi'.
引文
1.陈道明.中国原产完全甜柿‘鄂柿1号’自然脱涩特点研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    2.杜晓云,张青林,罗正荣.罗田甜柿乙醇脱氢酶(ADH)基因片段的克隆和序列分析.科技论文在线,http://www.paper.edu.cn
    3.费学谦,周立红,龚榜初.不同甘、涩类型果实单宁组成的差异及罗田甜柿单宁的特性.林业科学研究,1999,12:369-373
    4.费学谦,周立红,王劲风.柿自然脱涩能力与单宁细胞发育规律的研究.林业科学研究,1996,9:27-31
    5.郭大龙.几种分子标记技术的甲流及其在部分柿属植物亲缘关系研究中的应用.[博士学位论文].武汉:华中农业大学图书馆,2006
    6.李静,聂继云,李海飞,徐国峰,王孝娣,毋永龙,王贞旭.Folin-酚法测定水果及其制品中总多酚含量的条件.果树学报,2008,25:126-131
    7.罗正荣,李发芳,蔡礼鸿.部分中国原产甜柿种质的分子系统学研究.园艺学报,1999,26:297-301
    8.潘德森,马业萍,余秋英,易珍旺,张仕辉.罗田甜柿资源调查及优良株系选育.湖北林业科技,1994,2:24-28
    9.山蓝,王保莉,张继澍.从富含多糖和多酚的柿果中提取具转录活性RNA的方法.植物生理学通讯,2002,38:463-466
    10.石碧,狄莹.植物多酚.北京:科学出版社,2000:180-197
    11.王仁梓.关于罗田甜柿原产地问题的探讨.中国果树,1983,3:16-19
    12.杨勇,阮小凤,王仁梓,李高潮.柿单宁细胞形态特征及发育动态研究.西北农林科技大学学报(自然科学版).2003,31:93-99
    13.杨勇,阮小凤,王仁梓,李高潮.柿种质资源及育种研究进展.西北林学院学报,2005,20:133-137
    14.张宝善,伍晓红,陈锦屏.柿单宁研究进展.陕西师范大学学报(自然科学版),2008,36:99-105
    15.张继澍,傍岛善次,石田雅士.不同品种柿树果实发育中期的单宁细胞观察.西北农业大学学报,1993,21:41-45
    16.张永卓,罗正荣.部分中国原产甜柿种质甜涩性状的鉴定.园艺学报,2006,33:370-373
    17.章镇,戴文浩,蔡斌华,盛炳成,胡国谦.不同脱涩类型柿果实发育过程 中单宁物质的变化.南京农业大学学报,1997,20:105-107
    18.赵文军,张迪,马丽娟,柴友荣.原花青素的生物合成途径、功能基因和代谢工程.植物生理学通讯,2009,45:509-519
    19.赵运军.枳CBF1类似基因PtCBF1启动子的克隆与功能分析.[硕士学位论文].武汉:华中农业大学图书馆,2008
    20. Aharoni A, Keizer L C P, Bouwmeester H J, Sun Z, Alvarez-Huerta M, Verhoeven H A, Blaas J, van Houwelingen A M M L, De Vos R C H, van der Voet H, Jansen R C, Guis M, Mol J, Davis R W. Schena M, van Tunen A J, O'Connell A P. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell,2000,12:647-662
    21. Akagi T, Ikegami A, Suzuki Y, Yoshida J, Yamada M, Sato A, Yonemori K. Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit. Planta,2009a,230:899-915
    22. Akagi T, Ikegami A, Tsujimoto T, Kobayashi S, Sato A, Kono A, Yonemori K. DkMyb4 is a Myb Transcription Factor Involved in Proanthocyanidin Biosynthesis in Persimmon Fruit. Plant Physiology,2009b,151:2028-2045
    23. Araki C, Furuta M, Kaneko K, Aketagawa T. Studies on the removal of astringency in Japanese persimmon (Diospyros kaki L.) I. Changes of alcoholdehydrogenase, peroxidase activites and some chemical constituents in the process of the artificial removal of astringency in Kaki fruits. Journal of the Japanese Society for Horticultural Science,1975,44:183-191
    24. Atchley W R, Lenberg K R, Fitch W M, Terhalle W, Dress A W. Correlations among amino acid sites in bHLH protein domains:an information theoretic analysis. Molecular Biology Evolution,2000,17:164-178
    25. Baudry A, Caboche M, Lepiniec L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant Journal,2006,46:768-779
    26. Baudry A, Heim M A, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidins biosynthesis in Arabidopsis thaliana. Plant Journal,2004, 39:366-380
    27. Bogs J, Downey M O, Harvey J S, Ashton A R, Tanner G T, Robinson S P. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiology,2005,139:652-663
    28. Borevitz J O, Xia Y, Blount J, Dixon R A, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell,2000, 12:2383-2394
    29. Bottoms C A, Smith P E, Tanner J J. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Protein Science,2002,11:2125-2137
    30. Bradley J M, Davies K M, Deroles S C, Bloor S J, and Lewis D H. The maize LC regulatory gene up-regulates the flavonoid biosyn thetic pathway of Petunia. Plant Journal,1998,13:381-392
    31. Bruemmer J H. Regulation of acetaldehyde and ethanol accumulation in citrus fruit. In:Parliament, T.H., Croteau, R. (Eds.), Biogeneration of Aromas. ACS Symposium Series,1986,317:276-285
    32. Buck M J, Atchley W R. Phylogenetic analysis of plant basic helix-loop-helix proteins. Journal of the Molecular Evolution,2003,56:742-750
    33. Butelli E, Titta L, Giorgio M, Mock H, Matros A, Peterek S, Schijlen E, Hall R, Bovy A, Luo J, Martin C. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 2008,26:1301-1308
    34. Chang C, Meyerowitz E M. Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proceedings of the National Academy of Sciences of the United States of America,1986,83:1408-1412
    35. Chapple C C S, Shirley B W, Zook M, Hammerschmidt R, Somerville S C. Secondary metabolism in Arabidopsis. In:Meyerowitz EM, Somerville CR (Eds). Arabidopsis. NY:Cold Spring Harbor Laboratory Press,1994,989-1030
    36. Cheng Y J, Guo W W, Yi H L, Pang X M, Deng X X. An efficient protocol for genomic DNA extraction from Citrus species. Plant molecular biology reporter, 2003,21:177-178
    37. Christie P J, Hahn M, Walbot V. Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. Plant Physiology,1991,95:699-706
    38. Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L. Proanthocyanidin accumulating cells in Arabidopsis testa:regulation of differentiation and role in seed development. Plant Cell,2003,15:2514-2531
    39. Dixon R A, Xie D Y, Sharma S B. Proanthocyanidins-a final frontier in flavonoid research. New Phytologist,2005,165:9-28
    40. Dolferus R, Ellis M, de Bruxelles G, Trevaskis B, Hoeren F, Dennis E S, Peacock W J, De-Bruxelles G. Strategies of gene action in Arabidopsis during hypoxia. Annals of botany,1997,79:21-31
    41. Dolferus R, Jacobs M, Peacock W J, Dennis E S. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiology,1994,105:1075-1087
    42. Dooner H K, Kermicle J L. Displaced and tandem duplications in the long arm of chromosome 10 in maize. Genetics,1976,82:309-322
    43. Esguerra E B, Kawada K, Kitagawa H, Subhadrabandhu S. Removal of astringency in 'Amas' banana (Musa AA group) with postharvest ethanol treatment. Acta Horticulture,1992,321:811-820
    44. Goodrich J, Carpenter R, and Coen E S. A common gene regulates pigmentation pattern in diverse plant species. Cell,1992,68:955-964
    45. Gregerson R G, Cameron L, McLean M, Dennis P, Strommer J. Structure, expression, chromosomal location and product of the gene encoding Adh2 in Petunia. Genetics,1993,133:999-1007
    46. Grotewold E, Athma P, and Peterson T. Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain ofmyb-like transcription factors. Proceedings of the National Academy of Sciences of the United States of America,1991,88:4587-4591
    47. Grotewold E, Chamberlin M, Snook M, Siame B, Butle L, Swenson J, Maddock S, Clair G S, Bowen B. Engineering secondarymetabolism in maize cells by ectopic expression of transcription factors, Plant Cell,1998,10:721-740
    48. Grotewold E, Sainz M B, Tagliani L et al. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proceedings of the National Academy of Sciences of the United States of America,2000,97:13579-13584
    49. Grotewold E. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology,2006,57:761-780
    50. Guo D L, Luo Z R. Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis. Genetic Resource and Crop Evolution,2006,53:1597-1603
    51. Hailing J, Cathie M. Multifunctionality and diversity within the plant MYB-gene family. Plant Molecular Biology,1999,41:577-585
    52. Heim M A, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey P C. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution, 2003,20:735-747
    53. Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell,1995,7:1071-1083
    54. Hossain M A, Huq E, Grover A, Dennis E S, Peacock W J, Hodges T K. Characterization of pyruvate decarboxylase genes from rice. Plant Molecular Biology,1996,31:761-770
    55. Hugo K D, Robbins T P. Genetic and developmental control of anthocyanin biosynthesis. Annual Review of Genetics,1991,25:173-199
    56. Ikeda I, Yamada M, Kurihara A, Nishida T. Inheritance of astringency in Japanese persimmon. Journal of the Japanese Society for Horticultural Science, 1985,54:39-45
    57. Ikegami A, Akagi T, Potter D, Yamada M, Sato A, Yonemori K, Kitajima A, Inoue K. Molecular identification of 1-cys peroxiredoxin and anthocyanidin/flavonol 3-O-galactosyltransferase from proanthocyanidin-rich young fruits of persimmon (Diospyros kaki Thunb.). Planta,2009,230:841-855
    58. Ikegami A, Eguchi S, Kitajima A, Inoue K, Yonemori K. Identification of genes involved in proanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit. Plant Science,2007,172:1037-1047
    59. Ikegami A, Eguchi S, Yonemori K, Yamada M, Sato A, Mitani N, Kitajima A. Segregations of astringent progenies in the F1 populations derived from crosses between a Chinese pollination-constant nonastringent (PCNA)'Luo Tian Tian Shi', and Japanese PCNA and pollination-constant astringent (PCA) cultivars of Japanese origin. HortScience,2006,41:561-563
    60. Ikegami A, Sato M, Yamada M, Kitajima A, Yonemori K. Molecular size profiles of tannins in persimmon fruits of Japanese and Chinese pollination-constant non-astringent (PCNA) type cultivars and their offspring revealed by size-exclusion chromatography. Journal of the Japanese Society for Horticultural Science,2005,74:437-443
    61. Ikegami A, Yonemori K, Sugiura A, Sato A, Yamada M. Segregation of astringency in F1 progenies derived from cross between pollination-constant, nonastringent persimmon cultivars. HortScience,2004,39:371-374
    62. Ingersoll J C, Rothenberg M, Liedl B E, Folkerts K, Garvin D, Hanson M R, Doyle J J, Mutschler M A. A novel anther-expressed Adh-homologous gene in Lycopersicon esculentum. Plant Molecular Biology,1994,26:1875-1891
    63. Jiang C Z, Gu J Y, Chopra S, Gu X, Peterson T. Ordered origin of the typical two-and three-repeat Myb genes. Gene,2004,326:13-22
    64. Kadowaki H I, Matsuoka M, Murai N, Harada K. Induction of two alcohol dehydrogenase polypeptides in rice roots during anaerobiosis. Plant Science, 1988,54:29-36
    65. Kajiura M. Persimmon cultivars and their improvement 2. Breeding Horticultural,1946,1:175-182
    66. Kanzaki S, Yonemori K, Sato A, Yamada M, Sugiura A. Analysis of the genetic relationships among pollination-constant and non-astringent (PCNA) cultivars of persimmon (Diospyros kaki Thunb.) from Japan and China using amplified fragment length polymorphism (AFLP). Journal of the Japanese Society for Horticultural Science,2000a,69:665-670
    67. Kanzaki S, Yonemori K, Sato A, Yamada M, Sugiura A. Evaluation of RFLP analysis for discriminating PCNA genetype in some persimmon cultivars. Journal of the Japanese Society for Horticultural Science,2000b,69:702-704
    68. Kanzaki S, Yonemori K, Sugiura A. Identification of molecular markers linked to the trait of natural astringency loss of Japanese persimmon (Diospyros kaki Thunb.) fruit. Journal of the American Society for Horticultural Science,2001, 126:51-55
    69. Kanzaki S, Yonemori K. Persimmon. Genome Mapping and Molecular Breeding in Plants,2007,4:353-358
    70. Kelley P M, Godfrey K, Lal S K, Alleman M. Characterization of the maize pyruvate decarboxylase gene. Plant Molecular Biology,1991,17:1259-1261
    71. Kitagawa H. Studies on the removal of the astringency and storage of Kaki (Oriental persimmons). VI. Reappearance of astringency in fruits previously treated in warm water for removal of the astringency. Journal of the Japanese Society for Horticultural Science,1968,38:202-206
    72. Lepiniec L, Debeaujon I, Routaboul J, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonids. Annual Review of Plant Biology, 2006,57:405-430
    73. Liu Y G, Chen Y L. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques,2007,43:649-656
    74. Liu Y G, Whittier R F. Thermal asymmertric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics,1995,25:674-681
    75. Lloyd'A M, Walbot V, Davis R W. Anthocyanin production in dicots activated by maize anthocyanin-specific regulators R and C1. Science,1992,258:1773-1775
    76. Longhurst T, Lee E, Hinde R, Brady C, Speirs J. Structure of the tomato Adh2 gene and Adh2 pseudogenes, and a study of Adh2 gene expression in fruit. Plant Molecular Biology,1994,26:1073-1084
    77. Ludwig S R, Habera L F, Dellaporta S L, Wessler S R. Lc, a member of the maize R gene family responsible for tissue specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proceedings of the National Academy of Sciences of the United States of America,1989,86:7092-7096
    78. Manning K. Isolation of a set of ripening-related genes from strawberry:their identification and possible relationship to fruit quality traits. Planta,1998, 205:622-631
    79. Matsuo T, Itoo S. A model experiment for deastringency of persimmon fruit with high CO2 treatment in vitro gelation of kaki-tannin by reacting with acetaldehyde. Agricultural and Biological Chemistry,1982,46:683-689
    80. Matsuo T, Itoo s, Ben-Arie R. A model experiment for elucidating the mechanism of astringency removal in persimmon fruit using respiratin inhibitors. Journal of the Japanese Society for Horticultural Science,1991,60:437-442
    81. Matsuo T, Itoo S. On mechanisms of removing astringency in persimmon fruits by carbon dioxide treatment I. Some properties of the two processes in the deastringency. Plant and Cell Physiology,1977,18:17-25
    82. Matsuo T, Shinohara J I, Itoo S. An improvement on removing astringency in persimmon fruits by carbon dioxide gas. Agr Biol Chem,1976,40:215-217
    83. Matton D P, Constabel P, Brisson N. Alcohol dehydrogenase gene expression in potato following elicitor and stress treatment. Plant Molecular Biology,1990, 14:775-783
    84. Meissner R C, Jin H L, Cominelli E, Denekamp M, Fuertes A, Greco R, Kranz H D, Penfield S, Petroni K, Urzainqui A, Martin C, Paz-Ares J, Smeekens S, Tonelli C, Weisshaar B, Baumann E, Klimyuk V, Marillonnet S, Patel K, Speulman E, Tissier A F, Bouchez D, Jones J J D, Pereira A, Wisman E. Bevan M. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell,1999,11:1827-1840
    85. Millar A A, Dennis E S. The alcohol dehydrogenase genes of cotton. Plant Molecular Biology,1996,31:897-904
    86. Millar A A, Olive M R, Dennis E S. The expression and anaerobic induction of alcohol dehydrogenase in cotton. Biochemical Genetics,1994,32:279-300
    87. Mol J, Grotewold E, Koes R. How genes paint flowers and seeds. Trends Plant Science,1998,3:212-217
    88. Morton B R, Gaut B S, Clegg M T. Evolution of alcohol dehydrogenase genes in the palm and grass families. Proceedings of the National Academy of Sciences of the United States of America,1996,93:11735-11739.
    89. Nakagawa T, Nakatsuka A, Yano K, Yasugahira S, Nakamura R, Sun N, Itai A, Suzuki T, Itamura H. Expressed sequence tags from persimmon at different developmental stages. Plant cell report,2008,27:931-938
    90. Nakamura R. Preliminary studies on the removal of astringency by freezing in Japanese persimmon. Journal of the Japanese Society for Horticultural Science, 1961,30:73-76
    91. Neer E J, Schmidt C J, Nambudripad R, Smith T F. The ancient regulatory-protein family of WD-repeat proteins. Nature,1994,371:297-300
    92. Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, and Lepiniec L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell,2000,12:1863-1878
    93. Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics,2003, 4:1-11
    94. Or E, Baybik J, Sadka A, Ogrodovitch A. Fermentative metabolism in grape berries:isolation and characterization of pyruvate decarboxylase cDNA and analysis of its expression throughout berry development. Plant Science,2000, 156:151-158
    95. Park K I, Choi J D, Hoshino A, Morita Y, and Lida S. An intragenic tandem duplication in a transcriptional regulatory gene for anthocyanin biosynthesis confers pale-colored flowers and seeds with fine spots in Ipomoea tricolor. Plant Journal,2004,38:840-849
    96. Paz-Ares J, Ghosal D, Weinland U, Peterson P A, Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. The European Molecular Biology Organization Journal,1987,6:3553-3558
    97. Pesis E, Aharen L, Benariie R. Role of acelaldehyde producuction in the removal of astringency from persimmon fruits under various modifided atmosphere. Journal of Food Scienc,1988,53:153-155
    98. Pesis E, Ben-Arie R. Involvement of acetaldehyde and ethanol accumulation during induced deastringency of persimmon fruits. Journal of Food Science. 1984,49:896-899.
    99. Pesis E, Levi A, Ben-Arie R. Deastringency of persimmon fruits by creating a modified atmosphere in polyethylene bags. Journal of Food Science,1986, 51:1014-1016
    100.Pesis E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biology and Technology,2005,37:1-19
    101.Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005,17:2966-2980
    102.Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, Koes R. Molecular analysis of the anthocyanin gene of petunia and its role in the evolution of flower color. Plant Cell,1999,11:1433-1444
    103.Rabinowicz P D, Braun E L, Wolfe A D, Bowen B, Grotewold E. Maize R2R3 Myb genes:sequence analysis reveals amplification in the higher plants. Genetics,1999,153:427-444
    104.Salvador A, Arnal L, Besada C, Larrea V, Quiles V, Munuera I. Physiological and structural changes during ripening and deastringency treatment of persimmon fruit cv. Rojo Brillante. Postharvest Biology and Technology,2007, 46:181-188
    105.Schwinn K, Venail J, Shang Y, Mackay S, AlmV, Butelli E, Oyama R, Bailey P, Davies K, Martin C. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell,2006, 18:831-851
    106.Sharma S B, Dixon R A. Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant Journal,2005, 44:62-75
    107. Simon M I, Strathmann M P, Gautam N. Diversity of G proteins in signal transduction. Science,1991,252:802-808
    108.Skadhauge B, Gruber MY, Thomsen K K, von Wettstein D. Leucocyanidin reductase activity and accumulation of proanthocyanidins in developing legume tissues. American Journal of Botany,1997,84:494-502
    109.Spelt C, Quattrocchio F, Mol J N M, Koes R. Anthocyaninl of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell,2000,12:1619-1632
    110.Stracke R, Werber M, and Weisshaar B. The R2R3-Myb gene family in Arabidopsis thaliana. Current Opinion in Plant Biology,2001,4:447-456
    111.Sugiura A, Harada H, Tomana T. Studies on the removability of astringency in Japanese persimmon fruits Ⅰ. "On-tree removal" of astringency by ethanol treatment (Part Ⅰ). Journal of the Japanese Society for Horticultural Science, 1975,44:265-272
    112.Sugiura A, Harada H, Tomana T. Studies on the removability of astringency in Japanese persimmon fruits Ⅱ. "On-tree removal" of astringency by ethanol treatment (Part Ⅱ). Journal of the Japanese Society for Horticultural Science, 1977,46:303-309
    113.Sugiura A, Taira S, Ryugo K, Tomana T. Effect of ethanol treatment on flesh darkening and polyphenoloxidase activity in Japanese persimmon, cv. Hiratanenashi. Journal of the Japanese Society for Food Science and Technology, 1985,32:586-589
    114.Sugiura A, Tomana T. Relationships of ethanol production by seeds of different types of Japanese persimmon and their tannin content. HortScience,1983, 8:319-321
    115.Sugiura A, Yonemori K, Harada H, Tomama T. Changes of ethanol and acetaldehyde contents in Japanese persimmon fruits and their relation to natural deastringency. Studies from Institution. Horticultural. Kyoto University,1979, 9:41-47
    116. Suzuki T, Someya S, Hu F, Tanokura M. Comparative study of catechin compositions in five Japanese persimmons (Diospyros kaki). Food Chemistry, 2005,93:149-152
    117.Tadege M, Kuhlemeier C. Aerobic fermentation during tobacco pollen development. Plant Molecular Biology,1997,35:343-354
    118.Taira S, Ono M, Matsumoto N. Reduction of persimmon astringency by complex formation between pectin and tannins. Postharvest Biology and Technology,1997,12:265-271
    119.Taira S, Ono M, Otsuki M. Effects of freezing rate on astringency reduction in persimmon during and after thawing. Postharvest Biology and Technology,1998, 14:317-324
    120.Taira S. Astringency in persimmon. Modern Methods of Plant Analysis,1999, 18:97-110
    121.Taira, S, Ono M, Otsuki M. Effects of freezing rate on astringency reduction in persimmon during and after thawing. Postharvest Biology and Technology,1998, 14:317-324
    122.Tanner G J, Francki K T, Abrahams S, Watson J M, Larkin P J, Ashton A R. Proanthocyanidin biosynthesis in plants:Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. Journal of Biological Chemistry,2003,278:31647-31656
    123.Toledo-OrtizG, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell,2003,15:1749-1770
    124.Torregrosa L, Pradal M, Souquet J M, Rambert M, Gunata Z, Tesniere C. Manipulation of VvAdh to investigate its function in grape berry development. Plant Science,2008,174:149-155
    125.Van Eldik G J,Ruiter R K, van Herpen M M A, Schrauwen J A M, Wullems G J. Induced ADH gene expression and enzyme activity in pollinated pistils of Solanum tuberosum. Sexual Plant Reproduction,1997,10:107-109
    126.Winkel-Shirley B. Biosynthesis of flavonoids and effect of stress. Current Opinion in Plant biology,2002,5:218-223
    127.Winkel-Shirley B. Flavonoid biosynthesis:A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology,2001, 126:485-493
    128.Xie D Y, Dixon R A. Proanthocyanidin biosynthesis-still more questions than answers? Phytochemistry,2005,66:2127-2144
    129.Xie D Y, Sharma S B, Paiva N L, Ferreira D, Dixon R A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 2003,299:396-399
    130.Xie D Y, Shashi B. Sharma S B, Dixon R A. Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Archives of Biochemistry and Biophysics,2004,422:91-102
    131.Yamada M, Sato A. Segregation for fruit astringency type in progenies derived from crosses of Nishimurawase'×pollination constant non-astringent genotypes in oriental persimmon (Diospyros kaki Thunb.). Scientia Horticulturae,2002a, 92:107-111
    132.Yamada M, Taira S, Ohtsuki M, Sato A, Iwanami H, Yakushiji H, Wang R, Yang Y, Li G Varietal differences in the ease of astringency removal by carbon dioxide gas and ethanol vapor treatments among oriental astringent persimmons of Japanese and Chinese origin. Scientia Horticulturae,2002b,94:63-72
    133.Yonemori K, Ikegami A, Kanzaki S, Sugiura A. Unique feature of tannin cell in fruit of pollination constant non-astringent type persimmon. Acta Horticulturae, 2003,601:31-46
    134.Yonemori K, Ikegami A, Kitajima A, Luo Z R, Kanzaki S, Yamada M, Yang Y, Wang R Z. Existence of several pollination conatant non-astringent type persimmon in China. Acta Horticulturae,2005,685:77-83
    135.Yonemori K, Matsushima J, Sugiura A. Difference in tannins of non-astringent and astringent type fruits of Japanese persimmon (Diospyros kaki). Journal of the Japanese Society for Horticultural Science,1983,52:135-144
    136.Yonemori K, Matsushima J. Chemical characteristics of tannins from nonastringent and astrigent type fruits of Japanese persimmon (Diospyros kaki). Journal of the Japanese Society for Horticultural Science,1984,53:121-126
    137.Yonemori K, Matsushima J. Morphological characteristics of tannin cells in Japanese persimmon fruit. Journal of the American Society for Horticulral Science,1987,112:812-817
    138.Yonemori K, Matsushima J. Property of development of the tannin cells in non-astrigent type fruits of Japanese persimmon (Diospyros kaki) and its relationship to natural deastrigency. Journal of the Japanese Society for Horticultural Science,1985,54:201-208
    139.Yonemori K, Oshida M, Sugiura A. Fine structure of tannin cells in fruit and callus tissues of persimmon. Acta Horticulturae,1997a,436:403-413
    140.Yonemori K, Sugiura A, Yamada M. Persimmon genetics and breeding. Plant Breeding Reviews,2000,19:191-225
    141.Yonemori K. Persimmon industry and research activities in Japan. Acta Horticulturae,1997b,436:21-32
    142.Zimmermann I, Heim M, Weisshaar B, Uhrig J. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant Journal,2004,40:22-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700