用户名: 密码: 验证码:
基于3-PG机理模型的杉木林碳固定及蒸散量模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究的目的是根据湖南会同杉木林生态系统国家野外观测研究站1990年1月-2005年12月的气象观测数据,确定3-PG模型的主要参数,并利用会同国家森林生态研究站第二代杉木人工林的长期定位观测数据运行模型;其次,估算贮碳量和固碳速率及其分配随林龄变化的趋势,并进行模型的逐步验证,为森林的可持续经营提供关键数据的参考;最后,估算此期间杉木林的月蒸散量和年蒸散量及其变化规律,并用水量平衡法计算的蒸散量对模拟估算结果进行验证。研究结果表明:3-PG模型能成功地估算叶面积指数(LAI)、树干生物量(Ws)、净初级生产量(NPP)、林分贮碳量随林龄变化的趋势以及碳的分配、月和年蒸散量等。模拟结果为:(1)会同杉木人工林林分、树干、根和叶的贮碳量随着林龄的增加而先增后减,林分和树干的贮碳量都是在林龄为41年时达到最大值(林分为184.02 tC·hm-2,树干为124.09 tC·hm-2),根和叶在林龄为44年时达到最大值(根为45.09 tC·hm-2,叶为13.04 tC·hm-2),凋落物贮碳量在模拟期间一直处于不断增加的趋势。树干对林分贮碳量贡献最大(约64.8%),其次是根(约23.5%)和叶(约8.7%),凋落物的贡献最小(约3%)。(2)3-PG模型估算的会同杉木林月蒸散量、年蒸散量与水量平衡法的相似,1月份的蒸散量最小,然后逐渐增大,7月份达到最大值,此后逐渐减少。全年月平均蒸散量为90.1mm,占全年月平均降水量(122.14mm)的72.12%。除了8月和9月份的蒸散量大于降水量,其余各月份的蒸散量均小于降水量。各年之间的会同杉木人工林年蒸散量差异不大,多年的年蒸散量均值为1049 mm,占年平均降水量(1350 mm)的77.7%。在降水量大的年份,蒸散系数比降水量小的年份小。
Based on meteorological data observed in Huitong National Forest Ecosystem Research station during 1990-2005, The objectives of this study are to first parameterize and validate the process-based 3-PG model using long-term field measurements from a Chinese fir plantation collected at the Huitong National Forest Ecosystem Research Station. Second, to determine the C storage and allocation capacity of different age sequences of stands using the 3-PG model in order to provide core data of forest C to use for sustainable forest management. Third, to estimate the monthly and annual evapotranspiration in a Chinese fir plantation. Results suggest that the model competently simulated leaf area index (LAI), stem biomass, net primary productivity (NPP), carbon storage, carbon allocation, monthly and yearly evapotranspiration. The results shows that:(1) An increasing trend in total biomass of C storage in stands up to the age of 41 years was observed (184.02 tC·hm-2 for stand,124.09 tC·hm-2 for stem) at which point the trend reversed. C storage capacity of roots and foliage increased to its highest value at 44 years (45.09 tC·hm-2 for root,13.04 tC·hm-2 for foliage) and then declined after this point, but C storage capacity of litterfall continued to increase as the stand aged. Stems had the highest proportion (approximately 64.8%) of C storage, followed by roots (approximately 23.5%) and foliage (approximately 8.7%). Litterfall had the lowest proportion (approximately 3%). (2) The monthly evapotranspiration was the lowest in January and then increased up to the highest in July, at which point the reverse trend occurred. The average monthly evapotranspiration was.90.1mm, accounting for 72.12% of the average monthly rainfall (122.14mm). Except in August and September, the other months had a higher rainfall than evapotranspiration. The annual evapotranspiration varied insignificantly among each year (933 mm for the lowest,1299 mm for the highest). The average annual evapotranspiration was 1049 mm, accounting for 77.7% of the average annual rainfall (1350 mm). The evapotranspiration had a smaller proportion in abundant rainfall years than that in the lower rainfall years.
引文
[1]Aber J D, Federer C A. A generalized, lumped-parameter model for photosynthesis, evapotranspiration and net primary production [J]. Oecologia,1992,92:463-474.
    [2]Aber J D, Ollinger S V, et al. Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition[J]. Ecological Modelling,1997, 101:61-78.
    [3]Aber J D, Ollinger S V, et al. Predicting the effects of climate change on water Yield and Forest Production in the Northeastern U.S. [J]. Climate Research,1995, 5:207-222.
    [4]Amarakoon D, Chen A, Mclean P. Estimating daytime latent heat flux and evapotranspiration in Jamaica[J]. Agricultural and Forest Meteorology,2000, 102:113-124.
    [5]Arneth A, Kelliher F M, McSeveny T M, et al. Net ecosystem productivity, net primary productivity and ecosystem carbon sequestration in a Pinus radiata plantation subject to soil water deficit[J]. Tree Physiology,1998,18:785-793.
    [6]Bartelink H H, Kramer K, Mohren G M J. Applicability of the radiation-use efficiency concept for simulating growth of forest stands[J]. Agricultural and Forest Meteorology,1997,88(4):169-179.
    [7]Battaglia M, and Sands P. Process-based productivity model and their application in forest management [J]. Forest Ecology and Management,1998,102:13-32.
    [8]Bossel H. TREEDYN3:Forest simulation model[J]. Ecological Modelling,1996, 90:187-227.
    [9]Bristow K L, Campbell G S. On the relationship between incoming solar radiation and daily maximum and minimum temperature[J]. Agricultural and Forest Meteorology,1984,31:159-166.
    [10]Bruce D, Wensel L C. Modelling forest growth:approaches, definitions and problems, in proceeding of IUFRO conference[J]. Forest growth modeling and prediction,1987, (1):1-8.
    [11]Cheng W, Sims D A, Luo Q, Coleman JS, et al. Photosynthesis, respiration, and net primary production of sunflower stands in ambient and elevated atmospheric CO2 concentrations:an invariant NPP:GPP ratio?[J]. Global Change Biology, 2000,6:931-941.
    [12]Clutter J L, Fotrteons J C, et al. Timber management, a quantitative approach[M]. New York:Wiley,1983.
    [13]Clutter J L. Compatible growth and yield models for loblolly pine[J]. Forest Science,1963,9(3):354-371.
    [14]Cooper D I, Eichinger W E, Kao J, et al. Spatial and temporal properties of water vapor and latent energy flux over a riparian canopy[J]. Agricultural and Forest Meteorology,2000,105:161-183.
    [15]Coops N C, Waring R H, Landsberg J J. Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy productivity[J]. Forest Ecology and Management,1998,104:113-127.
    [16]Coops N C, Waring R H. The use of multiscale remote sensing imagery to derive regional estimates of forest growth capacity using 3-PGS[J]. Remote Sensing of Environment,2001,75:324-334.
    [17]Coops N C, Waring R H, Moncrieff J. Estimating mean monthly incident solar radiation on horizontal and inclined slopes from mean monthly temperature extremes[.J]. International Journal of Biometeorology,2000,44:201-211.
    [18]Dale V H, Doyle T W, Shugart H H. A Comparison of tree growth models[J] Ecological Modeling,1985,29:145-169.
    [19]Delucia E H, Drake J E, Thomas R B, et al. Forest carbon use efficiency:is respiration a constant fraction of gross primary production? [J] Global Change Biology,2007,13:1157-1167.
    [20]Dewar R C, Medlyn B E, McMurtie R E. Acclimation of the respiration/photosynthcsis ratio to temperature:insights from a model[J]. Global Change Biology,1999,5:615-622.
    [21]Dilley A C. On the computer calculation of vapor pressure and specific humidity gradients from psychometric data [J]. Application Meteorology.1968,7:717-719.
    [22]Ding Y X, Tian Y. A Testing Simulation with FORTOON on Long-term Productivity of Chinese Fir Plantations[J]. Forestry Studies in China,1999,1 (2): 33-41.
    [23]Dixon R K, Brown S, Houghton R A. Carbon Pools and Flux of Global Forest Ecosystems[J]. Science,1994,262:185-190.
    [24]Dubayah R C. Modeling a solar radiation topo-climatology for the Rio Grande River basin[J]. Journal of Vegetation Science,1994,5:627-640.
    [25]Dye P J, Jacobs S, Drew D. Verification of 3-PG growth and water-use predictions in twelve Eucalyptus plantation stands in Zululand, South Africa[J]. Forest Ecology and Management,2004,193:197-218.
    [26]Dye P J. Modelling growth and water use in four Pinus patula stands with the 3-PG model[J]. Southern African Forestry Journal,2001,191:53-63.
    [27]Ek A R, Monserud R A. FOREST:A computer model for the growth and reproduction of mixed species forest stands[R]. Research Report A2365, College of Agricultural and Life Sciences, Madison:University of Wisconsin-Madison, 1974.
    [28]Fassnacht K S, Gower S T, Norman J M, et al. Acomparison of optical and direct methods for estimating foliage surface area index in forests[J]. Agricultural Forest Meterology,1994,71:183-207.
    [29]Friend A D, Shugart H H. A physiologybased gap model of forest dynamics[J]. Ecology,1993,74(3):792-797.
    [30]Gholz H L. Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest[J]. Ecology.1982, 63:469-481.
    [31]Gifford R M. Plant respiration in productivity models:conceptualization, representation and issue for global terrestrial carbon-cycle research[J]. Functional Plant Biology,2003,30:171-186.
    [32]Gifford R M. Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature:long-term vs. short-term distinctions for modelling[J]. Global Change Biology,1995,1:385-396.
    [33]Gower S T, Vogt K A, Grier C C. Carbon dynamics of Rocky Mountain Douglas-fir:influence of water and nutrient availability[J]. Ecological Monographs,1992,62(1):43-65.
    [34]Grace J C, Cook D A, Lane P M. Modeling canopy photosynthesis in Pinus radiata stands[J]. New Zealand Journal of Forestry Science,1987,17:210-228.
    [35]Grace J C, Jarvis P G, Norman J M. Modeling the interception of solar radiant energy in intensively managed stands[J]. New Zealand Journal of Forestry Science, 1987,17:193-209.
    [36]Gregoire T G, Valentine H T, Furnival G M. Sampling methods to estimate foliage and other characteristics of individual trees [J]. Ecology,1995, 76(4):1181-1194.
    [37]Gregoire T G, Valentine H T. Sampling methods to estimate stem length and surface area of tropical tree species[J]. Forest Ecology and Management,1996, 83:229-235.
    [38]Grie C, Waring R H. Conifer foliage mass related to sapwood area[J]. Forest Science,1974,20:205-206.
    [39]Grier C C, Running S W. Leaf area of mature northwestern coniferous forests: relation to site water balance[J]. Ecology,1977,58:893-899.
    [40]Haxeltine A, Prentice I C, et al. A coupled carbon and water flux model to predict vegetation structure[J]. Journal of Vegetation Science,1996,7:651-666.
    [41]Heep T E. Using microcomputers to narrow the gap between research and practitioner:A case history of the TVA yield program [J]. USDA General Technical Report,1987,120,976-983.
    [42]HingSton F J, GalBraith J H, DimMock G M. Application of the process-based model BIOMASS to Eucalyptus globulus subsp. globulus plantations on ex-farmland in south western australia. I. Water use by trees and assessing risk of losses due to drought[J]. Forest ecology and management,1998,106:141-156.
    [43]Hool J N. A dynamic programming-Markov chain approach to forest production control[J]. Forest Science Monographs,1966,12:1-26.
    [44]Jenkinson D S, Hart P B S, et al. Modelling the Turnover of Organic Matter in Long-Term Experiments at Rothamsted[J]. INTERCOL Bulletin 1987,15:1-8.
    [45]Kickert R N, Tonella G, et al. Predictive modeling of effects under global change[J]. Environmental Pollution,1999,100(3):87-132.
    [46]Kimmins J P, Sollins. Forest ecology[M]. New York:Macmillan,1994, p 202-220.
    [47]Kimmins J P. Modeling the sustainability of forest production and yield for a changing and uncertain future [J]. Forest Chronicle,1990,66:271-280.
    [48]Kira T, Shinozaki K, Shinozaki K. Intra-specific competition among higher plants I. Competition-yield-density interrelationship in regularly dispersed populations[J]. Journal of Institute of Poly technics Osaka City University D,1953, 4:1-16.
    [49]Kirschbaum M U F. CenW, a forest growth model with linked carbon, energy, nutrient and water cycles[J]. Ecological Modelling,1999,11(8):17-59.
    [50]Kramer K. Modelling comparison to evaluate the importance of phenology for the effects of climate change on growth of temperate-zone deciduous trees[J]. Climate Research,1995,5(2):119-130.
    [51]Kramer P J. Carbon dioxide concentration, photosynthesis, and dry matter production[J]. BioScience,1981,31:29-33.
    [52]Kurt J, Lisa S, et al. Process Models as Tools in Forestry Research and Management[J]. Forest Science,2001,47(1):2-8.
    [53]Lai C T, Katul G, Butnor J, et al. Modelling the limits on the response of net carbon exchange to fertilization in a southeastern pine forest[J]. Plant, Cell and Environment,2002,24:1095-1119.
    [54]Landsberg J J, Coops N C. Modeling forest productivity across large areas and long periods[J]. Natural Resource Modeling,1999,12(4):383-411.
    [55]Landsberg J J, Gower S T. Applications of physiological ecology to forest management[M]. Academic Press, San Diego.1997, p354.
    [56]Landsberg J J, Johnson K, et al. Applying 3-PG, a simple process-based model designed to produce practical results, to data from Loblolly Pine experiments [J]. Forest Science,2001,47:43-51.
    [57]Landsberg J J, Waring R H. A generalised model of forest productivity using simplitied concepts of radiation-use efficiency, carbon balance and partitioning [J]. Forest Ecology and Management,1997,95:209-228.
    [58]Landsberg J J, Waring RH, Coops N C. Performance of the forest productivity model 3-PG applied to a wide range of forest types[J]. Forest Ecology and Management,2003,172:199-214.
    [59]Landsberg J J. Physiological Ecology of Forest Production[M]. Academic Press, 1986, Sydney, Australia.
    [60]Landsberg J, Johnson K, Albaugh T, et al. Applying 3-PG, a simple process-based model designed to produce practical results, to data from Loblolly Pine experiments [J]. Forest Science,2001,47:43-51.
    [61]Larcher W. Physiological Plant Ecology[M]. Springer-Verlag, Berlin, Heidlberg and New York,1980.
    [62]Law B E, Ryan M G, Anthoni P M. Seasonal and annual respiration of a ponderosa pine ecosystem[J]. Global Change Biology,1999,5:169-182.
    [63]Law B E, Williams M, Anthoni P M, Baldocchi D D, et al. Measuring and modelling seasonal variation of carbon dioxide and water vapour exchange of a Pinus ponderosa forest subject to soil water deficit[J]. Global Change Biology, 2000,6:613-630.
    [64]MacKinney A L, Schumacher F X, Chaiken L E. Construction of yield tables for normal loblolly pine stands[J]. Agricultural Resource,1937,54:531-545.
    [65]Maier C A, Albaugh T J, Allen H L, et al. Respiratory carbon use and carbon storage in mid-rotation loblolly pine (Pinus taeda L.) plantations:the effect of site resources on the stand carbon balance[J]. Global Change Biology,2004,10: 1335-1350.
    [66]Makela A, Landsberg J, et al.. Process-based models for forest ecosystem management:current state of the art and challenges for practical implementation[J]. Tree Physiology,2000,20:289-298.
    [67]Makela A, Valentine H T. The ratio of NPP to GPP:evidence of change over the course of stand development[J]. Tree Physiology,2001,21:1015-1030.
    [68]Malhi Y, Baldocchi D, Jarvis P G. The carbon balance of tropical, temperate and boreal forests[J]. Plant, Cell and Environment,1999,22:715-740.
    [69]McMuitrie R E, Leuning R, Thompson W A, et al. A model of canopy photosynthesis and water use incorporating a mechanistic formulation of leaf CO2 exchange[J]. Forest ecology and management,1992,52:261-278.
    [70]McMurtrie R.E, Rook D A, Kelliher F M. Modeling the yield of Pinus radiata on a site limited by water and nitrogen[J]. Forest ecology and management,1990, 30:381-413.
    [71]McNaughton K G, Jarvis P G. Predicting effects of vegetation changes on transpiration and evaporation[A]. In:Kozlowski T T. Ed. Water Deficits and Plant Growth[C]. Academic, London,1983,7:1-47.
    [72]Medlyn B E, Dewar R C. Comment on the article by R.H.Waring, J.J.Landsberg and M.Williams relating net primary production to gross primary production[J]. Tree Physiology,1999,19:137-138.
    [73]Mladen T. Single-layer evapotranspiration model with variable canopy resistance[J]. Journal of Irrigation and Drainage Engineering,1999,125(5): 235-245.
    [74]Mohren G M J, Bartelink H H, et al. A process-based growth model (ForGro) for analysis of forest dynamics in relation to environmental factors[J]. In:Broekmeyer M E A, et al. European Forest Reserves. Proceedings of the European Forest Reserves Workshop,6-8 May 1992, The Netherlands. Pudoc-DLO, Wageningen, The Netherlands.1993,273-280.
    [75]Mohren G M J, Goldewijk K C G M. CO2Fix:a dynamic model of the CO2 fixation in forest stands. Rapport 624, De Dorschkamp, Research Institute of Forestry and Urban Ecology, Wageningen,1990, p96.
    [76]Mohren G M J. Simulation of forest growth, applied to Douglas fir stands in the Netherlands. PhD, Wageningen, the Netherlands.1987, p184.
    [77]Monteith J L. Solar radiation and productivity in tropical ecosystems.In Productivity in tropical ecosystems.1970. Opening paper read at IBPLUNESCE Meeting on Productivity of Tropical Ecosystems. Makerce University. Uganda.
    [78]Moorhead D L, Reynolds J F. A General Model of Litter Decomposition in the Northern Chihuahuan Desert[J]. Ecological Modelling,1991,59:197-219.
    [79]Morris J D. Validating Plantation Water Use Predications from the 3-PG Forest Growth Model[J]. International congress on modeling and simulation. Canberra ACT,2001,10-13.
    [80]Odum E P. The strategy of ecosystem development [J]. Japanese Journal of Ecology,1962,12:1-8.
    [81]Ogink-Hendriks M J. Modelling surface conductance and transpiration of an oak forest in the Netherlands[J]. Agricultural and Forest Meteorology,1995,74: 99-118.
    [82]Olibrich B. The vexitication of the heat pulse velocity technique for estimating sap tlow in Eucalyptus grandis[J]. Canada Forest Research,1991,21:836-841.
    [83]Olson J S, Watts J A, Allison L J. Carbon in live vegetation of major world ecosystems. Report or NL-5862. OakRidge National Laboratory, OakRidge, Tenn. 1983,15-25.
    [84]Olson J S. Analogue computer models for movement of nuclides through ecosystems [J]. In:Schuitv V, Klement A W. Radio ecology[C]. New York: Reinhold,1963.121-125.
    [85]Parton W J, Seurlock J M, et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global Biogeochemical cycles,1993,7:785-809.
    [86]Peng C H. Growth and yield models for uneven-aged stands:past, present and future[J]. Forest Ecology and Manag,2000b,132:259-279.
    [87]Peng C H, Liu J X, Dang Q L, et al. TRIPLEX:a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics[J]. Ecological Modelling,2002,153:1-22.
    [88]Peng C H. Understanding the role of forest simulation models in sustainable forest management J]. Environmental impact assessment,2000a,20:481-501.
    [89]Peter J D. Modeling growth and water use in four Pinus patulastands with the 3-PG model[J]. Southern African Forestry Journal,2001,191:53-62.
    [90]Peter Sands.3-PGpjs—a User-Friendly Interface to 3-PG, the Landsberg and Waring Model of Forest Productivity. Technical Report, No.29, Edition 2.2001, 1-24.
    [91]Pierce L L and Running S W. Rapid estimation of coniferous forest leaf area index using aportable integrating radio meter[J]. Ecology.1988,69:1726-1767.
    [92]Prentice I C, Cramer C W, Harrison S P, et al. A global biome model based on plant physiology and dominance, soil properties and climate[J]. Biogeography, 1992,19:117-134.
    [93]Pretxsch H. Konaeption, Konstruktion von Wuchsmodellen filer Rein and Minchbestaende[M]. Forstliche Forschhungberichte Muenchen,1991, p115.
    [94]Raschke K. Movements of stomata[J]. Encyclopedia of Plant Physiology Springer-Verlag. Berlin,1979,7:15-29.
    [95]Reed D D, Cattelino P J, et al. Above- and below-ground biomass of pre-competitive red pine in northern Michigan[J]. Forest Research,1994,25: 1064-1069.
    [96]Richards G P, Evans D W. CAMFor User Manual v 3.35. National Carbon Accounting System Technical Report No.26. Australian Greenhouse Office, Canberra,2000a,47pp.
    [97]Sands P J, Landsberg J J. Parameterisation of 3-PG for plantation grown Eucalyptus globulus[J]. Forest Ecology and Management,2002,163:273-292.
    [98]Schulze E. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil[J]. Annual Review of Plant Physiology,1986, 37:247-274.
    [99]Shinozaki k, Hozumi K, Kira T. A quantitative analysis of plant form-the pipe model theory Ⅰ. Basic analysis[J], Japanese Journal of Ecology,1964a, 14:97-105.
    [100]Shinozaki k, Hozumi K, Kira T. A quantitative analysis of plant form-the pipe model theory Ⅱ. Further evidence of the theory and its application in forest ecology[J]. Japanese Journal of Ecology,1964b,14:133-139.
    [101]Shugart H H, Smith T M, et al. The application of individual-based simulation models for assessing the effects of global change[J]. Annual Review of Ecology and Systematics,1992,23:15-38.
    [102]Shugart H H. A theory of forest dynamics:the ecological implications of forest succession models[M]. New York:Springer Verlag,1984.
    [103]Shugart H H. Forest succession models[J]. Biological science,1980, 30:308-313.
    [104]Stape J L, Ryan M G, Binkley D. Testing the utility of the 3-PG model for growth of Eucalyptus grandis×urophylla with natural and manipulated supplies of water and nutrients[J]. Forest Ecology and Management,2004,193:219-234.
    [105]Stape J L, Ryan M G, Binkley D. Testing the utility of the 3-PG model for growth of Eucalyptus grandis×urophylla with natural and manipulated supplies of water and nutrients[J]. Forest Ecology and Management,2004,193:219-234.
    [106]Tadaki Y. Biomass of forests with special reference to the leaf biomass of forest in Japan[J]. Japanese Forest,1976,8:416-423.
    [107]Thomas D S, Eamus D. The influence of pre-dawn leaf water potential on stomatal responses to atmospheric water content at constant Ci and on stem hydraulic conductance and foliar ABA concentrations[J]. Journal of Experimental Botany,1999,50:243-251.
    [108]Tjoelker M G, Oleksyn J, Reich P B. Acclimation of respiration to temperature and CO2 in seedling of boreal tree species in relation to plant size and relative growth rate[J]. Global Change Biology,1999,49:679-691.
    [109]Valentine H. A Carbon-balance Model of Stand Growth:a Derivation Employing Pipe-Model Theory and the Self-thinning Rule[J]. Annals of Botany 1988,62:389-396.
    [110]Valentine H. Tree growth models:Derivations employing the pipe-model theory[J]. Journal of Theoretical Biology 1985,117:579-585.
    [111]Voet H, Mohren G M J, et al. An uncertainty analysis of the process-based growth model FORGRO. Contrasts between biologically-based process models and management-oriented growth and yield models[J]. Forest Ecology and Management,1994,69:157-166.
    [112]Wang Y P, Jarvis P G, et al. PAR absorption and its relation to aboveground dry-matter production of Sitka spruce[J]. Applied Ecology,1991,28:547-560.
    [113]Wang Y P, Jarvis P G. Description and validation of an array model-MAESTRO[J]. Agricultural and forest meteorology,1990a,51:257-280.
    [114]Wang Y P, Jarvis P G. Influence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce:application of a model (MAESTRO)[J]. Tree Physiology,1990b,7:297-316.
    [115]Waring R H, Landsberg J J, Williams M. Net primary production of forests:a constant fraction of gross primary production?[J] Tree Physiology,1998,18: 129-134.
    [116]Waring R H, Landsberg J J, Williams M. Net primary production of forests:a constant fraction of gross primary production?[J]. Tree Physiology,1998,18: 129-134.
    [117]Waring R H. Application of the pipe model theory to predict canopy leaf area[J]. Forest Resource,1982,12:556-560.
    [118]Whitehead D, Hall G M J, Walcroft A S, Brown K J, et al. Analysis of the growth of rimu (Dacrydium cupressinum) in South Westland, New Zealand, using process-based simulation models [J]. International Journal of Biometeorology, 2002,46(2):66-75.
    [119]Whitehead D, Leathwick J R, Walcroft A S. Modelling annual carbon uptake for the indigenous forests of New Zealand[J]. Forest Science,2000,47:9-19.
    [120]Woodwell G M, Whittaker R H, Reiners W A, et al. The biota and the world carbon budget[J]. Science,1978,199:141-146.
    [121]Wykoff W R, Grkston N L, Stage A R. User's Guide to the stand prognosis model[J]. USDA General Technical Report,1982,133:1-112.
    [122]Yadvinder M, John G. Tropical Forests and Atmospheric Carbon Dioxide[J]. Tree,2000,15 (8):332-337.
    [123]Yoda K, Kira T, Ogawa H et al. Self-thinning in overcrowded pure stands under cultivated and natural conditions[J]. Biol Osaya City Univ,1963,14:107-129.
    [124]http://eco.wiz.unikassel.de/ecobas.html
    [125]http://www.ahly.gov.cn/aams/kjyd/mgf.html
    [126]陈昌雄.福建杉木一般产区实生林标准收获表的编制研究[J].福建林业科技,2004,31(4):1-4.。
    [127]陈晨,郭芳,黄家荣等.杉木人工林直径分布BP模型的研究[J].河南农业大学学报,2005,39(4):390-393.
    [128]陈绘画,王于荣等.杉木人工林二元立木材积动态模型的研究[J].浙江林业科技,1996,16(3):31-37.
    [129]陈信旺.杉木人工林最优经营密度模型的研究[J].林业勘察设计,2006,1:7-11.
    [130]程光明.杉木人工林材积生长率表编制的研究[J].福建林业科技,2006,33(3):56-59.
    [131]邓立斌,李际平.基于人工神经网络的杉木可变密度蓄积量收获预估模型[J].西北林学院学报,2002,17(4):87-89.
    [132]段爱国,张建国,何彩云,童书振.杉木人工林生物量变化规律的研究[J].林业科学研究,2005,18(2):125-132.
    [133]段爱国,张建国,童书振.应用R-分布模拟杉木人工林林分断面积累积分布的研究[J].北京林业大学学报,2006,28(3):86-94.
    [134]段爱国,张建国等.6种生长方程在杉木人工林林分直径结构上的应用[J].林业科学研究,2003,16(4):423-429.
    [135]段爱国,张建国等.杉木人工林林分直径结构动态变化及其密度效应的研究[J].林业 科学研究,2004,17(2):178-184.
    [136]段卫明,汪昌树等.杉木人工林标准蓄积量收获模型[J].林业科技开发,1994b,4:13-16.
    [137]段卫明.王家麟.杉木人工林一元立木材积表模型的研究[J].江西林业科技,1994b,2:35-36.
    [138]段卫明,王家麟.永新县杉木人工林二元立木材积表模型的研究[J].江西林业科技,1994a,2:26-35.
    [139]方晰,田大伦.杉木人工林C库与C吸存的动态研究.广西植物,2006,26(5):516-522.
    [140]方精云等.日本落叶松模拟种群的生长与密度的关系[J].植物学报,1991,33(12):949-957.
    [141]方奇.杉木连栽对土壤肥力及杉木生长的影响.林业科学,1987,23(4):389-397.
    [142]方晰,田大伦等.第二代杉木中幼林生态系统碳动态与碳平衡[J].中南林学院学报,2002,22(1):1-6.
    [143]龚垒.树木的光合作用与物质生产.1987,北京科学出版社.
    [144]何东进,洪伟等.杉木不同造林密度生长预测模型的研究[J].江西农业大学学报,1999,21(1):107-111.
    [145]何宗明,林思祖.杉木人工林自然生长模型的研究[J].福建林学院学报,1997,17(3):231-234.
    [146]洪伟,蓝斌.杉木人工林断面积收获模型建模方法研究[J].福建林业科技,1997,24(1):1-4.
    [147]洪伟,吴承祯.杉木人工林气候生产潜力及其地理分布模型的研究[J].武夷科学,1995,12:1-7.
    [148]胡宗庆.闽北杉木人工林经验收获表编制及应用[J].福建林学院学报,2004,24(3):219-223.。
    [149]花利忠等.桉树人工林3PG模型[J].福建林学院学报,2004,24(2):140-143.
    [150]黄承标,李信贤.广西龙胜县里骆林场杉木人工林生态系统的水量结构、分配与平衡[J].广西植物,1994,1(2):24-28.
    [151]惠刚盈,盛炜彤.Sloboda的树高生长模型及其在杉木人工林中的应用[J].林业科学研究,1996,9(1):37-40.
    [152]惠刚盈,盛炜彤等.杉木人工林收获模型系统的研究[J].林业科学研究,1994,7(4):353-360.
    [153]江希钿,蔡丽娟等.杉木人工林可变密度收获表的编制[J].福建林学院学报,1997, 17(1):84-87.
    [154]江希钿,温素平等.杉木人工林可变密度的全林分模型及其应用研究[J].福建林业科技,2000,27(2):22-26.
    [155]江希钿,温素平等.杉木人工林直径分布收获预估模型的研究[J].中南林业调查规划,1997,16(3):19-23.
    [156]江希钿,林纪建.均匀设计实验法在建立优势木高预估模型中的应用[J].中南林业调查规划,1994,1:31-35.
    [157]江希钿.用主成份分析构造竞争指标并建立单木生长模型[J].福建林学院学报,1993,13(2):129-133.
    [158]姜红,刘志辉,唐舰等.遥感技术在蒸发(散)量估算上的研究进展[J].水土保持应用技术,2006,3:37-40.
    [159]康文星,田大伦,文仕知等.杉木人工林水量平衡和蒸散的研究[J].植物生态学与地植物学学报,1992a,16(2):187-196.
    [160]康文星,田大伦,文仕知等.杉木人工林蒸散规律的研究及乱流扩散法应用的探讨[J].植物生态与地植物学报,1992b,16(4):293-300.
    [161]康文星.杉木人工林蒸发散及能量消耗规律的研究[J].中南林学院学报,1993,13(1):74-80.
    [162]雷加富.中国森林资源[M].北京:中国林业出版社,2005.172.
    [163]李日凤.林分密度研究评述—关于3/2法则理论[J].林业科学研究,1995,8(1):25-32.
    [164]刘景芳,童书振.杉木人工林生长过程表编制的研究[J].林业科学研究,1995,8(2):164-169.
    [165]刘景芳等.编制杉木林分密度管理图研究报告[J].林业科学,1980,16(4):241-251.
    [166]刘君然.杉木人工林标准表及生长过程表编制的研究[J].中南林业调查规划,1992,3:17-21.
    [167]刘煊章,康文星,文仕知.杉木人工林林冠层热量平衡的研究[A].见:刘煊章主编.森林生态系统定位研究[C].北京:中国林业出版社.1993.75-81.
    [168]刘煊章,项文化,康文星,等.杉木人工林生态系统生物量的动态格局[A].见:刘煊章主编.森林生态系统定位研究[C].北京:中国林业出版社,1993.18-22.
    [169]罗天祥,温远光.广西杉木人工林生产力水热优化模型[J].自然资源学报,1996,11(1):56-66.
    [170]马钦彦,刘胜,刘志刚.树形管道模型原理[J].北京林业大学学报,1991,13(3):84-92.
    [171]马祥庆,刘爱琴等.不同代数杉木林养分积累和分配的比较研究[J].应用生态学报, 2000,11(4):501-506.
    [172]孟宪宇,张弘.闽北杉木人工林单木模型[J].北京林业大学学报,1996,18(2):1-8.
    [173]潘维俦,田大伦,谌小勇等.亚热带杉木人工林生态系统中的水文学过程和养分过程[J].中南林学院学报,1989,9(增刊):1-9.
    [174]申双和,周英.国外森林蒸散的测定、计算与模拟[J].中国农业气象,1991,12(1):51-55.
    [175]唐守正.同龄纯林自然稀疏规律的研究[J].林业科学,1993,29(3):235-241.
    [176]田大伦,谌小勇,康文星,赵坤.杉木林生态系统凋落物分解量及养分释放规律[A].见:周晓峰主编.中国森林生态系统定位研究[C].哈尔滨:东北林业大学出版社.1994.64-69.
    [177]田大伦,康文星.杉木人工林对水循环的调节作用[A].见:刘煊章.森林生态系统定位研究[C].北京:中国林业出版社,1993:203-208.
    [178]田大伦,潘维俦,张昌剑,雷志星.杉木人工林生态系统生物产量的结构特征[A].见:刘煊章主编.森林生态系统定位研究[C].北京:中国林业出版社,1993.3-9.
    [179]田大伦.杉木林生态系统功能过程[M].北京:科学出版社,2005:37-38.
    [180]田大伦等.杉木林生态系统认为干扰爱的水文效应研究[A].刘煊章主编.森林生态系统定位研究[C].北京:中国林业出版社,1993,p187-194.
    [181]王安志,裴铁璠.森林蒸散测算方法研究进展与展望[J].应用生态学报,2001,12(6):933-937.
    [182]王炳忠主编.太阳辐射能的测量与标准.北京:科学出版社,1988.
    [183]吴承祯,洪伟.杉木人工林胸径的Weibull分布及其最优拟合研究[J].江西农业大学学报,1998b,20(1):86-91.
    [184]吴承祯,洪伟.杉木人工林直径结构模型的研究[J].福建林学院学报,1998a,18(2):110-113.
    [185]吴承祯,洪伟.杉木人工林自然稀疏规律的研究因[J].林业科学,2000,36(4):97-101.
    [186]吴承祯,洪伟.杉木生长的起伏型时间序列模拟研究[J].应用生态学报,2001,12(5):659-662.
    [187]吴力立,董家文.林内蒸发量的研究[J].南京林业大学学报,1999,23(3):55-59.
    [188]吴晓芙,胡曰利.林木生长与养分动态模型研究Ⅰ.杉木直径和高生长方程[J].中南林学院学报,1999a,19(1):1-8.
    [189]吴晓芙,胡曰利.林木生长与养分动态模型研究Ⅱ.杉木蓄积生长方程[J].中南林学院学报,1999b,19(1):9-16.
    [190]吴晓芙,胡曰利.林木生长与养分动态模型研究Ⅲ.生长方程的假设与前提[J].中南 林学院学报,1999c,19(2):1-10.
    [191]吴晓芙,胡曰利.林木生长与养分动态模型研究Ⅳ.杉木林分断面积方程[J].中南林学院学报,1999d,3(3):256-262.
    [192]吴晓芙,胡曰利.林木生长与养分动态模型研究Ⅴ.杉木林分断面积方程[J].中南林学院学报,1999e,19(4):1-7.
    [193]吴晓芙,胡日利.林木生长与养分动态模型研究Ⅵ.杉木胸高形数与径高比[J].中南林学院学报,2000,20(1):1-6.
    [194]吴中伦.杉木[M].北京:中国林业出版社,1984:5-6.
    [195]席建超,张红旗,张志强.应用遥感数据反演针叶林有效叶面积指数研究[J].北京林业大学学报,2004,26(6):36-39.
    [196]肖文发等.森林能量利用与产量形成的生理生态基础[M].北京:中国林业出版社,1996.
    [197]熊文愈主编.森林学.北京:中国林业出版社,1959.
    [198]闫文德,田大伦等.速生阶段第二代杉木人工林生物地球化学循环动态[J].中南林学院学报,2002,22(3):20-24.
    [199]杨玉盛,陈光水,王义祥,等.格氏栲人工林和杉木人工林碳吸存与碳平衡[J].林业科学,2007,43(3):113-117.
    [200]姚东和,吕勇.基于人工神经网络的杉木竞争生长模型研究[J].中南林学院学报,2001,21(1):17-21.
    [201]叶代全.杉木人工林生长收获预估模型的研究[J].林业勘察设计,2006(2):1-4.
    [202]尹泰龙.林分密度控制图的编制与应用[J].林业科学研究,1978,3:1-11.
    [203]余雪标等.不同连栽代次按树人工林的养分循环[J1.热带作物学报。1999,20(3):60-66.
    [204]张惠光.杉木人工林直径分布模型[J].福建林学院学报,2004,24(4):335-339.
    [205]章允清.卫闽林场杉木人工林经验收获表的研制[J].福建林业科技,2006,33(3):47-52.
    [206]周国逸,潘维畴.森林生态系统蒸发散计算方法的研究[J].中南林学院学报,1988,8(1):22-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700