用户名: 密码: 验证码:
氧化固醇结合蛋白家族相互作用蛋白组的鉴定和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一类含有与氧化固醇结合蛋白(OSBP)相关的配体结合域的蛋白家族已经在真核生物中被鉴定出来,这些蛋白,被命名为OSBP相关蛋白(OSBP-related proteins (ORPs))或者OSBP样蛋白(OSBP-like proteins(OSBPL))。对酿酒酵母中的ORPs研究结果表明这些蛋白在固醇的细胞内非囊泡运输、高尔基体上的分泌型小泡运输以及细胞极性的建立中起作用。对哺乳动物的ORPs功能研究显示ORPs在有很多方面都起作用:固醇和鞘磷脂代谢的整合,固醇运输,中性脂代谢的调节,微管依赖性内涵体/溶酶体运动的调控以及信号级联的调节。然而,对ORPs参与上述功能的机制的理解,尚未明了。在本研究中,我们构建了十二个人类ORPs基因的诱饵载体,利用这此诱饵载体筛选了人胚肾cDNA文库和来源于多种成人组织的Univerval文库,筛选出的与ORPs相互作用的蛋白质,功能大致涉及到以下方面:细胞信号传导、囊泡运输、脂代谢、细胞骨架调节蛋白,糖代谢,离子转运,及血液凝集等。我们选择了相关蛋白进行了详尽地功能研究。
     通过GST-Pull down, Co-IP实验确证了ORP8与核孔复合体蛋白NUP62物理结合后。我们发现,在人类肝癌细胞系Huh7, NUP62参与了过表达ORP8对甾醇调控元件结合蛋白(SREBPs)核内含量的下调;腺病毒介导小鼠肝脏的ORP8过表达降低导致血浆和肝组织中胆固醇,磷脂和甘油三酯的下降(在血浆中分别为-34%,-26%,-37%,在肝组织中分别为-40%,-12%,-24%),这种下降与核内nSREBPs的下降一致。在Huh-7细胞中,过表达ORP8导致核内SREBPs的降低,SREBP-2靶基因mRNA的表达下降和胆固醇合成减少,而沉默ORP8增加SREBP-2靶基因mRNA的表达。这些实验揭示了ORP8是一个生物体脂质平衡新的调节者。
     我们证明了ORP11与ORP9形成二聚体。ORP11缺乏FFAT模体或其它ER定位信号,通过产生的亲和纯化抗体,我们发现该这新蛋白的组织和细胞型特异表达模式,并证明了它在细胞中分布于高尔基体和晚期内体膜之间。我们分析了ORP11膜定位的决定因素,表明ORP9是ORP11定位到高尔基体的一个决定因素。过表达ORP9招募过表达的EGFP-ORP11到内质网和高尔基体上,沉默ORP9抑制了内源性ORP11在高尔基体上的定位。ORP9与ORP11可能形成二聚体作为一个脂质的感受器和转运子。
     我们还进一步研究了内质网膜上三磷脂肌醇(IP3)受体ITPR1与ORP4之间的相互作用,通过Co-IP,双分子荧光互补(Bimolecular FluorescenceComplementation, BiFC)实验确证了这对相互作用。ITPR1是细胞内内质网上的钙离子通道,在人宫颈癌上皮细胞系HeLa, ORP4沉默后细胞质中[Ca2+]在Histamine的刺激下峰值下降,表明细胞质钙含量降低。初步实验显示ORP4干扰增加细胞在毒胡萝卜素诱导后的凋亡率。
Protein families characterized by a ligand binding domain related to that of oxysterol binding protein (OSBP) have been identified in eukaryotic species from yeast to humans. These proteins, designated OSBP-related (ORPs) or OSBP-likeproteins (OSBPL), have been implicated in various cellular functions. Data from our and other laboratories suggest that binding of sterol ligands may be a unifying theme. Work with Saccharomyces cerevisiae ORPs suggests a function of these proteins in the nonvesicular intracellular transport of sterols, in secretory vesicle transport from the Golgi complex, and in the establishment of cell polarity. Mammals have more ORP genes, and differential splicing substantially increases the complexity of the encoded protein family. Functional studies on mammalian ORPs point in different directions:integration of sterol and sphingomyelin metabolism, sterol transport, regulation of neutral lipid metabolism, control of the microtubule-dependent motility of endosomes/ lysosomes, and regulation of signaling cascades. However, the detailed mechanisms of their action have remained elusive. An important way of learning protein function is to analyze their interacting-protein partners. In this study, the interacting proteins of ORPs family have be screened by Yeast Two-Hybrid using Human Fetal Kidney cDNA library and Mate & Plate Library-Universal Human (Normalized) which used cDNA from a wide spectrum of human tissues. Results showed ORPs interacted with proteins involved in various cellular functions, including signaling transduction, lipid metabolism, vesicle transport, nuclear transport, ion transport, blood coagulation, carbohydrate metabolism, protein synthesis and protein degradation etc. Interesting interactions have been chosen and studied further.
     The interaction of ORP8 and NUP62 has been confirmed by GST-Pull down and Co-IP. Moderate adenovirus-mediated overexpression of human ORP8 in mouse liver induced a decrease of cholesterol, phospholipids, and triglycerides in serum(-34%,-26%,-37%, respectively) and liver tissue (-40%,-12%,-24%, respectively), coinciding with reduction of hepatic nuclear (n)SREBP-1 and-2. Consistently, excess ORP8 reduced nSREBPs in HuH7 cells, and ORP8 overexpression or silencing suppressed or induced the expression of SREBP-2 target genes, respectively. The impact of overexpressed ORP8 on nSREBPs was shown to require a normal level of Nup62. Together, these experiments showed a new mechanism that ORP8 regulates cellular cholesterol homeostasis.
     Further more, we showed that ORP9 and ORP11 formed dimer with Co-IP experiment. We carry out characterization of ORP11, a previously unexplored ORP family member which is devoid of a FFAT motif or other known ER targeting signal. Using an affinity-purified antiserum generated during this study, we report the tissue and cell-type specific expression patterns of this new protein and demonstrate that it distributes in cells between Golgi and late endosome membranes. Overexpressed ORP9 recruited EGFP-ORP11 to endoplasmic reticulum and Golgi, and ORP9 silencing inhibited ORP11 Golgi association. The results identify ORP11 as an OSBP homologue distributing at the Golgi-LE interface and define the ORP9-ORP11 dimer as a functional unit that may act as an intracellular lipid sensor or transporter.
     We also confirmed the interaction of ORP4 and IP3 receptor(ITPR1) by Co-IP and Bimolecular Fluorescence Complementation (BiFC) experiment. ITPR1 is a Ca2+ channel localized in the membrane of Endoplasmic reticulum. Our primary data showed that the silencing of ORP4 in HeLa cell reduced Histamine-induced calcium release and enhanced apoptosis after treatment of thapsigargin.
引文
1. Schroepfer, G.J., Oxysterols:Modulators of cholesterol metabolism and other processes. Physiological Reviews,2000.80(1):p.361-554.
    2. Bjorkhem, I. and U. Diczfalusy, Oxysterols-Friends, foes, or just fellow passengers? Arteriosclerosis Thrombosis and Vascular Biology,2002.22(5):p.734-742.
    3. Brown, A.J. and W. Jessup, Oxysterols and atherosclerosis. Atherosclerosis,1999.142(1):p.1-28.
    4. Olkkonen, V.M. and M. Lehto, Oxysterols and oxysterol binding proteins:role in lipid metabolism and atherosclerosis. Annals of Medicine,2004.36(8):p.562-572.
    5. Russell, D.W., Oxysterol biosynthetic enzymes. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2000.1529(1-3):p.126-135.
    6. Goldstein, J.L., R.A. DeBose-Boyd, and M.S. Brown, Protein sensors for membrane sterols. Cell,2006. 124(1):p.35-46.
    7. Tontonoz, P. and D.J. Mangelsdorf, Liver X receptor signaling pathways in cardiovascular disease. Molecular Endocrinology,2003.17(6):p.985-993.
    8. Apfel, R, et al., A NOVEL ORPHAN RECEPTOR-SPECIFIC FOR A SUBSET OF THYROID HORMONE-RESPONSIVE ELEMENTS AND ITS INTERACTION WITH THE RETINOID/THYROID HORMONE-RECEPTOR SUBFAMILY. Molecular and Cellular Biology,1994.14(10):p.7025-7035.
    9. Willy, P. J., et al., LXR, A NUCLEAR RECEPTOR THAT DEFINES A DISTINCT RETINOID RESPONSE PATHWAY. Genes & Development,1995.9(9):p.1033-1045.
    10. Repa, J.J. and D.J. Mangelsdorf, The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annual Review of Cell and Developmental Biology,2000.16:p.459-481.
    11. Janowski, B.A., et al., An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature,1996.383(6602):p.728-731.
    12. Lehmann, J.M., et al., Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. Journal of Biological Chemistry,1997.272(6):p.3137-3140.
    13. Li, A.C. and C.K. Glass, PPAR-and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. Journal of Lipid Research,2004.45(12):p.2161-2173.
    14. Eberle, D., et al., SREBP transcription factors:master regulators of lipid homeostasis. Biochimie,2004. 86(11):p.839-848.
    15. Horton, J.D., J.L. Goldstein, and M.S. Brown, SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation,2002.109(9):p. 1125-1131.
    16. Yabe, D., M.S. Brown, and J.L. Goldstein, Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proceedings of the National Academy of Sciences of the United States of America,2002.99(20):p.12753-12758.
    17. Yang, T., et al., Crucial step in cholesterol homeostasis:Sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell,2002.110(4):p.489-500.
    18. Adams, C.M., et al., Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and insigs. Journal of Biological Chemistry,2004.279(50):p. 52772-52780.
    19. Brown, A. J., et al., Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Molecular Cell,2002.10(2):p.237-245.
    20. Brown, M.S. and Goldstei.Jl, SUPPRESSION OF 3-HYDROXY-3-METHYLGLUTARYL COENZYME-A REDUCTASE-ACTIVITYAND INHIBITION OF GROWTH OF HUMAN FIBROBLASTS BY 7-KETOCHOLESTEROL. Journal of Biological Chemistry,1974.249(22):p.7306-7314.
    21. Kandutsc.Aa and H.W. Chen, INHIBITION OF STEROL SYNTHESIS IN CULTURED MOUSE CELLS BY CHOLESTEROL DERIVATIVES OXYGENATED IN SIDE-CHAIN. Journal of Biological Chemistry, 1974.249(19):p.6057-6061.
    22. Kandutsch, A. A., H.W. Chen, and H.J. Heiniger, BIOLOGICAL-ACTIVITY OF SOME OXYGEN A TED STEROLS. Science,1978.201(4355):p.498-501.
    23. Beseme, F., et al., RAT-LIVER CYTOSOL OXYSTEROL-BINDING PROTEIN-CHARACTERIZATION AND COMPARISON WITH THE HTC CELL PROTEIN. Febs Letters,1987.210(1):p.97-103.
    24. Beseme,F., et al., CHARACTERIZATION OF OXYSTEROL-BINDING PROTEIN IN RAT EMBRYO FIBROBLASTS AND VARIATIONS AS A FUNCTION OF THE CELL-CYCLE. Biochimica Et Biophysica Acta,1986.886(1):p.96-108.
    25. Kandutsch, A.A., H.W. Chen, and E.P. Shown, BINDING OF 25-HYDROXYCHOLESTEROL AND CHOLESTEROL TO DIFFERENT CYTOPLASMIC PROTEINS. Proceedings of the National Academy of Sciences of the United States of America,1977.74(6):p.2500-2503.
    26. Kandutsch, A.A. and E.P. Shown, ASSAY OF OXYSTEROL-BINDING PROTEIN IN A MOUSE FIBROBLAST, CELL-FREE SYSTEM-DISSOCIATION-CONSTANT AND OTHER PROPERTIES OF THE SYSTEM. Journal of Biological Chemistry,1981.256(24):p.3068-3073.
    27. Kandutsch, A.A. and E.B. Thompson, CYTOSOLIC PROTEINS THAT BIND OXYGENATED STEROLS-CELLULAR-DISTRIBUTION, SPECIFICITY, AND SOME PROPERTIES. Journal of Biological Chemistry,1980.255(22):p.813-826.
    28. Taylor, F.R. and A.A. Kandutsch, OXYSTEROL BINDING-PROTEIN. Chemistry and Physics of Lipids, 1985.38(1-2):p.187-194.
    29. Taylor, F.R., et al., Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of hydroxymethylglutaryl coenzyme A reductase. J Biol Chem,1984.259(20):p.12382-7.
    30. Dawson, P.A., et al., CDNA CLONING AND EXPRESSION OF OXYSTEROL-BINDING PROTEIN, AN OLIGOMER WITH A POTENTIAL LEUCINE ZIPPER. Journal of Biological Chemistry,1989.264(28): p.16798-16803.
    31. Levanon, D., et al., CDNA CLONING OF HUMAN OXYSTEROL-BINDING PROTEIN AND LOCALIZATION OF THE GENE TO HUMAN CHROMOSOME-11 AND MOUSE CHROMOSOME-19. Genomics,1990.7(1):p.65-74.
    32. Dawson, P.A., et al., PURIFICATION OF OXYSTEROL BINDING-PROTEIN FROM HAMSTER LIVER CYTOSOL. Journal of Biological Chemistry,1989.264(15):p.9046-9052.
    33. Taylor, F.R., et al., PURIFICATION, SUBUNITSTRUCTURE, AND DNA-BINDING PROPERTIES OF THE MOUSE OXYSTEROL RECEPTOR. Journal of Biological Chemistry,1989.264(31):p. 18433-18439.
    34. Ridgway, N.D., et al, TRANSLOCATION OF OXYSTEROL BINDING-PROTEIN TO GOLGI-APPARATUS TRIGGERED BYLIGAND-BINDING. Journal of Cell Biology,1992.116(2):p. 307-319.
    35. Chawla, A., et al. Nuclear receptors and lipid physiology:Opening the X-files. Science,2001. 294(5548):p.1866-1870.
    36. Lehto, M. and V.M. Olkkonen, The OSBP-related proteins:a novel protein family involved in vesicle transport, cellular lipid metabolism, and cell signalling. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2003.1631(1):p.1-11.
    37. Lehto, M, et al. Subfamily III of mammalian oxysterol-binding protein (OSBP) homologues:the expression and intracellular localization of ORP3, ORP6, and ORP7. Cell and Tissue Research,2004. 315(1):p.39-57.
    38. Jaworski, C.J., et al., A family of 12 human genes containing oxysterol-binding domains. Genomics, 2001.78(3):p.185-196.
    39. Lehto, M, et al., The OSBP-related protein family in humans. Journal of Lipid Research,2001.42(8):p. 1203-1213.
    40. Anniss, A.M., et al., An oxysterol-binding protein family identified in the mouse. DNA and Cell Biology, 2002.21(8):p.571-580.
    41. Collier, F.M., et al., ORP3 splice variants and their expression in human tissues and hematopoietic cells. DNA and Cell Biology,2003.22(1):p.1-9.
    42. Gregorio-King, C.C., et al., ORP-3, a human oxysterol-binding protein gene differentially expressed in hematopoietic cells. Blood,2001.98(7):p.2279-2281.
    43. Johansson, M., et al., The two variants of oxysterol binding protein-related protein-1 display different tissue expression patterns, have different intracellular localization, and are functionally distinct. Molecular Biology of the Cell,2003.14(3):p.903-915.
    44. Schulz, T.A. and W.A. Prinz, Sterol transport in yeast and the oxysterol binding protein homologue (OSH) family. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2007.1771(6):p. 769-780.
    45. Yan, D. and V.M. Olkkonen, OSBP-related proteins:lipid sensors or transporters? Future Lipidology, 2007.2(1):p.85-94.
    46. Alphey, L., J. Jimenez, and D. Glover, A Drosophila homologue of oxysterol binding protein (OSBP)-Implications for the role of OSBP. Biochimica Et Biophysica Acta-Gene Structure and Expression,1998. 1395(2):p.159-164.
    47. Sugawara, K., et al., BIP, a BRAM-inter act ing protein involved in TGF-beta signalling, regulates body length in Caenorhabditis elegans. Genes to Cells,2001.6(7):p.599-606.
    48. Fukuzawa, M. and J.G. Williams, OSBPa, a predicted oxysterol binding protein ofDictyostelium, is required for regulated entry into culmination. Febs Letters,2002.527(1-3):p.37-42.
    49. Zeng, B. and G. Zhu, Two distinct oxysterol binding protein-related proteins in the parasitic protist Cryptosporidium parvum (Apicomplexa). Biochemical and Biophysical Research Communications,2006. 346(2):p.591-599.
    50. Avrova, A.O., et al., Potato oxysterol binding protein and cathepsin B are rapidly up-regulated in independent defence pathways that distinguish R gene-mediated and field resistances to Phytophthora infestans. Molecular Plant Pathology,2004.5(1):p.45-56.
    51. Beh, C.T., et al., Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics, 2001.157(3):p.1117-1140.
    52. Jiang, B., et al., A NEW FAMILY OF YEAST GENES IMPLICATED IN ERGOSTEROL SYNTHESIS IS RELATED TO THE HUMAN OXYSTEROL BINDING-PROTEIN. Yeast,1994.10(3):p.341-353.
    53. Schmalix, W.A. and W. Bandlow, SWH1 FROM YEAST ENCODES A CANDIDATE NUCLEAR FACTOR-CONTAINING ANKYRIN REPEATS AND SHOWING HOMOLOGY TO MAMMALIAN OXYSTEROL-BINDING PROTEIN. Biochimica Et Biophysica Acta-Gene Structure and Expression, 1994.1219(1):p.205-210.
    54. Lagace, T. A., et al., Altered regulation of cholesterol and cholesteryl ester synthesis in Chinese-hamster ovary cells overexpressing the oxysterol-binding protein is dependent on the pleckstrin homology domain. Biochemical Journal,1997.326:p.205-213.
    55. Levine, T.P. and S. Munro, The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Current Biology,1998.8(13):p.729-739.
    56. Wyles, J.P. and N.D. Ridgway, VAMP-associated protein-A regulates partitioning of oxysterol-binding protein-related protein-9 between the endoplasmic reticulum and Golgi apparatus. Experimental Cell Research,2004.297(2):p.533-547.
    57. Johansson, M., et al., The oxysterol-binding protein homologue ORP1L interacts with Rab7 and alters functional properties of late endocytic compartments. Molecular Biology of the Cell,2005.16(12):p. 5480-5492.
    58. Lehto, M., et al., Targeting of OSBP-related protein 3 (ORP3) to endoplasmic reticulum and plasma membrane is controlled by multiple determinants. Experimental Cell Research,2005.310(2):p.445-462.
    59. Levine, T.P. and S. Munro, Targeting of Golgi-specific pleckstrin homology domains involves both Ptdlns 4-kinase-dependent and-independent components. Current Biology,2002.12(9):p.695-704.
    60. Roy, A. and T.P. Levine, Multiple pools ofphosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p. Journal of Biological Chemistry,2004.279(43):p.44683-44689.
    61. Godi, A., et al., FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nature Cell Biology,2004.6(5):p.393-+.
    62. Sedgwick, S.G. and S.J. Smerdon, The ankyrin repeat:a diversity of interactions on a common structural framework. Trends in Biochemical Sciences,1999.24(8):p.311-316.
    63. Levine, T.P. and S. Munro, Dual targeting of Oshlp, a yeast homologue of oxysterol-binding protein, to both the Golgi and the nucleus-vacuole junction. Molecular Biology of the Cell,2001.12(6):p. 1633-1644.
    64. Kvam, E. and D.S. Goldfarb, Nvjlp is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Oshlp in Saccharomyces cerevisiae. Journal of Cell Science,2004.117(21):p. 4959-4968.
    65. Laitinen, S., et al., ORP2, a homolog of oxysterol binding protein, regulates cellular cholesterol metabolism. Journal of Lipid Research,2002.43(2):p.245-255.
    66. Hynynen, R., et al., Overexpression of OSBP-related protein 2 (ORP2) induces changes in cellular cholesterol metabolism and enhances endocytosis. Biochemical Journal,2005.390:p.273-283.
    67. Im, Y.J., et al., Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature, 2005.437(7055):p.154-158.
    68. Raychaudhuri, S., et al., Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. Journal of Cell Biology,2006.173(1): p.107-119.
    69. Loewen, C.J.R., A. Roy, and T.P. Levine, A conserved ER targeting motif in three families of lipid binding proteins and in Opilp binds VAP. Embo Journal,2003.22(9):p.2025-2035.
    70. Wyles, J.P., C.R. McMaster, and N.D. Ridgway, Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum. Journal of Biological Chemistry,2002.277(33):p.29908-29918.
    71. Hanada, K., et al., Molecular machinery for non-vesicular trafficking of ceramide. Nature,2003. 426(6968):p.803-809.
    72. Amarilio, R., et al., Differential regulation of endoplasmic reticulum structure through VAP-Nir protein interaction. Journal of Biological Chemistry,2005.280(7):p.5934-5944.
    73. Lev, S., The role of the Nir/rdgB protein family in membrane trafficking and cytoskeleton remodeling. Experimental Cell Research,2004.297(1):p.1-10.
    74. Loewen, C.J.R., et al., Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science,2004.304(5677):p.1644-1647.
    75. Levine, T., Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions. Trends in Cell Biology,2004.14(9):p.483-490.
    76. Olkkonen, V.M. and T.P. Levine, Oxysterol binding proteins:in more than one place at one time? Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire,2004.82(1):p.87-98.
    77. Routt, S.M., et al., Nonclassical PITPs activate PLD via the Stt4p PtdIns-4-kinase and modulate function of late stages of exocytosis in vegetative yeast. Traffic,2005.6(12):p.1157-1172.
    78. Fournier, Identification of a gene encoding a human oxysterol-binding protein-homologue:A potential general molecular marker for blood dissemination of solid tumors (vol 61, pg 3748,1999). Cancer Research,2001.61(2):p.792-792.
    79. Moreira, E.F., et al., Molecular and biochemical characterization of a novel oxysterol-binding protein (OSBP2) highly expressed in retina. Journal of Biological Chemistry,2001.276(21):p.18570-18578.
    80. Wang, C, L. JeBailey, and N.D. Ridgway, Oxysterol-binding-protein (OSBP)-related protein 4 binds 25-hydroxycholesterol and interacts with vimentin intermediate filaments. Biochemical Journal,2002. 361:p.461-472.
    81. Fairn, G.D. and C.R. McMaster, Identification and assessment of the role of a nominal phospholipid binding region of ORPIS (oxysterol-binding-protein-related protein 1 short) in the regulation of vesicular transport. Biochemical Journal,2005.387:p.889-896.
    82. Fairn, G.D. and C.R. McMaster, The roles of the human lipid-binding proteins ORP9S and ORP10S in vesicular transport. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire,2005.83(5):p. 631-636.
    83. Xu, Y.Q., et al., Novel members of the human oxysterol-binding protein family bind phospholipids and regulate vesicle transport. Journal of Biological Chemistry,2001.276(21):p.18407-18414.
    84. Suchanek, M., et al., The mammalian oxysterol-binding protein-related proteins (ORPs) bind 25-hydroxycholesterol in an evolutionarily conserved pocket. Biochemical Journal,2007.405:p. 473-480.
    85. Yan, D., et al., Expression of human OSBP-related protein 1L in macrophages enhances atherosclerotic lesion development in LDL receptor-deficient mice. Arteriosclerosis Thrombosis and Vascular Biology, 2007.27(7):p.1618-1624.
    86. Mohammadi, A., et al., Golgi localization and phosphorylation of oxysterol binding protein in Niemann-Pick C and U18666A-treated cells. Journal of Lipid Research,2001.42(7):p.1062-1071.
    87. Storey, M.K., et al., Cholesterol regulates oxysterol binding protein (OSBP) phosphorylation and Golgi localization in Chinese hamster ovary cells:correlation with stimulation of sphingomyelin synthesis by 25-hydroxycholesterol. Biochemical Journal,1998.336:p.247-256.
    88. Ridgway, N.D., et al., Differential effects of sphingomyelin hydrolysis and cholesterol transport on oxysterol-binding protein phosphorylation and Golgi localization. Journal of Biological Chemistry,1998. 273(47):p.31621-31628.
    89. Radhakrishnan, A., et al., Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Oxysterols block transport by binding to Insig. Proceedings of the National Academy of Sciences of the United States of America,2007.104(16):p.6511-6518.
    90. Sun, L.P., et al., Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi:Insig renders sorting signal in Scap inaccessible to COPII proteins. Proceedings of the National Academy of Sciences of the United States of America,2007.104(16):p.6519-6526.
    91. Nishimura, T., et al., Inhibition of cholesterol biosynthesis by 25-hydroxycholesterol is independent of OSBP. Genes to Cells,2005.10(8):p.793-801.
    92. Lagace, T.A., et al., Chinese hamster ovary cells overexpressing the oxysterol binding protein (OSBP) display enhanced synthesis of sphingomyelin in response to 25-hydroxycholesterol. Journal of Lipid Research,1999.40(1):p.109-116.
    93. Perry, R.J. and N.D. Ridgway, Oxysterol-binding protein and vesicle-associated membrane protein-associated protein are required for sterol-dependent activation of the ceramide transport protein. Molecular Biology of the Cell,2006.17(6):p.2604-2616.
    94. Funato, K. and H. Riezman, Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. Journal of Cell Biology,2001.155(6):p.949-959.
    95. Perry, R.J. and N.D. Ridgway, Molecular mechanisms and regulation of ceramide transport. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,2005.1734(3):p.220-234.
    96. Daum, G., et al., Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast, 1999.15(7):p.601-614.
    97. Yano, T., M. Inukai, and F. Isono, Deletion of OSH3 gene confers resistance against ISP-1 in Saccharomyces cereviside. Biochemical and Biophysical Research Communications,2004.315(1):p. 228-234.
    98. Yan, D.G., et al., Oxysterol binding protein induces upregulation of SREBP-lc and enhances hepatic lipogenesis. Arteriosclerosis Thrombosis and Vascular Biology,2007.27(5):p.1108-1114.
    99. Botolin, D., et al., Docosahexaneoic acid (22:6, n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk-and 26S proteasome-dependent pathways. Journal of Lipid Research,2006.47(1):p. 181-192.
    100. Wyles, J.P., R.J. Perry, and N.D. Ridgway, Characterization of the sterol-binding domain of oxysterol-binding protein (OSBP)-related protein 4 reveals a novel role in vimentin organization. Experimental Cell Research,2007.313(7):p.1426-1437.
    101. Johansson, M, et al., Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150(Glued), ORP1L, and the receptor beta III spectrin. Journal of Cell Biology,2007. 176(4):p.459-471.
    102. Kakela, R., et al., Overexpression of OSBP-related protein 2 (ORP2) in CHO cells induces alterations of phospholipid species composition. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire, 2005.83(5):p.677-683.
    103. Henneberry, A.L. and S.L. Sturley, Sterol homeostasis in the budding yeast, Saccharomyces cerevisiae. Seminars in Cell & Developmental Biology,2005.16(2):p.155-161.
    104. Zinser, E., et al., PHOSPHOLIPID-SYNTHESIS AND LIPID-COMPOSITION OF SUBCELLULAR MEMBRANES IN THE UNICELLULAR EUKARYOTE SACCHAROMYCES-CEREVISIAE. Journal of Bacteriology,1991.173(6):p.2026-2034.
    105. Maxfield, F.R. and D. Wustner, Intracellular cholesterol transport. Journal of Clinical Investigation, 2002.110(7):p.891-898.
    106. Soccio, R.E. and J.L. Breslow, Intracellular cholesterol transport. Arteriosclerosis Thrombosis and Vascular Biology,2004.24(7):p.1150-1160.
    107. Baumann, N.A., et al., Transport of newly synthesized sterol to the sterol-enriched plasma membrane occurs via nonvesicular equilibration. Biochemistry,2005.44(15):p.5816-5826.
    108. Li, Y.F. and W.A. Prinz, ATP-binding cassette (ABC) transporters mediate nonvesicular, raft-modulated sterol movement from the plasma membrane to the endoplasmic reticulum. Journal of Biological Chemistry,2004.279(43):p.45226-45234.
    109. Alpy, F. and C. Tomasetto, Give lipids a START:The StAR-related lipid transfer (START) domain in mammals. Journal of Cell Science,2005.118(13):p.2791-2801.
    110. Atshaves, B.P., et al., Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes. Biochemistry, 2003.42(49):p.14583-14598.
    111. Puglielli, L., et al., STEROL CARRIER PROTEIN-2 IS INVOL VED IN CHOLESTEROL TRANSFER FROM THE ENDOPLASMJC-RETICULUM TO THE PLASMA-MEMBRANE IN HUMAN FIBROBLASTS. Journal of Biological Chemistry,1995.270(32):p.18723-18726.
    112. Vila, A., et al., Sterol carrier protein-2-facilitated intermembrane transfer of cholesterol-and phospholipid-derived hydroperoxides. Biochemistry,2004.43(39):p.12592-12605.
    113. Smart, E.J., R.A. De Rose, and S.A. Farber, Annexin 2-caveolin I complex is a target of ezetimibe and regulates intestinal cholesterol transport. Proceedings of the National Academy of Sciences of the United States of America,2004.101(10):p.3450-3455.
    114. Uittenbogaard, A., et al., Cholesteryl ester is transported from caveolae to internal membranes as part of a caveolin-annexin Ⅱ lipid-protein complex. Journal of Biological Chemistry,2002.277(7):p. 4925-4931.
    115. Uittenbogaard, A., Y.S. Ying, and E.J.Smart, Characterization of a cytosolic heat-shock protein caveolin chaperone complex-Involvement in cholesterol trafficking. Journal of Biological Chemistry,1998. 273(11):p.6525-6532.
    116. Beh, C.T. and J. Rine, A role for yeast oxysterol-binding protein homologs in endocytosis and in the maintenance of intracellular sterol-lipid distribution. Journal of Cell Science,2004.117(14):p. 2983-2996.
    117. Wang, P.H., et al., Molecular characterization of Osh6p, an oxysterol binding protein homolog in the yeast Saccharomyces cerevisiae. Febs Journal,2005.272(18):p.4703-4715.
    118. Wang, P.H., et al., AAA ATPases regulate membrane association of yeast oxysterol binding proteins and sterol metabolism. Embo Journal,2005.24(17):p.2989-2999.
    119. Zhang, S.C., et al., Ncrlp, the yeast ortholog of mammalian niemann pick Cl protein, is dispensable for endocytic transport. Traffic,2004.5(12):p.1017-1030.
    120. Kozminski, K.G., et al., Homologues of oxysterol-binding proteins affect Cdc42p-and Rholp-mediated cell polarization in Saccharomyces cerevisiae. Traffic,2006.7(9):p.1224-1242.
    121. Park, Y.U., O. Hwang, and J. Kim, Two-hybrid cloning and characterization of OSH3, a yeast oxysterol-binding protein homolog. Biochemical and Biophysical Research Communications,2002. 293(2):p.733-740.
    122. Hur, U.S., et al., Characterization of Osh3, an oxysterol-binding protein, in filamentous growth of Saccharomyces cerevisiae and Candida albicans. Journal of Microbiology,2006.44(5):p.523-529.
    123. Fang, M, et al., Keslp shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis. Embo Journal,1996. 15(23):p.6447-6459.
    124. Bankaitis, V.A., et al., Phosphatidylinositol transfer protein function in the yeast Saccharomyces cerevisiae. Advances in Enzyme Regulation, Vol 45,2005.45:p.155-170.
    125. Yanagisawa, L.L., et al., Activity of specific lipid-regulated ADP ribosylation factor-GTPase-activating proteins is required for Seel 4p-dependent Golgi secretory function in yeast. Molecular Biology of the Cell,2002.13(7):p.2193-2206.
    126. Li, X.M., et al., Analysis of oxysterol binding protein homologue Kes 1 p function in regulation of Seel 4p-dependent protein transport from the yeast Golgi complex. Journal of Cell Biology,2002.157(1): p.63-77.
    127. Drin, G, et al., A general amphipathic alpha-helical motif for sensing membrane curvature. Nature Structural & Molecular Biology,2007.14(2):p.138-146.
    128. Antonny, B., et al., Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. Journal of Biological Chemistry,1997.272(49):p. 30848-30851.
    129. Bigay, J., et al., ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. Embo Journal,2005.24(13):p.2244-2253.
    130. Skirpan, A.L., et al., Identification and characterization ofPiORP1, a Petunia oxysterol-binding-protein related protein involved in receptor-kinase mediated signaling in pollen, and analysis of the ORP gene family in Arabidopsis. Plant Molecular Biology,2006.61(4-5):p.553-565.
    131. Wang, P. Y., F. Weng, and R.G.W. Anderson, OSBP is a cholesterol-regrulated scaffolding protein in control ofERKl/2 activation. Science,2005.307(5714):p.1472-1476.
    132. Zebisch, A., et al., Signaling through RAS-RAF-MEK-ERK:from basics to bedside. Current Medicinal Chemistry,2007.14(5):p.601-623.
    133. Lessmann, E., et al., Oxysterol-binding protein-related protein (ORP) 9 is a PDK-2 substrate and regulates Akt phosphorylation. Cellular Signalling,2007.19(2):p.384-392.
    134. Hanada, M., J.H. Feng, and B.A. Hemmings, Structure, regulation and function of PKB/AKT-a major therapeutic target. Biochimica Et Biophysica Acta-Proteins and Proteomics,2004.1697(1-2):p.3-16.
    135. Goldfinger, L.E., et al., An experimentally derived database of candidate r as-interacting proteins. Journal of Proteome Research,2007.6(5):p.1806-1811.
    136. Kinbara, K., et al., Ras GTPases:Integrins'friends or foes? Nature Reviews Molecular Cell Biology, 2003.4(10):p.767-776.
    137. Almstrup, K., et al., Genomic and gene expression signature of the pre-invasive testicular carcinoma in situ. Cell and Tissue Research,2005.322(1):p.159-165.
    138. Difilippantonio, S., et al., Gene expression profiles in human non-small and small-cell lung cancers. European Journal of Cancer,2003.39(13):p.1936-1947.
    139. Henshall, S.M., et al., Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Research,2003.63(14):p.4196-4203.
    140. Jelinek, D.F., et ah, Identification of a global gene expression signature of B-chronic lymphocytic leukemia. Molecular Cancer Research,2003.1(5):p.346-361.
    141. Pizzatti, L., et al., Altered protein profile in Chronic My elold Leukemia chronic phase identified by a comparative proteomic study. Biochimica Et Biophysica Acta-Proteins and Proteomics,2006.1764(5):p. 929-942.
    142. Eberle, D., et al., SREBP transcription factors:master regulators of lipid homeostasis. Biochimie,2004. 86(11):p.839-48.
    143. Madan, A.P. and D.B. Defranco, BIDIRECTIONAL TRANSPORT OF GLUCOCORTICOID RECEPTORS ACROSS THE NUCLEAR-ENVELOPE. Proceedings of the National Academy of Sciences of the United States of America,1993.90(8):p.3588-3592.
    144. Dawson, P.A., et al., cDNA cloning and expression of oxysterol-binding protein, an oligomer with a potential leucinezipper. J Biol Chem,1989.264(28):p.16798-803.
    145. Dawson, P.A., et al., Purification of oxysterol binding protein from hamster liver cytosol. J Biol Chem, 1989.264(15):p.9046-52.
    146. Lehto, M. and V.M. Olkkonen, The OSBP-related proteins:a novel protein family involved in vesicle transport, cellular lipid metabolism, and cell signalling. Biochim Biophys Acta,2003.1631(1):p.1-11.
    147. Olkkonen, V.M., Oxysterol binding protein and its homologues:new regulatory factors involved in lipid metabolism. Curr Opin Lipidol,2004.15(3):p.321-7.
    148. Jaworski, C.J., et al., A family of 12 human genes containing oxysterol-binding domains. Genomics, 2001.78(3):p.185-96.
    149. Olkkonen, V.M., et al., The OSBP-related proteins (ORPs):global sterol sensors for co-ordination of cellular lipid metabolism, membrane trafficking and signalling processes? Biochem Soc Trans,2006. 34(Pt3):p.389-91.
    150. Borgese, N., et al., Biogenesis of tail-anchored proteins. Biochem Soc Trans,2003.31(Pt 6):p.1238-42.
    151. Borgese, N., S. Colombo, and E. Pedrazzini, The tale of tail-anchored proteins:coming from the cytosol and looking for a membrane. J Cell Biol,2003.161(6):p.1013-9.
    152. Goldstein, J.L., S.K. Basu, and M.S. Brown, Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol,1983.98:p.241-60.
    153. Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res,2001.29(9):p. e45.
    154. Blanquart, C., et al., Peroxisome proliferator-activated receptor alpha (PPAR alpha) turnover by the ubiquitin-proteasome system controls the ligand-induced expression level of its target genes. J Biol Chem,2002.277(40):p.37254-37259.
    155. Yan, D., et al., OSBP-related protein 8 (ORP8) suppresses ABCA1 expression and cholesterol efflux from macrophages. J Biol Chem,2008.283(1):p.332-40.
    156. Beh, C.T. and J. Rine, A role for yeast oxysterol-binding protein homologs in endocytosis and in the maintenance of intracellular sterol-lipid distribution. J Cell Sci,2004.117(Pt 14):p.2983-96.
    157. Otsuka, S., et al., Individual binding pockets of importin-beta for FG-nucleoporins have different binding properties and different sensitivities to RanGTP. Proceedings of the National Academy of Sciences of the United States of America,2008.105(42):p.16101-16106.
    158. Terry, L.J., E.B. Shows, and S.R. Wente, Crossing the nuclear envelope:Hierarchical regulation of nucleocytoplasmic transport. Science,2007.318:p.1412-1416.
    159. Melcak, I., A. Hoelz, and G. Blobel, Structure ofNup58/45 suggests flexible nuclear pore diameter by intermolecular sliding. Science,2007.315(5819):p.1729-1732.
    160. Echeverria, P.C., et al., Nuclear Import of the Glucocorticoid Receptor-hsp90 Complex through the Nuclear Pore Complex Is Mediated by Its Interaction with Nup62 and Importin beta. Molecular and Cellular Biology,2009.29(17):p.4788-4797.
    161. Olkkonen, V.M. and M. Lehto, Oxysterols and oxysterol binding proteins:role in lipid metabolism and atherosclerosis. Ann Med,2004.36(8):p.562-72.
    162. Rimner, A., et al., Relevance and mechanism of oxysterol stereospecifity in coronary artery disease. Free Radic Biol Med,2005.38(4):p.535-44.
    163. Lemaire-Ewing, S., et al., Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biology and Toxicology,2005.21(2):p.97-114.
    164. Driss, F., et al., NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Free Radical Biology and Medicine,2004.37: p. S63-S63.
    165. Leonarduzzi, G., et al., Oxysterol-induced up-regulation of MCP-I expression and synthesis in macrophage cells. Free Radic Biol Med,2005.39(9):p.1152-61.
    166. Hayden, J.M., et al., Induction of monocyte differentiation and foam cell formation in vitro by 7-ketocholesterol. Journal of Lipid Research,2002.43(1):p.26-35.
    167. Colles, S.M., et al., Oxidized LDL-Induced injury and apoptosis in atherosclerosis-Potential roles for oxysterols. Trends in Cardiovascular Medicine,2001.11(3-4):p.131-138.
    168. Peretti, D., et al.. Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Molecular Biology of the Cell, 2008.19(9):p.3871-3884.
    169. Wang, P.Y., et al., The N terminus controls sterol binding while the C terminus regulates the scaffolding function of OSBP. Journal of Biological Chemistry,2008.283(12):p.8034-8045.
    170. Romeo, G.R. and A. Kazlauskas, Oxysterol and diabetes activate STA T3 and control endothelial expression of profilin-1 via OSBP1. Journal of Biological Chemistry,2008.283(15):p.9595-9605.
    171. Bowden, K. and N.D. Ridgway, OSBP negatively regulates ABCA1 protein stability. Journal of Biological Chemistry,2008.283(26):p.18210-18217.
    172. Fairn, G.D. and C.R. McMaster, Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling. Cellular and Molecular Life Sciences,2008.65(2):p.228-236.
    173. Yan, D.G. and V.M. Konen, Characteristics of oxysterol binding proteins. International Review of Cytology:a Survey of Cell Biology, Vol 265,2008.265:p.253-+.
    174. Bouchard, L., et al., Association of OSBPL11 Gene Polymorphisms With Cardiovascular Disease Risk Factors in Obesity. Obesity,2009.17(7):p.1466-1472.
    175. Miller, P.M., et al., Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nature Cell Biology,2009.11(9):p.1069-U69.
    176. Aivazian, D., R.L. Serrano, and S. Pfeffer, TIP47 is a key effector for Rab9 localization. Journal of Cell Biology,2006.173(6):p.917-926.
    177. Anderson, N. and J. Borlak, Drug-induced phospholipidosis. Febs Letters,2006.580(23):p.5533-5540.
    178. Bouchard, L., et al., Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. American Journal of Clinical Nutrition, 2010.91(2):p.309-320.
    179. Perttila, J., et al., OSBPL 10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism. Journal of Molecular Medicine (Berlin),2009.87(8).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700