用户名: 密码: 验证码:
N-卤代酰亚胺与羧酸或DBU组合在有机合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
N-溴代丁二酰亚胺(NBS)是有机合成重要的溴代试剂。通常NBS作为Br+源,参与亲电加成反应;还可以作为溴自由基源,参与自由基取代反应。一般来说,在反应中比较惰性的丁二酰亚胺通常作为副产物被分离。从原子经济性角度考虑,希望将NBS中的丁二酰亚胺负离子直接嵌入到目标分子中,实现NBS双功能化作用,既作溴源又作胺源是化学合成者所追求的。
     本论文通过发展了新颖的、高效地串联反应,为多取代呋喃并吡啶酮、5-氨基-3(2H)-呋喃酮、α-氧代酰胺、α-胺基酮、β-胺基酮以及烯丙基胺化合物的合成提供了新方法。同时,对反应机理进行了深入的研究。所采用的方法具有反应条件温和、原料易得和高的原子经济性等优点。
     论文共分八个章节。第一章综述了N-溴代丁二酰亚胺(NBS)在有机反应中的应用。第二章提出了本论文的选题依据。
     第三章研究了温和条件下,1-烯酰基-1-酰胺基环丙烷与NBS/HCOOH组合经由溴鎓离子引发的亲电串联反应,高效地合成了呋喃并吡啶酮和5-氨基-3(2H)-呋喃酮类化合物。这一高效地串联转变涉及连续的C Br形成及断裂、C N形成、C C断裂及形成和C O形成。该反应通过卤活化首次实现了在α,β-不饱和烯酮体系中的1,2-芳基迁移。
     第四章我们发展了一种1-乙酰基-1-酰胺基环丙烷与NXS/RCOOH组合经由溴鎓离子引发的亲电串联反应,简洁、高效地合成了5-氨基-3(2H)-呋喃酮类化合物。该反应通过原位生成的溴鎓离子,使得羰甲基极性翻转由亲核中心变为亲电中心(极性翻转策略),引发羰甲基与N-烷基酰胺氧分子内亲电环合,实现C–O键的构建。
     第五章发展了一种简单、高效地合成具有重要生物活性α-氧代酰胺的新方法。与传统方法相比,避免了使用有毒、稀少的贵金属和苛刻的反应条件。在反应过程中我们利用DMF作为胺源和溶剂,简化了反应操作,充分体现了原子经济性这一原则。
     第六—八章发展了一种N-溴代酰亚胺/DBU组合作为原子经济性和通用的胺化试剂。在温和条件下,芳基烷基酮、查尔酮和烯烃在NBS(P)/DBU组合作用下,分别生成α-胺基酮、β-胺基酮和烯丙基胺类化合物。提出DBU双活化机制,即DBU与N-溴代酰亚胺之间通过卤键相互作用形成N―Br┄N不对称卤键加合物,进一步形成更亲电的溴物种和提供一种潜在的氮亲核体。在反应体系中NBS(P)起到双功能作用,既作溴源又作胺源。实现了比较惰性的丁二酰亚胺(邻苯二甲酰亚胺)负离子直接嵌入到目标分子中。
N-Bromosuccinimide (NBS) is a versatile reagent for synthetic organic chemistry.Traditionally, NBS can be considered as a convenient source of either cationic bromine usedin electrophilic addition reactions or bromine radical used in radical substitution reactions. Ingeneral, relatively inert succinimide would be generated as a by-product in the reaction. Fromthe atom economic point of view, direct installation of the succinimido moiety of NBS intothe target molecules, as well as further transformation thereby, is highly desirable. The dualrole of NBS providing both electrophilic bromine and nucleophilic nitrogen sources is thepersuit of chemists.
     In this thesis, we have developed novel and efficient cascade reactions for the synthesisof polysubstituted dihydrofuropyridinones,5-amino-3(2H)-furanones, α-ketoamides,α-aminoketones, β-aminoketones and allylic amine derivatives. Mechanisms of these newreactions are also investigated in details. These methods have apparent advantages, such asmild reaction conditions, readily available starting materials and high atom economy and soon.
     The thesis is divided into eight chapters. In chapter one, The application ofN-bromosuccinimide in organic reactions is reviewed. The thesis proposal is presented inchapter two.
     Chapter three, under mild conditions, bromonium ion initiated electrophilic cascadereaction of1-alkenoylcyclopropane carboxamides with NBS/HCCOH comdination wasdeveloped, which led to the production of dihydrofuropyridinones and5-amino-3(2H)-furanones. Such an efficient one-pot cascade transformation involves sequential C–Brformation and cleavage, C–N formation, C–C cleavage and formation, and C–O formation.The1,2-aryl migration involved in the reaction, to the best of our knowledgement, representsthe first example in α,β-unsaturated enone system via halogen activation.
     Chapter four we have developed a practical and efficient protocol for the production ofhighly functionalized5-amino-3(2H)-furanones by the bromonium ion initiated electrophiliccascade reactions of1-acetylcyclopropane-carboxamides with NXS/RCOOH combination.Through in situ generated haloniumion intermediates, the reactivity of the α-carbon to thecarbonyl group was converted from originally nucleophilic into electrophilic (umpolungstrategy), leading to the formation of a C O bond with an amide oxygen atom viaintramolecular electrophilic cyclization.
     Chapter five we have developed a simple and efficient new method for the synthesis of biologically important α-ketoamides. This protocol avoided the use of expensive catalyst andharsh conditions generally adopted in the conventional method. In the whole process, DMFfunctions as nitrogen sources and solvent, which simplifies reaction and fully embodies atomeconomy.
     In chapter six―eight, as a general and practical animation reagent, a combination ofN-bromoimide and DBU has been developed. Under mild conditions, aryl alkyl ketones,chalcones and alkenes lead to α-imidoketones, β-imidoketones and allyl amines, respectively,with an NBS(P)/DBU combination. The mechanism of dual activation of DBU that DBU andN-bromoimide formN―Br┄N asymmetric halogen bonding adducts via halogen bonding andlead to more electrophilic bromine and more nucleophilic nitrogen atoms simultaneously, wasproposed. In the reaction system, NBS(P) can play dual roles by act as both bromine andnitrogen sources. Relatively inert succinimide/phthalimide can being installed directly in thetarget molecule.
引文
[1]胡跃华,付华,席婵娟等.现代有机合成试剂[M].北京:化学工业出版社,2006:375.
    [2](a)李英春,李祺溴.溴化合物制备手册[M].北京:化学工业出版社,2008:74.(b)吴警,裴文. N-溴代丁二酰亚胺在有机反应中的研究进展[J].广州化工,2011,39:31–34.
    [3] Ziegler V K, et al. Reactions N-bromosuccinimide[J]. liebigs ann Chem,1942,551:109.
    [4] Shizuo F, Satoshi H, Hisao E, Akiko N. Organic Synthesis Using Sodium Bromate. Ⅱ. A FacileSynthesis of N-Bromo Imides and Amides Using Sodium Bromate and Hydrobromic Acid (or SodiumBromate) in the Presence Surfuric Acid[J]. Bull Chem Soc Jpn,1993,66(8):2426–2428.
    [5](a)张大国编著.精细有机单元反应合成技术[M].北京:化学工业出版社,2009:94.(b)隋晓锋,袁金颖,周密,何永洪. N-溴代丁二酰亚胺在有机反应中的应用进展[J].有机化学,2006,26:15181524.
    [6] Wohl A. Bromierung unges ttigter Verbindungen mit N-Bromacetamid, ein Beitrag zur Lehre vomVerlauf chemischer Vorg nge[J]. Berichte der deutschen chemischen Gesellschaft,1919,52:51–63.
    [7] Ziegler K, Schenck G, Krockow E W, Siebert A, Wenz A, Weber H. Die Synthese des Cantharidins[J].Justus Liebig's Annalen der Chemie,1942,551:1–79.
    [8] Djerassi C. Brominations with N-Bromosuccinimide and Related Compounds. The Wohl-ZieglerReaction[J]. Chem Rev,1948,43(2):271–317.
    [9] Karrer P, Schneider P. über Bromierungsprodukte des Diallyls III[J]. Helvetica Chimica Acta,1948,31:395–397.
    [10] Bloomfield G F. Rubber, polyisoprenes, and allied compounds. Part VI. The mechanism ofhalogen-substitution reactions, and the additive halogenation of rubber and of dihydromyrcene[J]. JChem Soc,1944,114–120.
    [11] Glende C, Schmitt H, Erdinger L, Engelhardt G, Boche G. Transformation of mutagenic aromaticamines into non-mutagenic species by alkyl substituents part Ⅰ, alkylation ortho to the aminofunction[J]. Mutat Res,2001,498(1-2):19–37.
    [12] Carlsen P H. J, Rist, Lund T, Helland I. Desulfonation of Alkanesulfonates and SulfonylChlorides[J]. Acta Chem Scand,1995,49:701–702.
    [13] Joshua H, Arieh K. Preparation of mixture of3-phenoxybenzyl bromide and3-phenoxybenzalbromide[P]. GB2,175,895,1985–04–01.
    [14] Carreno M C, Ruano J G, Sanz G, Toledo M A, Urbano A. N-Bromosuccinimide in Acetonitrile: AMild and Regiospecific Nuclear Brominating Reagent for Methoxybenzenes and Naphthalenes[J]. JOrg Chem,1995,60:5328–5331.
    [15] Buu-Hoi Ng Ph. Zur Halogenirerung aromatischer und heterozyklischer Verbindungen[J]. Ann,1944,1:556–558.
    [16] Schmidt H. Bromierungen mit Brom-succinimid bei Gegenwart von Katalysatoren, II[J]. HelveticaChimica Acta,1946,29:1144–1151.
    [17](a) Lambert F L, Ellis W D, Parry R J. Halogenation of Aromatic Compounds by N-Bromo-andN-Chlorosuccinimide under Ionic Conditions[J]. J Org Chem,1965,30:304–306.(b) Coleman R S,Grant E B. An Efficient Synthesis of the Naphthalene Subunits of the Protein Kinase C InhibitorCalphostin C[J]. J Org Chem,1991,56:1357–1359.(c) Regioselective bromination of activatedaromatic substrates with N-bromosuccinimide over HZSM-5[J]. Tetrahedron Letters,1994,35:7055–7056.(d) Olah G A, Wang Q, Sandford G, PrakashG K S. Synthetic methods and reactions.181.Iodination of deactivated aromatics with N-iodosuccinimide in trifluoromethanesulfonic acid(NIS-CF3SO3H) via in situ generated superelectrophilic iodine(I) trifluoromethanesulfonate[J]. J OrgChem,1993,58:3194–3195.(e) Prakash G K S, Mathew T, Hoole D, Esteves P M, Wang Q, Rasul G,Olah G A. N-Halosuccinimide/BF3·Et2O, Efficient Electrophilic Halogenating Systems forAromatics[J]. J Am Chem Soc,2004,126:15770–15776.
    [18] Mo F, Yan J M, Qiu D, Li F, Zhang Y, Wang J. Gold-Catalyzed Halogenation of Aromatics byN-Halosuccinimides[J]. Angew Chem Int Ed,2010,49:2028–2032.
    [19]冯新德,丘坤元. Wohl-ziegler反应的研究–芳香醚的侧链溴化和苯环溴化[J].化学学报,1959,5(25):277–279.
    [20] Mitchell J, Yadav S, Reddy B V S. Efficient Halogenation of Aromatic Systems Using N-Halo-succinimides in Ionic Liquids[J]. Synlett,1979,141–142.
    [21] Rajagopal R, Jarikote D V, Lahoti R J, Daniel T, Srinivasan K V. Ionic liquid promoted regioselectivemonobromination ofaromatic substrates with N-bromosuccinimide[J]. Tetrahedron Letters,2003,44:1815–1817.
    [22] Yadav J S, Reddy B V S, Reddy P S R, Basak A K, Narsaiah A V. Efficient Halogenation of AromaticSystems Using N-Halosuccinimides in Ionic Liquids[J]. Adv Synth Catal,2004,346:77–82.
    [23] Bedford R B, Haddow M F, Mitchell C J, Webster R L. Mild C–H Halogenation of Anilides and theIsolation of an Unusual Palladium(I)–Palladium(II) Species[J]. Angew Chem Int Ed,2011,50:5524–5527.
    [24](a) Schroeder N, Wencel-Delord J, Glorius F. High yielding, versatile and practical [Rh(III)Cp*]-catalyzed or-tho-bromination and iodination of arenes[J]. J Am Chem Soc,2012,134:8298–8301.(b)Dubost E, Fossey C, Cailly T, Rault S, Fabis F. Selective ortho-Bromination of SubstitutedBenzaldoximes Using Pd-Catalyzed C–H Activation: Application to the Synthesis of Substituted2-Bromobenzaldehydes[J]. J Org Chem,2011,76:6414–6420.
    [25] Phukan P, Chakraborty P, Kataki D. A Simple and Efficient Method for Regioselective andStereoselective Synthesis of Vicinal Bromohydrins and Alkoxybromides from an Olefin[J]. J OrgChem,2006,71:7533–7537.
    [26]孙昌俊,曹晓冉,王秀菊.药物合成反应–理论与实践[M].北京:化学工业出版社,2007:86–87
    [27](a) Wu X L, Xia J J, Wang G W. Aminobromination of olefins with TsNH2and NBS as the nitrogenand bromine sources mediated by hypervalent iodine in a ball mill[J]. Org Biomol Chem,2008,6:548–553.(b) Wei J, Zhang L, Chen Z, Shi X, Cao J. KI-catalyzed aminobromination of olefins withTsNH2–NBS combination[J]. Org Biomol Chem,2009,7:3280–3284.(c) Wei J, Chen Z, Lei W,Zhang L, Wang M, Shi X, Li R. Silicon Powder: The First Nonmetal Elemental Catalyst forAminobromination of Olefins with TsNH2and NBS[J]. Org Lett,2009,11:4216–4219.(d) Chen Z,Wei J, Li R, Shi X, Zhao P. Copper Powder-Catalyzed Regio-and Stereoselective Aminobrominationof α,β-Unsaturated Ketones with TsNH2and NBS as Nitrogen and Halogen Sources[J]. J Org Chem,2009,74:1371–1373.
    [28] Thakur V V, Talluri S K, Sudalai A. Transition Metal-Catalyzed Regio-and Stereoselective Amino-bromination of Olefins with TsNH2and NBS as Nitrogen and Bromine Sources[J]. Org Lett,2003,5:861–864.
    [29] Alix A, Lalli C, Retailleau P, Masson G. Highly Enantioselective Electrophilic α-Bromination ofEnecarbamates: Chiral Phosphoric Acid and Calcium Phosphate Salt Catalysts[J]. J Am Chem Soc,2012,134:10389–10392.
    [30] Song L, Luo S, Cheng J P. Catalytic Intermolecular Haloamidation of Simple Alkenes withN-Halophthalimide as Both Nitrogen and Halogen Source[J]. Org Lett,2013,15:5702–5705.
    [31] Xue H, Tan H, Wei D, Wei Y, Lin S, Liang F, Zhao B. N-Bromosuccinimide–carboxylic acidcombination: mild and efficient access to dibromination of unsaturated carbonyl compounds[J]. RSCAdv,2013,3:5382–5385.
    [32] Yang D, Yan Y L, Lui B. Mild α-Halogenation Reactions of1,3-Dicarbonyl Compounds Catalyzed byLewis Acids[J]. J Org Chem,2002,67:7429–7431.
    [33] Tanemura K, Suzuki T, Nishida Y, Satsumabayashi K, Horaguchi T. A mild and efficient procedure forα-bromination of ketones using N-bromosuccinimide catalysed by ammonium acetate[J]. ChemCommun,2004,470–471.
    [34] Das B, Venkateswarlu K, Mahender G., Mahender I. A simple and efficient method for α-brominationof carbonyl compounds using N-bromosuccinimide in the presence of silica-supported sodiumhydrogen sulfate as a heterogeneous catalyst[J]. Tetrahedron Lett,2005,46:3041–3044.
    [35]黄枢,谢如刚,田宝芝,秦圣英.有机合成试剂制备手册[M].北京:化学工业出版社,2005:21.
    [36] Armani E, Dossena A, Marchelli R, Casnati G. Reaction of aldehydes and ketones with t-butylbromide-dimethyl sulphoxide[J]. Tetrahedron,1984,40(11):2035–2039.
    [37] Talluri S K, Sudalai A. NBS-Catalyzed Hydroamination and Hydroalkoxylation of ActivatedStyrenes[J]. Org Lett,2005,7:855–857.
    [38] Karimi B, Serad H. N-Bromosuccinimide (NBS), a Novel and Highly Effective Catalyst forAcetylation of Alcohols under Mild Reaction Conditions[J]. Synlett,2001,519–520.
    [39] Sun X F, Sun R C, Zhao L, Sun J X. Acetylation of sugarcane bagasse hemicelluloses under mildreaction conditions by using NBS as a catalyst[J]. J Appl Polym Sci,2004,92(1):53–61.
    [40] Sun X F, Sun R C, Tomkinson J, Baird M S. Preparation of sugarcane bagasse hemicellulosicsuccinates using NBS as a catalyst[J]. Carbohydrate Polymers,2003,53(4):483–495.
    [41] Sun X F, Sun R C, Sun J X. A convenient acetylation of sugarcane bagasse using NBS as a catalyst forthe preparation of oil sorption-active materials[J]. J Mater Sci,2003,38(19):3915–3923.
    [42] Thakur V V, Sudalai A. N-Bromoamides as versatile catalysts for aziridination of olefins usingchloramine-T[J]. Tetrahedron Lett,2003,44:989–992.
    [43] Singh A K, Chopra D, Rahmani S, Singh B. Kinetics and mechanism of Pd(II) catalysed oxidation of-arabinose,-xylose and-galactose by N-bromosuccinimide in acidic solution[J]. Carbohydr Res,1998,314:157–160.
    [44] Sharma V B, Jain S L, Sain B. An efficient cobalt(II)catalyzed oxidation of secondary alcohols tocarbonyl compounds with N-bromosuccinimide[J]. J Mol Catal,2005,227:47–49.
    [45] Surendra K, Krishnaveni N S, Rao K R. A mild and efficient procedure for the oxidation of epoxidesand aziridines using cerium(IV) ammonium nitrate and NBS[J]. Tetrahedron Lett,2005,46:4111–4113.
    [46] Krishnaveni N S, Surendra K, Rao K R. A Simple and Highly Selective Biomimetic Oxidation ofAlcohols and Epoxides with N-Bromosuccinimide in the Presence of β-Cyclodextrin in Water[J]. AdvSynth Catal,2004,346:346–350.
    [47] Surendra K., Krishnaveni N S, Kumar V P, Sridhar R, Rao K R. Selective and efficient oxidation ofsulfides to sulfoxides with N-bromosuccinimide in the presence of β-cyclodextrin in water[J].Tetrahedron Lett,2005,46:4581–4583.
    [48] Khurana J M, Kandpal B M. A novel method of synthesis of1,2-diketones from1,2-diols usingN-bromosuccinimide [J]. Tetrahedron Lett,2003,44:4909–4912.
    [49] Rong Z-Q, Pan H-J, Yan H-L, ZhaoY. Enantioselective Oxidation of1,2-Diols with Quinine-DerivedUrea Organocatalyst[J]. Org Lett,2014,16:208–211.
    [50] Tanaka K, Toda F. Solvent-Free Organic Synthesis[J]. Chem Rev,2000,100:1025–1074.
    [51] Rahman A N M, Bishop R, Tan R, Shan N. Solid-state regio-and stereo-selective benzylic brominationof diquinoline compounds using N-bromosuccinimide[J]. Green Chem,2005,7:207–209.
    [52] Amijs C H M, Klink G P M, Koten K G. Carbon tetrachloride free benzylic brominations of methylaryl halides[J]. Green Chem,2003,5:,470–474.
    [53] Asandei A D, Percec V. From metal-catalyzed radical telomerization to metal-catalyzed radicalpolymerization of vinyl chloride: Toward living radical polymerization of vinyl chloride[J]. J PolymSci, Part A: Polym Chem,2001,39:3392–3418.
    [54] Zhou H, Jiang J G, Zhang K D. Synthesis and modeling of new phosphorus-containing acrylates[J]. JPolym Sci, Part A: Polym Chem,2005,43:2567–2583.
    [55] Ji K G, Zhu H T, Yang F, Shu X Z, Zhao S C, Liu X Y, Shaukat A, Liang Y M. A NovelIodine-Promoted Tandem Cyclization: An Efficient Synthesis of Substituted3,4-DiiodoheterocyclicCompounds[J]. Chem Eur J,2010,16:6151–6154.
    [56] Arcadi A, Cacchi S, Giuseppe S D, Fabrizi G, Marinelli F. Electrophilic Cyclization of o-Acetoxy-ando-Benzyloxyalkynylpyridines: An Easy Entry into2,3-Disubstituted Furopyridines[J]. Org Lett,2002,4:2409–2412.
    [57] Yue D, Cà N D, Larock R C. Efficient Syntheses of Heterocycles and Carbocycles by ElectrophilicCyclization of Acetylenic Aldehydes and Ketones[J]. Org Lett,2004,6(10):1581–1584.
    [58] Sniady A, Wheeler K A, Dembinski R.5-Endo-Dig Electrophilic Cyclization of1,4-Disubs-titutedBut-3-yn-1-ones: Regiocontrolled Synthesis of2,5-Disubstituted3-Bromo-and3-Iodofurans[J]. OrgLett,2005,7:1769–1772.
    [59] Jithunsa M, Ueda M, Miyata O. Copper(II)Chloride-Mediated Cyclization Reaction of N-Alkoxy-ortho-alkynylbenzamides[J]. Org Lett,2011,13:518–521.
    [60] a) Zhou L, Zhou J, Tan C K, Chen J, Yeung Y Y. N-Bromosuccinimide Initiated One-Pot Synthesis ofImidazoline[J]. Org Lett,2011,13:2448–2451. b) Zhou J, Zhou L, Yeung Y-Y. MulticomponentApproach in the Synthesis of2,2,6-Trisubstituted Morpholine Derivatives[J]. Org Lett,2012,14:5250–5253.
    [61] Zhou L, Tan C K, Zhou J, Yeung Y Y. Facile, Efficient, and Catalyst-Free ElectrophilicAminoalkoxylation of Olefins: Scope and Application[J]. J Am Chem Soc,2010,132:10245–10247.
    [62](a) Zhou L, Tan C K, Jiang X, Chen F, Yeung Y Y. Asymmetric Bromolactonization UsingAmino-thiocarbamate Catalyst[J]. J Am Chem Soc,2010,132:15474–15476.(b) Zhang W, Liu N,Schienebeck C M, Zhou X, Izhar I I, Guzei I A, Tang W. Enantioselective intermolecularbromoesterification of allylic sulfonamides[J]. Chem Sci,2013,4:2652–2656.(c) Zhang W, Xu H, XuH, Tang W. DABCO-Catalyzed1,4-Bromolactonization of Conjugated Enynes: Highly StereoselectiveFormation of a Stereogenic Center and an Axially Chiral Allene[J]. J Am Chem Soc,2009,131:3832–3833.(d) Zhang W, Zheng S, Liu N, Werness J B, Guzei I A, Tang W. EnantioselectiveBromolactonization of Conjugated (Z)-Enynes[J]. J Am Chem Soc,2010,132:3664–3665.
    [63] Kozak J A, Wu J, Su X, Simeon F, Hatton T A, Jamison T F. Bromine-Catalyzed Conversion of CO2and Epoxides to Cyclic Carbonates under Continuous Flow Conditions[J]. J Am Chem Soc,2013,135:18497–18501.
    [64] Hu Y, Yi R, Wang C, Xin X, Fan Wu, Wan B. From Propargylamides to Oxazole Derivatives:NIS-Mediated Cyclization and Further Oxidation by Dioxygen[J]. J Org Chem,2014,79:3052–3059.
    [1] Liang F, Cheng X, Liu J, Liu Q. Efficient three-component one-pot synthesis of fully substitutedpyridin-2(1H)-ones via tandem Knoevenagel condensation-ring-opening of cyclopropane-intramolecular cyclization[J]. Chem Commun,2009,3636–3638.
    [2] Wei Y, Liu J, Ding H, Liang F, Zhao B. Acetoacetanilides as Masked Isocyanates: Facile and EfficientSynthesis of Unsymmetrically Substituted Ureas[J]. Org Lett,2010,12:4220–4223.
    [3] Liang F, Lin S, Wei Y. Aza-Oxy-Carbanion Relay via Non-Brook Rearrangement: Efficient Synthesisof Furo[3,2-c]pyridinones[J]. J Am Chem Soc,2011,133:1781–1783.
    [4] Li M, Lin S, Dong Z, Zhang X, Liang F, Zhang J. Organocatalyzed Anion Relay Leading toFunctionalized2,3-Dihydrofurans[J]. Org Lett,2013,15:3978–3981.
    [5](a) Thakur V V, Talluri S K, Sudalai A. Transition Metal-Catalyzed Regio-and StereoselectiveAminobromination of Olefins with TsNH2and NBS as Nitrogen and Bromine Sources[J]. Org Lett,2003,5:861–864.(b) Anrunes A M M, Marto S J L, Branco P S, Prabhakar S, Lobo A M, Palladium(II)-promoted aziridination of olefins with bromamine T as the nitrogen transfer reagent[J]. ChemCommim,2001,405–406.
    [6](a) Chen Z-G, Wei J-F, Wang M-Z, Zhou L-Y, Zhang C-J, Shi X-Y. Aluminium Powder-CatalyzedRegio-and Stereoselective Aminobromination of α,β-Unsaturated Carbonyl Compounds and SimpleOlefins with the p-Toluenesulfonamide/N-Bromosuccinimide (TsNH2-NBS)System[J]. Adv Synth Catal,2009,351:2358–2368.(b) Chen Z, Wei J, Li W, Wang Y, Zhao P, Shi X.(+)-Tartaric Acid-CatalyzedHigh Regio-and Stereoselective Aminobromination of Olefins[J]. Chin J Chem,2011,29:16891696.(c) Wei J, Chen Z, Gao Y, Zhang P, Wang C, Zhao P, Wang Y, Shi X. A Rapid and Simple Method forQuantitative Aziridination from Aminobrominated Derivatives of Olefins under Solvent-free and MildConditions[J]. Chin J Chem,2012,30:391–399.
    [7](a) Chen D, Timmons C, Chao S, Li, G. Regio-and stereoselective copper-catalyzed synthesis of vicinalhaloamino ketones from a,β-unsaturated ketones[J]. Eur J Org Chem,2004,(14):3097–3101.(b) Liu J,Wang Y, Li G. Regio-and stereoselective synthesis of anti-1.3-diaryl-3-chloro-2-(o-nitrophenyl-sulfonylamino)-3-propan-l-ones through catalytic aminohalogenation reaction of α,β-unsaturatedketones[J]. Eur J Org Chem,2006,(14):3112–3115.(c) Han J, Zhi S, Wang L, Pan Y, Li G.CuCl-catalyzed regio-and stereoselective aminohalogenation of a,β-unsaturated nitriles[J]. Eur J OrgChem,2007,(8):1332–1337.
    [8] Cai Y, Liu X, Hui Y, Jiang J, Wang W, Chen W, Lin L, Feng X. Catalytic Asymmetric Bromoaminationof Chalcones: Highly Efficient Synthesis of Chiral α-Bromo-β-Amino Ketone Derivatives[J]. AngewChem Int Ed,2010,49:6160–6164.
    [1] Wolters B, Eilert U. Antimicrobial Substances in Callus Cultures of Ruta graveolens[J]. Planta Med,1981,43:166–174.
    [2] Svoboda G H, Poore G A, Simpson P J, Boder G B. Alkaloids of Acronychia Baueri Schott I. Isolationof the alkaloids and a study of the antitumor and other biological properties of acronycine[J]. J PharmSci,1966,55:758–768.
    [3] Basco L K, Mitaku S, Skaltsounis A L, Ravelomanantsoa N, Tillequin F, Koch M, Le Bras J. Invitroactivities of furoquinoline and acridone alkaloids against Plasmodium falciparum[J]. AntimicrobAgents Chemother,1994,38:1169–1171.
    [4] Fukuda T, Yamaguchi Y, Masuma R, Tomoda H, Omura S. Citridones, new potentiators of antifungalmiconazole activity, produced by Penicillium sp. FKI-1938. I. Taxonomy, fermentation, isolation andbiological properties[J] J Antibiot,2005,58:309–314.
    [5] Conreaux D, Delaunay T, Desbordes P, Monteiro N. Geneviève BalmeA convenient access tofuro[3,2-c]pyridin-6(5H)-ones by the reaction of5-iodo-4-methoxy-2-pyridones with terminal alkynesunder microwave-enhanced Sonogashira conditions[J]. Tetrahedron Letters,2009,50:3299–3301.
    [6] Clive D L J, Huang X. Model Studies and First Synthesis of the Antifungal and Antibacterial AgentCladobotryal[J]. J Org Chem,2004,69:1872–1879.
    [7](a) Sinder B B, Che Q. Synthesis of Cladobotryal, CJ16,169, and CJ16,170[J]. Org Lett,2004,6:2877–2280.(b)唐玉敏,李晶,赵圣印.4-羟基-2-吡啶酮类天然生物碱的研究进展[J].有机化学,2011,31(1):9–21.
    [8] Tsuchinari M, Shimanuki K, Hiramatsu F, Muratama T, Koseki T, Shiono Y. Fusapyridons A and B,Novel Pyridone Alkaloids from an Endophytic Fungus, Fusarium sp. YG-45[J]. Z Naturforsch, B:Chem Sci,2007,62:1203–1207.
    [9] Conreaux D, Belot S, Desbordes P, Monteir N, Balme G. Et3N-Induced Demethylation-Annulation of3-Alkynyl-4-methoxy-2-pyridones and Structurally Related Compounds in the Synthesis ofFuran-Fused Heterocycles[J]. J Org Chem,2008,73:8619–8622.
    [10] Liang F, Lin S, Wei Y. Aza-Oxy-Carbanion Relay via Non-Brook Rearrangement: Efficient Synthesisof Furo[3,2-c]pyridinones[J]. J Am Chem Soc,2011,133:1781–1783.
    [11](a) Huang P, Zhang N, Zhang Ri, Dong D. Vilsmeier-Type Reaction of DimethylaminoalkenoylCyclopropanes: One-Pot Access to2,3-Dihydrofuro[3,2-c]pyridin-4(5H)-ones[J]. Org Lett,2012,14:370–373.(b)杨杨. α-羰基二硫缩烯酮的Vilsmeier反应研究:多取代β-内酰胺的合成[D]:[硕士学位论文].长春:东北师范大学,2008.
    [12] Huang P, Zhang R, Liang Y, Dong D.[5C+1N] Annulations: Two Novel Routes to Substituted Dihyd-rofuro[3,2-c]pyridines[J]. Org Lett,2012,14:5196–5199.
    [13] Yang W, Xu L, Chen Z, Zhang L, Miao M, Ren H. Ru-Catalyzed Synthesis of Dihydrofuroquinolinesfrom Azido-cyclopropyl Ketones[J]. Org Lett,2012,15:1282–1285.
    [14] Baldwin J E. Rules for ring closure[J]. J Chem Soc Chem Commun,1976,734–736.
    [15] Capon B, McManus S P. Neighboring Group Participation[M]. Vol.1, Plenum, New York,1976.
    [16] Chuang T-H, Sharpless K B. Applications of Aziridinium Ions. Selective Syntheses of α,β-DiaminoEsters, α-Sulfanyl-β-amino Esters, β-Lactams, and1,5-Benzodiazepin-2-one[J]. Org Lett,2000,2:3555–3557.
    [17] Couturier C, Blanchet J, Schlama T, Zhu J. Aziridinium from N,N-Dibenzyl Serine Methyl Ester:Synthesis of Enantiomerically Pure β-Amino and α, β-Diamino Esters[J]. Org Lett,2006,8:2183–2186.
    [18] Hamilton G L, Kanai T, Toste F D. Chiral Anion-Mediated Asymmetric Ring Opening of meso-Aziridinium and Episulfonium Ions[J]. J Am Chem Soc,2008,130:14984–14986.
    [19] Jarvis S B D, Charette A B. Synthesis of Enantiopure Substituted Piperidines via an Aziridinium RingExpansion[J]. Org Lett,2011,13:3830–3833.
    [20](a) Wang B M, Song Z L, Fan C A, Tu Y Q, Shi Y. Lewis Acid Promoted Highly StereoselectiveRearrangement of2,3-Aziridino Alcohols: A New Efficient Approach to β-Amino CarbonylCompounds[J]. Org Lett,2002,4:363–366.(b) Farid U, Malmedy F, Claveau R, Albers L, Wirth T.Stereoselective Rearrangements with Chiral Hypervalent Iodine Reagents[J]. Angew Chem Int Ed,2013,52:7018–7022.
    [21] Song Z L, Wang B M, Tu Y Q, Fan C A, Zhang S Y. A General Efficient Strategy for cis-3a-Aryloctahydroindole Alkaloids via Stereocontrolled ZnBr2-Catalyzed Rearrangement of2,3-AziridinoAlcohols[J]. Org Lett,2003,5:2319–2321.
    [22] Xia X-F, Shu X-Z, Ji K-G, Yang Y-F, Shaukat A, Liu X-Y, Liang Y-M. Platinum-CatalyzedMichael Addition and Cyclization of Tertiary Amines with Nitroolefins by Dehydrogenation of α, β-sp3C H Bonds[J]. J Org Chem,2010,75:2893–2902.
    [23] Tian J-S, Loh T-P. Copper-Catalyzed Rearrangement of Tertiary Amines through Oxidation ofAliphatic C–H Bonds in Air or Oxygen: Direct Synthesis of α-Amino Acetals[J]. Angew Chem Int Ed,2010,49:8417–8420.
    [24] Huang X, Fu W, Miao M. An efficient synthesis of highly substituted furans via the electrophiliccyclization of1-(1-alkynyl)-cyclopropyl ketones[J]. Tetrahedron Lett,2008,49:2359–2362.
    [25] Zhong G, Shabat D, List B, et al. Catalytic Enantioselective Retro-Aldol Reactions: Kinetic Resolutionof β-Hydroxyketones with Aldolase Antibodies[J]. Angew Chem Int Ed,1998,37:2481–2484.
    [26] Miura T, Shimada M, Murakami M. Acyl1,3-Migration in Rhodium-Catalyzed Reactions ofAcetylenic β-Ketoesters with Aryl Boronic Acids: Application to Two-Carbon-Atom RingExpansions[J]. Angew Chem Int Ed,2005,44:7598–7600.
    [1] Lakey F N, McLeod J E. The coumarins of Geijera parviflora Lindl[J]. Aust J Chem,1967,20:1943–1967.
    [2] Raffauf R F, Huang P K C, Levery S B, Brennen T F, Le Quesne P W, Eremantholide A. a noveltumor-inhibiting compound from Eremanthus elaeognus Schultz-Bip (Composi-tae)[J]. J Am Chem Soc,1975,97:6884–6886.
    [3] Kupchan S M, Matz M J, Sigel C W, Renauld J A, Haltiwanger R C, Bryan R F. Jatrophone, a novelmacrocyclic diterpenoid tumor inhibitor from Jatropha gossypiiflora[J]. J Am Chem Soc,1970,92:4476–4477.
    [4] Baraldi P G, Guameri M, Manfredini S, Simoni D, Balzarini J, De Clercq E. Synthesis and cytostaticactivity of geiparvarin analogues[J]. J Med Chem,1989,32:284–288.
    [5] Simoni D, Manfredini S, Aghazadeh Tabrizi M, Bazzanini R, Baraldi P G, Balzarini J, De Clercq E.Geipallrarin analogues.2. Synthesis and cytostatic activity of5-(4-aryl-butadienyl)-3(2H)-furanonesand of N-substituted3-(4-oxo-2-furanyl)-2-buten-2-yl carbamates[J]. J Med Chem,1991,34:3172–3176.
    [6] Baraldi P G, Manfredini S, Simoni D, Aghazadeh Tabrizi M, Balzarini J, De Clercq E. Geiparvarinanalogues.3. Synthesis and cytostatic activity of3(2H)-furanone and4,5-dihydro-3(2H)-furanonecongeners of geiparvarin, containing a geraniol-like fragment in the side chain[J]. J Med Chem,1992,35:1877–1882.
    [7] Ma S, Shi Z, Yu Z. Synthesis of β-halobutenolides and their Pd(0)-catalyzed cross-coupling reactionswith terminal alkynes and organozinc reagents. A general route to β-substituted butenolides and formalsynthesis of cis-whisky lactone[J]. Tetrahedron,1999,55:12137–12148.
    [8] Zhang J, Blazecka P G, Belmont D, Davidson J G. Reinvestigation of Mucohalic Acids, Versatile andUseful Building Blocks for Highly Functionalized α, β-Unsaturated γ-Butyrolactones[J]. Org Lett,2002,4:4559–4561.
    [9] Wu J, Zhu Q, Wang L, Fathi R, Yang Z. Palladium-Catalyzed Cross-Coupling Reactions of4-Tosyl-2(5H)-furanone with Boronic Acids: A Facile and Efficient Route to Generate4-Substituted2(5H)-Furanones[J]. J Org Chem,2003,68:670–673.
    [10](a)毛超旭,汪朝阳,谭越河,薛福玲.金属催化的2(5H)-呋喃酮反应研究进展[J].有机化学,2011,31:13771387.(b) Boukouvalas J, Cote S, Ndzi B. Facile access to4-(1-alkynyl)-2(5H)-furanones by Sonogashira coupling of terminal acetylenes with β-tetronic acid bromide: efficientsynthesis of cleviolide[J]. Tetrahedron Lett,2007,48:105–107.
    [11] Crone B, Kirsch S F. Synthesis of4-Iodo-3-furanones Utilizing Electrophile-Induced TandemCyclization/1,2-Migration Reactions[J]. J Org Chem,2007,72:5435–5438.
    [12] Egi M, Azechi K, Saneto M, Shimizu K, Akai S. Cationic Gold(I)-Catalyzed IntramolecularCyclization of γ-Hydroxyalkynones into3(2H)-Furanones[J]. J Org Chem,2010,75:2123–2126.
    [13] Qi C, Jiang H, Huang L, Yuan G, Ren Y. Carbon Dioxide Triggered and Copper-Catalyzed DominoReaction Efficient Construction of Highly Substituted3(2H)-Furanones from Nitriles and PropargylicAlcohols[J]. Org Lett,201113:5520–5523.
    [14] Poonoth M, Krause N. Cycloisomerization of Bifunct ionalized Allenes: Synthesis of3(2H)-Furanonesin Water[J]. J Org Chem,2011,76:1934–1936.
    [15] Reiter M, Turner H, Mills-Webb R, Gouverneur V. Palladium-Catalyzed Oxidative Cyclizations:Synthesis of Dihydropyranones and Furanones[J]. J Org Chem,2005,70:8478–8485.
    [16] Noutsias D, Kouridaki A, Vassilikogiannakis G. Scope and Limitations of the Photooxidations of2-(α-Hydroxyalkyl)furans: Synthesis of2-Hydroxy-exo-brevicomin[J]. Org Lett,2011,13:1166–1169.
    [17] Buchi G, Demole E. Syntheses of2,5-Dimethyl-4-hydroxy-2,3-dihydrofuran-3-one, a flavor principleof pineapple and strawberry[J]. J Org Chem,1973,38:123–125.
    [18] Chimichi S, Boccalini M, Cosimelli B, Dal Acqua F, Viola G. New5-(2-ethenylsubstituted)-3(2H)-fur-anones with in vitro antiproliferative activity[J]. Tetrahedron,2003,59:5215–5223.
    [19] Matsui M, Ogawa T, Kitahara T, Takagi K. Preparation of dihydrofuranone derivative and novelintermediate[P]. JP54-115369,1979.
    [20] Fischer C, Smith S W, Powell A, Fu G C. Umpolung of Michael Acceptors Catalyzed byN-Heterocyclic Carbenes[J]. J Am Chem Soc,2006,128:1472–1473.
    [21] Sparr C, Gilmour R. Cyclopropyl Iminium Activation: Reactivity Umpolung in EnantioselectiveOrganocatalytic Reaction Design[J]. Angew Chem Int Ed,2011,50,8391–8395.
    [22] Barker T J, Jarvo E R. Titanium-Mediated Amination of Grignard Reagents Using Primary andSecondary Amines[J]. Angew Chem Int Ed,2011,50:8325–8328.
    [23] Moran J, Smith A G, Carris R M, Johnson J S, Krische M J. Polarity Inversion of Donor–AcceptorCyclopropanes: Disubstituted δ-Lactones via Enantioselective Iridium Catalysis[J]. J Am Chem Soc,2011,133:18618–18621.
    [24] Dakanali M, Tsikalas G K, Krautscheid H, Katerinopoulos H E. Formate ester synthesis via reaction of2-bromoethylamines with dimethylformamide[J]. Tetrahedron Lett,2008,49:1648–1651.
    [25] Muzart J. N,N-Dimethylformamide: much more than a solvent[J]. Tetrahedron,2009,65:8313–8323.
    [26] Reddy D N, Prabhakaran E N. Synthesis and Isolation of5,6-Dihydro-4H-1,3-Oxazine Hydrobromidesby Autocyclization of N-(3-Bromopropyl)amides[J]. J Org Chem,2011,76:680–683.
    [27] Saito T, Ogawa S, Takei N, Kutsumura N, Otani T. Palladium-Catalyzed Highly Regio-andStereoselective Synthesis of4-Alkylidene-4H-3,1-benzoxazines from N-Acyl-o-alkynyl-anilines[J].Org Lett,2011,13:1098–1101.
    [28] Couto I, Tellitu I, Domínguez E. An Intramolecular PIFA-Mediated Metal-Free Allylic Oxycarbonyl-ation Reaction and Its Application to the Preparation of Furopyrimidinones[J]. J Org Chem,2010,75:7954–7957.
    [29] Jaganathan A, Garzan A, Whitehead D C, Staples R J, Borhan B. A Catalytic AsymmetricChlorocyclization of Unsaturated Amides[J]. Angew Chem Int Ed,2011,50:2593–2596.
    [1](a) álvarez S, álvarez R, Khanwalkar H, et al. Retinoid receptor subtype-selective modulators throughsynthetic modifications of RARc agonists[J]. Bioorg Med Chem,2009,17:4345–4359.(b)张娟.甲基酮、胺和NIS的铜催化有氧氧化合成α-氧代酰胺[D]:[硕士学位论文].长春:东北师范大学,2013.
    [2] Tanaka H, Kuroda A, Marusawa H, et al. Structure of FK506: A Novel Immunosuppressant Isolatedfrom Streptomyces[J]. J Am Chem Soc,1987,109:5031–5033.
    [3] Fusetani N, Matsunaga S, Matsumoto H, et al. Cyclotheonamides, Potent Thrombin Inhibitors, from aMarine Sponge Theonella sp[J]. J Am Chem Soc,1990,112:7053–7054.
    [4] Hagihara M, Schreiber S. L. Reassignment of Stereochemistry and Total Synthesis of the ThrombinInhibitor Cyclotheonamide[J]. J Am Chem Soc,1992,114:6570–6571.
    [5] Maryanoff B E, Greco M N, Zhang H C, et al. Macrocyclic Peptide Inhibitors of Serine Proteases.Convergent Total Synthesis of Cyclotheonamides A and B via a Late-Stage Primary AmineIntermediate. Study of Thrombin Inhibition under Diverse Conditions[J]. J Am Chem Soc,1995,117:1225–1239.
    [6] Li Z, Ortega-Vilain A-C, Patil G S, et al. Novel Peptidyl-Keto Amide Inhibitors of Calpains andOther Cysteine Proteases[J]. J Med Chem,1996,39:4089–4098.
    [7] Munoz B, Giam C-Z, Wong C-H.-Ketoamide Phe-Pro Isostere as a New Core Structure for theInhibition of HIV Protease[J]. Bioorg Med Chem,1994,2:1085–1090.
    [8] Sheha M M, Mahfouz N M, Hassan H Y, et al. Synthesis of di-and tripeptide analogues containingα-ketoamide as a new core structure for inhibition of HIV-1protease[J]. Eur J Med Chem,2000,35:887–894.
    [9] Ocain T D, Rich D H. a-Keto Amide Inhibitors of Aminopeptidases[J]. J Med Chem,1992,35:451–456.
    [10] Jesuraj J L, Sivaguru J. Photochemical type II reaction of atropchiral benzoylformamides to pointchiral oxazolidin-4-ones. Axial chiral memory leading to enantiomeric resolution of photoproducts[J].Chem Commun,2010,46:4791–4793.
    [11] Tomita D, Yamatsugu K, Kanai M, et al. Enantioselective Synthesis of SM-130686Based on theDevelopment of Asymmetric Cu(I)F Catalysis To Access2-Oxindoles Containing a TetrasubstitutedCarbon[J]. J Am Chem Soc,2009,131:6946–6948.
    [12] Yang L, Wang D-X, Huang Z-T, et al. Cr(III)(salen)Cl Catalyzed Enantioselective IntramolecularAddition of Tertiary Enamides to Ketones: A General Access to Enantioenriched1H-Pyrrol-2(3H)-one Derivatives Bearing a Hydroxylated Quaternary Carbon Atom[J]. J Am ChemSoc,2009,131:10390–10391.
    [13] OcainT D, Rich D H. α-Keto Amide Inhibitors of Aminopeptidases[J]. J Med Chem,1992,35:451–456.
    [14] Singh R P, Shreeve J M. One-Pot Route to New γ,γ-Difluoroamides and γ-Ketoamides[J]. J Org Chem,2003,68:6063–6065.
    [15] Liu J, Zhang R, Wang S, Sun W, Xia C. A General and Efficient Copper Catalyst for the DoubleCarbonylation Reaction [J]. Org Lett,2009,11:1321–1324.
    [16] Grassot G M, Masson G, Zhu J. Synthesis of α-Ketoamides by a Molecular-Sieves-Promoted FormalOxidative Coupling of Aliphatic Aldehydes with Isocyanides[J]. Angew Chem Int Ed,2008,47:947–950.
    [17] Song B, Wang S, Sun C. Cesium carbonate promoted aerobic oxidation of arylacetamides: an efcientaccess to N-substituted α-keto amides[J]. Tetrahedron Lett,2007,48:8982–8986.
    [18] Zhang C, Xu Z, Zhang L, et al. Copper-Catalyzed Aerobic Oxidative Coupling of Aryl Acetaldehydeswith Anilines Leading to α-Ketoamides[J]. Angew Chem Int Ed,2011,50:11088–11092.
    [19] Zhang C, Jiao N. Dioxygen Activation under Ambient Conditions: Cu-Catalyzed Oxidative Amidation-Diketonization of Terminal Alkynes Leading to γ-Ketoamides[J]. J Am Chem Soc,2010,132:28–29.
    [20] Du F, Ji J. Copper-catalyzed direct oxidative synthesis of α-ketoamides from aryl methyl ketones, amines, and molecular oxygen[J]. Chem Sci,2012,3:460–465.
    [21] Zhang J, Wei Y, Lin S, Liang F, Liu P. Cu-catalyzed aerobic oxidative synthesis of α-ketoamides frommethyl ketones, amines and NIS at room temperature[J]. Org Biomol Chem,2012,10(46):9237–9242.
    [22] Lamani M, Prabhu K R. NIS-Catalyzed Reactions: Amidation of Acetophenones and OxidativeAmination of Propiophenones[J]. Chem Eur J,2012,18:14638–14642.
    [23] Li D, Wang M, Liu J, Zhao Q, Wang L. Cu(II)-catalyzed decarboxylative acylation of acyl C–H offormamides with α-oxocarboxylic acids leading to α-ketoamides[J]. Chem Commun,2013,49:3640–3642.
    [24] Dakanali M, Tsikalas G K, Krautscheid H, Katerinopoulos H E. Formate ester synthesis via reaction of2-bromoethylamines with dimethylformamide[J]. Tetrahedron Lett.,2008,49:1648–1651.
    [25] Muzart J. N,N-Dimethylformamide: much more than a solvent[J]. Tetrahedron,2009,65:8313–8323.
    [26] Wei Y, Lin S, Xue H, Liang F. Halonium-Initiated C–O Bond Formation via Umpolung of α-Carbon tothe Carbonyl: Efficient Access to5-Amino-3(2H)-furanones[J]. Org Lett,2012,14:712–715.
    [27] Wei Y, Lin S, Zhang J, Liang F. Halonium-initiated electrophilic cascades of1-alkenoylcyclopropanecarboxamides: efficient access to dihydrofuropyridinones and3(2H)-furanones[J]. Chem Commun,2011,47:12394–12396.
    [28] Li C J. Cross-Dehydrogenative Coupling (CDC):Exploring C–C Bond Formations beyond FunctionalGroup Transformations[J]. Accounts Cheml Res,2010,42:335–344.
    [29] Zhao L, Li C J. Functionalizing Glycine Derivatives by Direct C–C Bond Formation[J]. Angew ChemInt Ed,2008,47:7075–7078.
    [30] Wei W, Shao Y, Hu H, et al. Coupling of Methyl Ketones and Primary or Secondary Amines Leadingto α-Ketoamides[J]. J Org Chem,2012,77:71577165.
    [1] Sawant D N, Wagh Y S, Bhatte K D, Bhanage B M. Carbon Monoxide-Free One-Step Synthesis ofIsoindole-1,3-diones by Cycloaminocarbonylation of o-Haloarenes Using Formamides[J]. Eur J OrgChem,2011,6719–6724.
    [2]徐自奥,周伟斌,刘宏亮,李晓祥.盐酸安非他酮的合成工艺研究[J].安徽大学学报(自然科学版),2006,30:87–90.
    [3](a)常颖,高利生.4-甲基甲卡西酮综述[J].中国现代药物应用,2011,5:121–125.(b)史文革. α-氨基酮的合成研究[D]:[硕士学位论文].长沙:湖南大学,2004.
    [4]彭梦侠,周容,谢川,王绅典.光引发剂1-对吗啉苯基-2-二甲氨基-2-苄基-1-丁酮的合成及光引发性能测试[J].四川联合大学学报(工程科学版),1999,3:36–58.
    [5] Yi L X, Lu H H, Wu W-L, Zhang Q-M. Synthesis of2-methyl-(4-methylthio)-2-morpholinopr-opiophenone[J]. Fine and Specialty Chemicals,2012,20:43–45.
    [6] Le Z-G, Chen Z-C, Hu Y, Zheng Q-G. Organic Reactions in Ionic liquids: N-Alkylation of Phthalimideand Several Nitrogen Heterocycles[J]. Synthesis,2004,(02):208–212.
    [7] Sen S E, Roach S L. A convenient Two-Step Procedure for the Synthesis of Substituted Allylic Aminesfrom Allylic Alcohols[J]. Synthesis,1995,(07):756–758.
    [8]谢川,周容,彭梦侠等. α-氨基苯乙酮衍生物的合成和应用[J].精细石油化工,1999,5(3):12–14.
    [9]李斌栋,吕春绪,余宗学.1-对甲硫基苯基-2-甲基-2-吗啉基-1-丙酮的合成与应用[J].精细石油化工,2001,5(3):10–12.
    [10] Daniel M P, Janson T R, Stephen J N, et al. A Short, One-Pot Systhesis of Bupropion.[J]. Chem Edu,2000,77(11):1386–1387.
    [11] Jandirk S T. Anorexigenic propiophenones.[P]. US:3001910,1962-04-16.
    [12] Skwarski D, Kowal K. Synthesis of some1-phenacyaminoadamantane derivatives.[J]. Poznan RoszMed,1984,(8):97–101.
    [13] Chen D, Sun H, Zeng Z, et al. Preparation of phenylethanolamine compounds.[P]. CN1237574,1999-12-08.
    [14] Evans R W, Zbieg J R, Zhu S, Li W, MacMilla D W C. Simple Catalytic Mechanism for the DirectCoupling of α-Carbonyls with Functionalized Amines: A One-Step Synthesis of Plavix[J]. J Am ChemSoc,2013,135:1607416077.
    [15] Miura T, Morimoto M, Murakami M. Copper-Catalyzed Amination of Silyl Ketene Acetals withN-Chloroamines[J]. Org Lett,2012,14:5214–5217.
    [16] Matsuda N, Miura M. Copper-Catalyzed Amination of Ketene Silyl Acetals with Hydroxylamines:Amination Approach to α-AminoAcids[J]. Angew Chem Int Ed,2012,51:11827–11831.
    [17] Djerassi C. Brominations with N-Bromosuccinimide and Related Compounds. The Wohl-ZieglerReaction[J]. Chem Rev,1948,43(2):271–317.
    [18] Godoi B, Schumacher R F, Zeni G. Synthesis of Heterocycles via Electrophilic Cyclization of AlkynesContaining Heteroatom[J]. Chem Rev,2011,111(4):2937–2980.
    [19] Cope A C, Burrows E P, Derieg M E, Moon S, Wirth W-D. Rimocidin. I. Carbon Skeleton, PartialStructure, and Absolute Configuration at C-271[J]. J Am Chem Soc,1965,87:5452–5460.
    [20] Teo K E, Warnhoff E W. α-Halo ketones.VII. Origin of disubstitution products in ketone halogenation.New mechanism[J]. J Am Chem Soc,1973,95:2728–2729.
    [21] Yang D, Yan Y-L, Lui B. Mild α-Halogenation Reactions of1,3-Dicarbonyl Compounds Catalyzed byLewis Acids[J]. J Org Chem,2002,67:7429–7431.
    [22] Castellote I, Moron M, Burgos C, Alvarez-Builla J, Martin A, Gomez-Sal P, Vaquero J J. Reaction ofimines with N-iodosuccinimide (NIS): unexpected formation of stable1:1complexes[J]. ChemCommun,2007,1281–1283.
    [23] Crowston E H, Lobo A M, Prabhakar S, Rzepa H S, D. Williams J. X-Ray and SCF–MO model studyof the complex formed between N-bromosuccinimide and1,4-diazabicyclo[2.2.2]octane[J]. J ChemSoc, Chem Commun,1984,276–278.
    [24] Raatikainen K, Rissanen K. Breathing molecular crystals: halogen-and hydrogen-bonded porousmolecular crystals with solvent induced adaptation of the nanosized channels[J]. Chem Sci,2012,3:1235–1239.
    [25] Wang Y-M, Wu J, Hoong C, Rauniyar V, Toste F D. Enantioselective Halocyclization Using ReagentsTailored for Chiral Anion Phase-Transfer Catalysis[J]. J Am Chem Soc,2012,134:12928–12931.
    [26] Sakakura A, Ukai A, Ishihara K. Enantioselective halocyclization of polyprenoids induced bynucleophilic phosphoramidites[J]. Nature,2007,445:900–903.
    [27] Snyder S A, Treitler D S. Et2SBrSbCl5Br: an effective reagent for direct bromonium-induced polyenecyclizations[J]. Angew Chem Int Ed,2009,48:7899–7903.
    [28] Cui X-L, Brown R S. Mechanistic Evaluation of the Halocyclization of4-Penten-1-ol by SomeBis(2-substituted pyridine) and Bis(2,6-disubstituted[J]. J Org Chem,2000,65:5653–5658.
    [29] Ritson D J, Spiteri C, Moses J E. A Silver-Mediated One-Step Synthesis of Oxazoles[J]. J Org Chem,2011,76:3519–3522.
    [30] Bergeron M, Johnson T, Paquin J-F. The Use of Fluoride as a Leaving Group: SN2Displacement of aC–F Bond on3,3-Difluoropropenes with Organolithium Reagents To Give Direct Access toMonofluoroalkenes[J]. Angew Chem Int Ed,2011,50:11112–11116.
    [31] Walter S M, Kniep F, Herdtweck E, Huber S M. Halogen-Bond-Induced Activation of aCarbon–Heteroatom Bond[J]. Angew Chem Int Ed,2011,50:7187–7191.
    [32] Liu C, Zhang H, Shi W, Lei A. Bond Formations between Two Nucleophiles: Transition MetalCatalyzed Oxidative Cross-Coupling Reactions[J]. Chem Rev,2011,111:1780–1824.
    [1] Buchi G, Gould S J, Naf F. Stereospecific syntheses of uleine and epiuleine[J]. J Am Chem Soc,1971,93:2492–2501.
    [2] Traxler P, Trinks U, Buchdunger E, Mett H, Meyer T, Mueller M, Regenass U, Roesel J, Lydon N.
    [(Alkylamino)methyl]acrylophenones: Potent and Selective Inhibitors of the Epidermal Growth FactorReceptor Protein Tyrosine Kinase[J]. J Med Chem,1995,38:2441–2448.
    [3] Cardillo G, Tomasini C. Asymmetric synthesis of β-amino acids and α-substituted β-amino acids[J].Chem Soc Rev,1996,25:117–128.
    [4] Devine P N, Heid R M, Tschaen D M. Stereoselective synthesis of2-aryloxy esters: An asymmetricapproach to fluoxetine, tomoxetine and nisoxetine[J]. Tetrahedron,1997,53:6739–6746.
    [5]严汉英.论β-氨基酮的药理活性[J].药学进展,1963年Z1期.
    [6] Craig J C, Moyle M, Johnson L F. Amine Exchange Reactions. Mannich Bases from AromaticAmines[J]. J Org Chem,1964,29:410–415.
    [7]徐秀娟,陈光旭.芳香胺参加的Mannich反应[J].化学学报,1982,40(5):463–468.
    [8]王利民,韩建伟,盛佳,樊兆玉,田禾. Yb(OTf)3催化苯乙酮、芳香醛和芳香胺的Mannich反应:三组分“一锅法”合成β-氨基酮衍生物[J].2005,25:591–594.
    [9]易林,邹君华,徐秀娟.芳香酮与芳香醛及芳香胺的Mannich反应[J].化学通报,1991,(5):20–21.
    [10]王利民,韩建伟,盛佳等. Yb(OTf)3催化苯乙酮、芳香醛和芳香胺的Mannich反应:三组分一锅法合成氨基酮衍生物[J].有机化学,2005,25(5):591–594.
    [11] Wang L, Han J, Sheng J, Tian H, Fan Z. Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-potMannich reaction: three component synthesis of β-amino carbonyl compounds[J]. Catal Comm,2005,6:201–204.
    [12] Wang R, Li B, Huang T, Shi L, Lu X. NbCl5-Catalyzed one-pot Mannich-type reaction: threecomponent synthesis of β-amino carbonyl compounds[J]. Tetrahedron Letters,2007,48:2071–2073.
    [13] Li J, Peng Y, Song G. Mannich reaction catalyzed by carboxyl-functionalized ionic liquid in aqueousmedia[J]. Catal Letters,2005,102(3–4):159–162.
    [14] Fang D, Luo J, Zhou X-L, Liu Z-L. Mannich reaction in water using acidic ionic liquid as recoverableand reusable catalyst[J]. Catal Letters,2007,116(1–2):76–80.
    [15] Azizi N, Torkiyan L, Saidi M R. Highly Efficient One-Pot Three-Component Mannich Reaction inWater Catalyzed by Heteropoly Acids[J]. Org Lett,2006,8:2079–2082.
    [16] Shen W, Wang L-M, Tian H. Quaternary ammonium salt gemini surfactants containing perfluoroalkyltails catalyzed one-pot Mannich reactions in aqueous media[J]. J Fluor Chem,2008,129:267–273.
    [17] Bigdeli M A, Nemati F, Mahdavinia G H. HClO4–SiO2catalyzed stereoselective synthesis of β-aminoketones via a direct Mannich-type reaction[J]. Tetrahedron Letters,2007,48:6801–6804.
    [18] Li Z, Ma X, Liu J, Feng X, Tian G, Zhu A. Silica-supported aluminum chloride: A recyclable andreusable catalyst for one-pot three-component Mannich-type reactions[J]. J Mol Catal A Chem,2007,272(1–2):132–135.
    [19] Gomtsyan A. Direct Synthesis of a-Aminoketones from Amides via Novel Sequential NucleophilicSubstitution/Michael Reaction[J]. Org Lett,2000,2:11–13.
    [20] Wang, B M, Song, Z L, Fan, C A, Tu, Y Q, Shi Y. Lewis Acid Promoted Highly StereoselectiveRearrangement of2,3-Aziridino Alcohols: A New Efficient Approach to β-Amino CarbonylCompounds[J]. Org Lett,2002,4:363–366.
    [21] Yadav L D S, Rai V K, Singh S, Singh P. NHC-catalyzed efficient synthesis of β’-amino enones viacarbonyl umpolung reaction of enals with aziridines[J]. Tetrahedron Letters,2010,51:1657–1662.
    [22] Huang L, Zhang X, Zhang Y. CuBr-Catalyzed Reaction of N,N-Dimethylanilines and Silyl Enol Ethers:An Alternative Route to β-Arylamino Ketones[J]. Org Lett,2009,11:3730–3733.
    [23] Wei Y, Lin S, Liang F. One-Pot Cascade Leading to Direct α-Imidation of Ketones by a Combinationof N-Bromosuccinimide and1,8-Diazabicyclo[5.4.1]undec-7-ene[J]. Org Lett,2012,14:4202–4205.
    [24] Castellote I, Moron M, Burgos C, Alvarez-Builla J, Martin A, Gomez-Sal P, Vaquero J J. Reaction ofimines with N-iodosuccinimide (NIS): unexpected formation of stable1:1complexes[J]. ChemCommun,2007,1281–1283.
    [25] Crowston E H, Lobo A M, Prabhakar S, Rzepa H S, D. Williams J. X-Ray and SCF–MO model studyof the complex formed between N-bromosuccinimide and1,4-diazabicyclo[2.2.2]octane[J]. J ChemSoc Chem Commun,1984,276–278.
    [26] Raatikainen K, Rissanen K. Breathing molecular crystals: halogen-and hydrogen-bonded porousmolecular crystals with solvent induced adaptation of the nanosized channels[J]. Chem Sci,2012,3:1235–1239.
    [27] Wang Y-M, Wu J, Hoong C, Rauniyar V, Toste F D. Enantioselective Halocyclization Using ReagentsTailored for Chiral Anion Phase-Transfer Catalysis[J]. J Am Chem Soc,2012,134:12928–12931.
    [28] Sakakura A, Ukai A, Ishihara K. Enantioselective halocyclization of polyprenoids induced bynucleophilic phosphoramidites[J]. Nature,2007,445:900–903.
    [29] Snyder S A, Treitler D S. Et2SBrSbCl5Br: an effective reagent for direct bromonium-induced polyenecyclizations[J]. Angew Chem Int Ed,2009,48:7899–7903.
    [30] Cui X.-L, Brown R S. Mechanistic Evaluation of the Halocyclization of4-Penten-1-ol by SomeBis(2-substituted pyridine) and Bis(2,6-disubstituted[J]. J Org Chem,2000,65:5653–5658.
    [31] Denmark S E, Burk M T. Lewis base catalysis of bromo-and iodolactonization, andcycloetherification[J]. Proc Nat Acad Sci USA,2010,107:20655–20660.
    [32] Denmark S E, Kuester W E, Burk M T. Catalytic, Asymmetric Halofunctionalization of Alkenes—ACritical Perspective[J]. Angew Chem Int Ed,2012,51:10938–10953.
    [33] Cheng Y A, Chen T, Tan C K, Heng J J, Yeung Y-Y. Efficient Medium Ring Size BromolactonizationUsing a Sulfur-Based Zwitterionic Organocatalyst[J]. J Am Chem Soc,2012,134:16492–16495.
    [34] Denmark S E, Kornfilt D J P, Vogler T. Catalytic Asymmetric Thiofunctionalization of UnactivatedAlkenes[J]. J Am Chem Soc,2011,133:15308–15311.
    [35] Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G. Halogen bonding in supramolecularchemistry[J]. Angew Chem Int Ed,2008,47:6114–6127.
    [36] Metrangolo P, Neukrch H, Pilati T, Resnati G. Halogen Bonding Based Recognition Processes: AWorld Parallel to Hydrogen Bonding[J]. Acc Chem Res,2005,38:386–395.
    [1] Henkel T, Brunne R M, Müller H, Reichel F. Statistical Investigation into the Structural Complemen-tarity of Natural Products and Synthetic Compounds[J]. Angew Chem Int Ed,1999,38:643–647.
    [2] Hili R, Yudin A K. Making carbon-nitrogen bonds in biological and chemical synthesis[J]. Nat ChemBiol,2006,2:284–287.
    [3]崔小明.氯丙烯及其衍生物产品的开发和应用[J].氯碱工业,2000,5:17–19.
    [4] Chan S C, Joon S K, Byoung H O, Kima T-J, Shima S C, Yoonb N S. Ruthenium-Catalyzed Synthesisof Quinolines from Anilines and Allylammonium Chlorides in an Aqueous Medium via AmineExchange Reaction[J]. Tetrahedron,2000,56:7747–7750.
    [5] Otsuki S, Taguchi T. Naphthalenesulphonyl groups as fluorescence probes for examining theconformational behaviour of polyallylamine[J]. J Photochem Photobiol A Chem,1997,111:233–239.
    [6] Seo T, Kajihara T, Iijima T. The synthesis of poly(allylamine) containing covalently bound cyclodextrinand its catalytic effect in the hydrolysis of phenyl esters[J]. Die Makromolekulare Chemie,1987,188:2071–2082.
    [7] Kidchob T, Kimura S, Imanishi Y. Thermoresponsive release from poly(Glu(OMe))-block-poly(Sar)microcapsules with surface-grafting of poly(N-isopropylacrylamide)[J]. J Controlled Release,1998,50:205–214.
    [8]杨锦宗.工业有机合成基础[M].北京:石油化工出版社,1998.
    [9](a) Baruah J B, Samuelson A G. Allylic amination promoted by copper[J]. Tetrahedron,1991,47:9449–9454.(b)唐炳涛,张淑芬,杨锦宗,刘峰.烯丙基胺的合成研究[J].大连理工大学,2004,44:224227.
    [10] Carrol W, Aughenbaughr J. Allylamine from allyl alcohol[J]. J Mol Catal,1988,44:213–215.
    [11] Reed S A, Mazzotti A R, White M C, A Catalytic, Br nsted Base Strategy for Intermolecular AllylicC-H Amination[J]. J Am Chem Soc,2009,131:11701–11706.
    [12] Yin G, Wu Y, Liu G. Scope and Mechanism of Allylic C-H Amination of Terminal Alkenes by thePalladium/PhI(OPiv)2Catalyst System: Insights into the Effect of Naphthoquinone[J]. J Am Chem Soc,2010,132:11978–11987.
    [13] McDonald R I, White P B, Weinstein A B, Tam C P, Stahl S S. Enantioselective Pd(II)-CatalyzedAerobic Oxidative Amidation of Alkenes and Insights into the Role of Electronic Asymmetry inPyridine-Oxazoline Ligands[J]. Org Lett,2011,13:2830–2831.
    [14] Takada H, Nishibayashi Y, Ohe K, Uemura S. Catalytic Asymmetric Sulfimidation[J]. J Org Chem,1997,62:6512–6518.
    [15] Huang D, Wang H, Xue F, Shi Y. FeCl3/NaI-Catalyzed Allylic C–H Oxidation of Arylalkenes with aCatalytic Amount of Disulfide under Air[J]. J Org Chem,2011,76:7269–7274.
    [16] Parker, K A, Chang W. Regioselectivity of Rhodium Nitrene Insertion. Syntheses of Protected Glycalsof L-Daunosamine, D-Saccharosamine, and L-Ristosamine[J]. Org Lett,2005,9:1785–1788.
    [17] Kakuuchi A, Taguchi T, Hanzawa Y. Rh(I)-catalyzed addition of alkenylzirconocene chlorides toaldimine derivatives[J]. Tetrahedron Letters,2003,44:923–926.
    [18] Xie Y, Hu J, Wang Y, Xia C, Huang H. Palladium-Catalyzed Vinylation of Aminals with SimpleAlkenes: A New Strategy To Construct Allylamines[J]. J Am Chem Soc,2012,134:2061320616.
    [19] Bruncko M, Khuong T-A V, Sharpless K B. Allylic Amination and1,2-Diamination with a ModifiedDiimidoselenium Reagent[J]. Angew Chem Int Ed Engl,1996,35:454–456.
    [20] Souto J, Zian D, Muniz K. Iodine(III)-Mediated Intermolecular Allylic Amination under Metal-FreeConditions[J]. J Am Chem Soc,2012,134:7242–7245.
    [21] Alix A, Lalli C, Retailleau P, Masson G. Highly Enantioselective Electrophilic α-Bromination ofEnecarbamates: Chiral Phosphoric Acid and Calcium Phosphate Salt Catalysts[J]. J Am Chem Soc,2012,134:10389–10392.
    [22] Bordwell F G. Equilibrium acidities in dimethyl sulfoxide solution[J]. Acc Chem Res,1988,21:456–463.
    [23] Koppel I, Koppel J, Degerbeck F, Grehn L, Ragnarsson U. Acidity of Imidodicarbonates andTosylcarbamates in Dimethyl Sulfoxide. Correlation with Yields in the Mitsunobu Reaction[J]. J OrgChem,1991,56:7172–7174.
    [24] Cotton F A, Stokely P F. Structural Basis for the Acidity of Sulfonamides. Crystal Structures ofDibenzenesulfonamide and Its Sodium Salt[J]. J Am Chem Soc,2012,92:294302.
    [25] Wei Y, Lin S, Liang F. One-Pot Cascade Leading to Direct α-Imidation of Ketones by a Combinationof N-Bromosuccinimide and1,8-Diazabicyclo[5.4.1]undec-7-ene[J]. Org Lett,2012,14:4202–4205.
    [26] Wei Y, Lin S, Liang F, Zhang J. N-Bromosuccinimide/1,8-Diazabicyclo[5.4.1]undec-7-eneCombination: β-Amination of Chalcones via a Tandem Bromoamination/Debromination Sequence[J].Org Lett,2013,15:852–855.
    [27] Castellote I, Moron M, Burgos C, Alvarez-Builla J, Martin A, Gomez-Sal P, Vaquero J J. Reaction ofimines with N-iodosuccinimide (NIS): unexpected formation of stable1:1complexes[J]. ChemCommun,2007,1281–1283.
    [28] Crowston E H, Lobo A M, Prabhakar S, Rzepa H S, D. Williams J. X-Ray and SCF–MO model studyof the complex formed between N-bromosuccinimide and1,4-diazabicyclo[2.2.2]octane[J]. J ChemSoc, Chem Commun,1984,276–278.
    [29] Raatikainen K, Rissanen K. Breathing molecular crystals: halogen-and hydrogen-bonded porousmolecular crystals with solvent induced adaptation of the nanosized channels[J]. Chem Sci,2012,3:1235–1239.
    [30] Wang Y-M, Wu J, Hoong C, Rauniyar V, Toste F D. Enantioselective Halocyclization Using ReagentsTailored for Chiral Anion Phase-Transfer Catalysis[J]. J Am Chem Soc,2012,134:12928–12931.
    [31] Denmark S E, Burk M T. Lewis base catalysis of bromo-and iodolactonization, and cycloetheri-fication[J]. Proc Nat Acad Sci USA,2010,107:20655–20660.
    [32] Denmark S E, Kuester W E, Burk M T. Catalytic, Asymmetric Halofunctionalization of Alkenes—ACritical Perspective[J]. Angew Chem Int Ed,2012,51:10938–10953.
    [33] Cheng Y A, Chen T, Tan C K, Heng J J, Yeung Y-Y. Efficient Medium Ring Size BromolactonizationUsing a Sulfur-Based Zwitterionic Organocatalyst[J]. J Am Chem Soc,2012,134:16492–16495.
    [34] Denmark S E, Kornfilt D J P, Vogler T. Catalytic Asymmetric Thiofunctionalization of UnactivatedAlkenes[J]. J Am Chem Soc,2011,133:15308–15311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700