用户名: 密码: 验证码:
环酰亚胺类肽金属蛋白酶抑制剂的设计、合成及其抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分研究背景
     金属蛋白酶是一大类含金属离子的蛋白水解酶。肿瘤细胞生物学研究表明,在金属蛋白酶家族中有两种锌离子依赖性金属蛋白酶:氨肽酶N(Aminopeptidas N,APN/CD13)和基质金属蛋白酶(Matrix Metalloproteinase,MMP)与恶性肿瘤的浸润与转移的发生和发展密切相关。其中APN为锌离子依赖性的金属外肽酶,参与底物N端氨基酸的降解。研究证明,APN在肿瘤发生、机体免疫功能调节以及病毒感染中发挥重要的作用。1、APN在肿瘤细胞表面高水平表达,其在肿瘤细胞的演进过程中的主要作用可能是:(1)降解细胞外基质,促进多种生长因子的释放,加速肿瘤细胞增殖;(2)促进肿瘤细胞侵袭与转移;(3)刺激血管内皮细胞释放肿瘤微血管形成相关因子,促进肿瘤新生血管的形成;(4)增强肿瘤细胞粘附性,而高粘附性的肿瘤细胞又能进一步刺激释放金属蛋白酶,提高降解基底膜的能力。2、APN在粒细胞及淋巴细胞表面大量表达,同时作为细胞表面的分化抗原CD13参与了T淋巴细胞依赖的炎症反应;还能够表达于抗原递呈细胞表面,降解免疫活性物质(如白介素-8);参与抗原处理和细胞表面的主要组织相容性复合体Ⅱ型(MHC-Ⅱ)粘附抗原决定簇依赖的T细胞对抗原的识别,降低了T细胞的识别能力,同时削弱了巨噬细胞和NK细胞对肿瘤细胞的识别和杀伤能力,使机体免疫力下降。3、APN作为人冠状病毒HCoV-229E和传染性胃肠炎病毒(TGEV)表面的受体,在上呼吸道感染(如:SARS)和急性肠炎中扮演重要角色,且其发挥作用与酶的活性相关。4、APN参与HIV病毒颗粒进入宿主细胞的过程。研究表明,在感染HIV的患者体内APN活性远远高于健康志愿者。在HIV-1入侵宿主细胞时,高表达的APN通过降解能够使HIV-1辅助受体CCR5脱敏的趋化因子fMLP,从而降低细胞的天然免疫功能,并使CCR5增敏,促进病毒进入宿主细胞。5、APN参与内源性镇痛物质内啡肽和脑啡肽的降解,从而引起P物质的过度释放,导致疼痛。6、APN降解血管紧张素,参与机体血压的调节。因此,APN抑制剂有望发展成为一类新型的治疗药物。
     正因为APN与肿瘤发生发展有着密切关系,以APN为靶点的靶向性抗肿瘤药物研究倍受关注。这方面的研究方向有三:APN单抗和APN配体结合药物研究目前处于起步阶段,小分子APN抑制剂有天然产物和合成抑制剂,研究较为成熟,其中第一个从网状橄榄链霉菌培养液中发现APN抑制剂Bestatin(通用名为Ubenimex)已作为免疫增强剂于1987年在日本上市。近年来又发现了多种和Bestatin结构类似的小分子化合物,如:Probestin,Actinonin,其中Actinonin对APN的抑制活性远高于Bestatin,是一类很有开发应用前景的化合物。
     第二部分目标化合物的虚拟筛选以及合理设计
     尽管针对于小分子APN抑制剂的研究比较多,但在2006年之前,由于没有任何关于APN晶体结构的报道,因此研究的焦点主要在于天然产物以及Bestatin类似物的研究,合成抑制剂的研究进展比较缓慢。
     本研究的特色在于综合利用基于机制(Mechanism-Based)和基于结构(Structure-Based)的药物设计思想进行全新药物设计:基于细胞外基质主要成分为脯氨酸-甘氨酸残基这一推断,构建了一系列小分子杂环化合物库,并充分利用了计算机辅助药物设计软件的优势,对已知活性化合物构建药效团并对所构建的小分子杂环化合物库进行虚拟筛选发现了匹配良好的环酰亚胺骨架。然后借助基于靶点结构的药物设计策略通过深入研究E.Coli APN的三维结构以及酶-抑制剂复合物的结合模式,用柔性对接来模拟目标化合物与靶酶的相互作用,对环酰亚胺骨架的侧链进行合理设计并实现定向合成。本研究所设计的三个系列化合物是逐步优化设计的结果。研究发现,所得的部分量化参数(如FlexX对接结果)与体内外活性试验具有一定相关性,另外,本课题通过深入研究靶点三维结构的差异,通过对侧链进行改造实现了目标化合物对两种金属蛋白酶(APN和MMP)选择性的转变,表明本文设计思想较为合理,对化合物分子设计有指导意义,所构建的各种筛选模型对实验结果具有良好的预测性。
     此外,本文不仅从整体上考虑化合物结构与酶活性中心的匹配性,而且组成化合物的各结构片段均也选择了具有抗癌活性的片段或组织相容性较好天然氨基酸残基,所设计合成的环酰亚胺类抑制剂在体内经各种酰胺酶、酯酶以及脱甲基化代谢分解后的各级产物能维持较长时间的疗效。另外,在对结构进行优化设计时预先充分考虑到了药物在体内的ADME等动力学特性,将化合物做成盐酸盐,提高化合物的水溶性和生物利用度,从而提高化合物的中标率。
     第三部分目标化合物的合成
     在虚拟筛选结合基于靶点结构的合理药物设计的基础上,本着结构多样性的原则,对环酰亚胺的侧链进行结构改造,并通过定向合成得到了94个结构确定的目标化合物。合成方法中充分体现了多肽合成的优势,工艺路线比较新颖,切实可行。
     本文以两种合成路线对目标化合物进行了合成:1、为了探讨N-乙酸羧基部分的不同取代基对活性的影响,对于3-三甲氧基苯甲酸-2,6-哌啶二酮-N-乙酸系列化合物采用了比较原始的单向合成路线:即先以L-谷氨酸为起始原料,将三甲氧基苯甲酸与其氨基进行缩合,然后再通过脱水环合、甘氨酸胺解得到关键的中间体6,最后充分利用多肽合成优势,以EDCI为缩合剂对羧基进行衍生化得到了一系列没食子酸类三肽化合物。三个甲氧基可以在路易斯酸BBr3存在下脱去甲基保护。2、采用多向合成策略提高合成效率。先合成能够实现结构多样性的中间体,然后再进行衍生化:即先以L-谷胺酰胺或L-天冬酰胺为起始原料经过Boc保护、环合等步骤合成关键的环酰亚胺中间体12和27,再在相转移催化剂TBAI的存在下合成了N-取代的中间体13,18以及28。这些中间体脱去Boc保护基游离出氨基后再以不同的酰氯或混合酸酐进行衍生化。环酰亚胺N-乙酸化合物是由相应的苄酯化合物经催化转移氢化脱去苄酯得到,然后羧基再经混合酸酐方法(与氯甲酸异丁酯形成酸酐)合成异羟肟酸类化合物。对所合成的化合物,通过红外光谱、核磁共振氢谱、电喷雾质谱等方法进行了结构确证,其纯度经过HPLC分析,大多在96%以上。经查阅文献证实,所合成的目标化合物为新型化合物,未见文献报道。
     第四部分目标化合物的活性评价及构效关系研究
     本研究设计合成了3个系列共94个具有环酰亚胺骨架的类肽化合物,并对其活性进行了初步筛选。由于APN和MMP都属于锌离子依赖性金属蛋白酶,并且在肿瘤细胞的侵袭与转移过程中发挥非常重要的作用,体外抑酶筛选时同时针对两种酶进行活性评价。体外细胞测试时采用了特异性表达APN的白血病细胞(HL-60和K562)以及特异性表达MMP-2和MMP-9的人卵巢黏液囊腺上皮癌细胞SKOV3,观察化合物对两种细胞的生长抑制作用以及表达水平的影响。
     体外抑酶实验显示:SeiresⅠ中的化合物对MMP的选择性都比较高(7j的IC_(50)比值约150),但7I,7o,9a,9b具有较好的APN抑制活性,活性最好的化合物9a的IC_(50)为3.0μM与bestatin的相当(IC_(50)=2.4μM):这说明本研究所引用的构象限制策略确实提高了化合物对靶标的选择性。SeiresⅡ以及SeriesⅢ两个系列中的化合物由于游离氨基的引入使得化合物对APN的活性明显增加,其中SeriesⅡ中的17j,22a,22g以及所有含有异羟肟酸基团的化合物24以及SeriesⅢ中的32a,32c,32f,32i,34对APN分别显示了较好的活性和选择性,IC_(50)比值多数在20左右。其中化合物34d的IC_(50)值为2.9μM,24f和34f的IC_(50)分别为1.8μM和1.0μM,均超过了Bestatin。
     构效关系分析显示,对应于SeriesⅠ的化合物,P1'是影响选择性的关键基团,而且Tyr的存在有利于酶对MMP的抑制活性,在P1'引入脂肪侧链会增加对APN抑制活性,但却损失了对二者的选择性;对于SeriesⅡ和SeriesⅢ化合物而言,游离氨基的存在是体现选择性的关键基团,而且游离氨基是APN抑制剂的必要条件。对于不同取代基活性趋势为异羟肟酸>羧基>乙酯,P1为芳香基团时活性较好,但有酚羟基存在时不利于酶的结合。
     体外白血病细胞生长抑制实验发现对APN抑酶活性较好的几个化合物均体现出对HL-60细胞较强的抑制作用,其中7g,9a,24f,24i,34f的活性均超过了bestatin。其可能的作用机制是环酰亚胺骨架化合物通过与APN结合然后启动下游分子,从而影响DNA的合成,最终诱导细胞凋亡。
     细胞实验中还通过MTT法测定了目标化合物对白血病细胞K562细胞的生长抑制作用,96孔板中受试化合物浓度低于或达到饱和浓度时,抑制率均低于25%:二倍级梯度升高化合物的含量至15mg/mL,亦没有明显浓度依赖的抑制作用,虽然可能由于化合物在96孔板中析出,影响了试验结果的线性关系,但通过倒置显微镜观察,细胞形态正常,与空白组相比无明显减少,所以推定所合成的化合物基本没有细胞毒作用。由于K562表达APN的水平远远低于HL-60细胞,而K562细胞对药物的敏感性较差,这可能与APN的表达不同有关,同时也间接地说明了化合物对APN具有一定的靶向性。
     对MMP抑制活性较好的化合物(7i,7r)的体外人卵巢黏液囊腺上皮癌细胞SKOV3生长抑制实验以及明胶酶谱分析实验证明了化合物对MMP的作用有可能不是直接抑制酶活,而是影响MMP-2以及MMP-9的表达,从而发挥其抗肿瘤作用。
     环酰亚胺类肽抑制剂体内抑瘤试验采用荷H22瘤小鼠抗转移模型,将受试化合物以50mg/kg/d剂量口服给药6天/周,持续给药两周。结果显示:对APN抑制活性较好的化合物(9a,24f,24i,34f,34i)肿瘤转移的抑制率都在50%以上,其肺组织表面的结节数与空白组形成了鲜明的对比。其中化合物24f和9a的抑制肿瘤转移率高达72.91%和81.56%,且没有观测到明显的毒副作用,有望成为一个具有良好开发前景的先导化合物。其可能的作用机制是:1)化合物直接抑制APN的活性,从而抑制APN对血管基底膜的降解;2) APN的活性被化合物抑制后可以激活或抑制某些细胞因子,这些细胞因子可以调控基因的转录,从而影响MMP分子的表达,进而抑制了基质金属蛋白酶对血管基底膜的降解,抑制肿瘤细胞在肺组织的定位。
     体内活性测试所选用的5个化合物其体外抑酶活性及细胞测试活性也都很高,表明体内外实验结果能够完全吻合。这也说明了以下几点:1)所构建的药效团模型的筛选能力比较强,能够把活性骨架从虚拟的小分子化合物库中筛选出来;2)所建立的体外抑酶实验以及体外细胞测试方法比较可行,可信度比较高;3)本课题的设计思想完全符合最新的药物化学设计思路,而且预先考虑到了化合物的ADME的性质,因此设计比较成功。
     第五部分结论
     本课题所设计的环酰亚胺骨架类肽化合物具有很好的金属蛋白酶抑制活性,通过体内外活性筛选发现了有开发潜力的化合物,其中几个有望作为新型氨肽酶N抑制剂先导化合物进行临床前研究。本课题研究中的活性筛选试验定性地显示了化合物结构与活性之间内在关系的趋势,同时建立了该类化合物的构效关系以及定量构效关系模型,为进一步结构优化提供了有益的理论依据,并为发现活性更好的新型抗肿瘤转移先导化合物打下坚实的基础。
PartⅠ.Research background
     Metalloproteinase is a big family of metal-ion containing hydrolases.It is discovered that two zinc-dependent metalloproteinase(Aminopeptidas N,APN/CD13 and Matrix Metalloproteinase,MMP) are involved in the invasion and metastasis of malignant tumors.Among which APN also plays critical roles in tumorgenesis,regulation of immunological function and virus infection as well.a.APN is over-expressed on the surface of tumor cells and the possible function in the process of tumor growth is:1) Degrading extracellular matrix,promoting the release of most growth factor and so speeding up the proliferation of tumor cells;2) Promoting the invasion and metastasis of tumor cells;3) Stimulating the release of cellular factors associated with the neovascularization by vascular endotheilal cells and promoting the angiogenesis of tumor;4) Enhancing the adhesiveness of tumor cells,and in turn the tumor cells with high adhesiveness will stimulate the release of metalloproteinase and enhancing its ability of ECM degradation;b,APN is also over-expressed on the surface of granulocyte and lymphocyte and participate the T-lymphocyte dependent inflammatory reaction as CD13 antigen.APN also has been implicated in the processing and trimming of antigenic peptides that protrude out of major histocompatibility complex(MHC) classⅡmolecules on the cell surface.APN is also involved in the down-regulation of signal peptides,such as enkephaline in the brain and can cleave bioactive proteins,including several cytokines and antigen delivering peptides,degrading lots of immunoactive substances,impairing the immunological functions,depressing the recognization of macrophage and NK cells to surface antigen on tumor cells and the ability to kill these cells directly;c.APN was shown to be the major receptor for the transmissible gastroenteritis virus(TGEV),which causes a severe gastroenteritis in newborn pigs,and for the human coronavirus 229E (HCV229E) which causes upper respiratory infections;d.APN also play a role in the entry of HIV-1 into cells by degrading fMLP,a chemokine associated with the desensitization of CCR5,the co-receptor for HIV-1 entry and up-regulating the expression of CCR5;e.Furthermore,APN is also involved in the down-regulation of signal peptides,such as enkephaline in the brain and will be a promising target for analgesia;f.In recent years,APN has been elucidated to participate in the enzymatic cascade of rennin-angiotensin system in the brain and periphery by cleaving angiotensinⅢto antiotensinⅣand is associated with the regulation of blood pressure.Therefore,APN will be a good target for the design of novel therapeutic agents for the treatment of diseases,such as cancer,leukemia,rheumatoid arthritis, diabetic nephropathy and central nervous system diseases,such as Alzheimer's disease.
     The anticancer drug research targeting to APN is closely watched in recent years because of it role in the tumor growth.The research fields include three aspects:APN mono-antibody and APN ligand binding drugs,both of which are in the initial stage; Small molecular APN inhibitors,either natural or synthetic.Bestatin,firstly isolated from a culture filtrate of Streptomyces olivoreticuli,has been used in clinics as an immunoenhancer in Japan in 1987.In recent years,many bestatin analogues were discovered,among which Actinonin is a more active inhibitors.
     PartⅡ.The Virtual Screen and Rational Design of Target Compounds Although there are lots of small molecular inhibitors reported in recent years,however, there were no any reports of APN crystal structure until 2006.Most researches are focused on natural products and bestatin analogues.And the process of synthetic APN inhibitors is really slow,resulting in few report associated with target structure-based drug design toward APN.
     The characteristics of this study are the utilization of mechanism-based and structure-based drug design comprehensively.That is,based on the inference that the major components of ECM are Pro-Gly,we build a virtual molecule library with heterocycle as scaffold according to the conformational constraint strategy.And with advantages of computer-aided drug design software,we also build a four-emelment pharmacophore model according to the information of inhibitors with known activity and structure.The cyclic-imide scaffold was obtained by virtual screening of the heterocycle library with this pharmacophore.The following design strategy is structure-based drug design.That is,to design the side chain of cyclic-imide according to the information of the requirement of the active site of E.Coli APN and enzyme-inhibitor complex.Flexsible docking was used for modeling the interaction between target compounds and enzyme.The side chain of cyclic-imide can be designed rationally and synthesized easily.
     The compounds in three series are a result of optimization step by step.It is discovered that there is some relevance between part of the quantitative parameters (such as docking score) and the in vitro or in vivo activity of compounds.Furthermore, based on the analysis of the difference between the active site of target enzymes,we found the change of the selectivity from MMP to APN,indicating that the design strategy of this study is rational and is significant for the design of novel target compound.In addition,the experimental results can be well predicted by all kinds of screen model constructed.
     Additionally,the matching of the structure of compounds with the active site of enzyme is not the only consideration of this study.The fragments used in the side chain of the target compounds also apply the fragments with anticancer activity and natural amino acid side chain,which can be compatible with tissues. In addition,the ADME and pharmacokinetics properties of the target compounds have also been considered in advance.The compounds exist in the form of hydrochloride salt with better water solubility and bioavailability and so increasing the hit rate.
     PartⅢ.The Synthesis of Newly Designed Target Compounds
     On the basis of virtual screening and target structure-based drug design.We obtained 94 structural confirmed compounds with varieties in the side chain of cyclic-imide. The polypeptide synthesis advantages are thoroughly reflected in the synthesis scheme,most of which are novel and feasible.
     Two strategy are applied for the synthesis of target compounds:Firstly,the 3-trimethoxybenzoic-2,6-piperidinedione-N-acetic acid derivatives are synthesized with L-Glu as starting material and the important intermediate 6 was obtained after acylation,cyclization by dehydration and aminolysis by Gly.The target compounds are obtained with EDCI as condensing agent for polypeptide synthesis from 6 with different amino acid derivatives.The methyl group can also be deprotected by Lewis acid BBr_3.Secondly,the intermediates that can be used for the variety of structure were synthesized in advance.12 and 27 can be obtained by the protection of amino group of L-Gln or L-Asn by Boc and then cyclization of amide withα-carboxyl group. The NH of cyclic-imide can be alkalization by halogenated hydrocarbon in the existence of phase transfer catalyst TBAI to form N-substituted intermediates of 13, 18 and 28.The Boc group of these three compounds can be deprotected by TFA and then the free amino group was acylated by different acyl chloride or mixture anhydride.The cyclic-imide-N-acetic acid derivatives can be obtained from its benzyl ester derivatives by catalytic transfer hydrogenation to deprotect the benzyl group. And the hydroxamate acids derivatives can be obtained according to the methods of mixture anhydride from its acid with isobutyl chloroformate.All the targeted compounds are novel without any report by now with the structures identified by IR, ~1H-NMR and ESI-MS.The purity of part compounds are analyzed by HPLC,with the area%of more than 96%.
     PartⅣ.The Biological Evaluation and SAR & QSAR Study
     The in vitro and in vivo preliminary activity evaluations were performed as for the newly synthesized 94 target compounds.
     The in vitro enzyme inhibitory activity were determined against APN and MMP,both of which are zinc-dependent metalloproteinase and closely associated with the invasion and metastasis of tumor cells,The cells assay is performed toward leukemia cells(HL-60 and K562) which express APN and SKOV3(which can express MMP-2 and MMP-9).
     The in vitro enzyme assay displayed that the compounds in SeiresⅠare all selective to MMP(the IC_(50) ratio of 7j is 150).However,the inhibitory activity of 71,7o,9a,9b against APN is pretty high,and the IC_(50) value of most active compound 9a(3.0μM) is equal to that of bestatin(IC_(50)=2.4μM),indicating that the introduction of conformational constraint can indeed improved the selectivity toward target enzyme. The free group in SeiresⅡand SeriesⅢis a decisive factor for the inhibition of APN, as the activity increased by an order of magnitude.Among which 17j,22a,22g in SeriesⅡand 32a,32c,32f,32i in SeriesⅢand all hydroxamate acid compounds 24/34 in both series displayed potent activity and high selectivity toward APN with the IC_(50) ratio about 20.The IC_(50) of 34d was 2.9μM.24f and 34f is more potent that bestatin against APN with IC_(50) value of 1.8μM and 1.0μM,respectively. The SAR and QSAR analysis displayed that the substituents in P1' site in SeriesⅠis important for the selectivity of MMP and the Try residue is more favorable.The introduction of aliphatic residue can improve the activity against APN with a loss of selectivity.As for the compounds in SeriesⅡand SeriesⅢ,free amino group is a necessary condition for the inhibitory activity of APN and the activity tendency of target compounds with different substituents in P1 is CONHOH>COOH>COOEt,and aromatic ring without a hydroxyl group is more favorable.
     The results of in vitro growth inhibition against leukemia cells indicated that most potent APN inhibitor displayed good inhibitory effect against the growth of HL-60 cells, among which 7g,9a,24f,24i,34f is more potent than bestatin.The possible mechanism may be that the downstream factor is influenced when cyclic-imide derivatives interact with APN,and then the DNA synthesis is inhibited followed by the promotion of apoptosis of tumor cells.
     The cells assay was also performed to leukemia cell K562.The inhibitory rate is still lower than 25%when the concentration of compounds is nearly saturated.The inhibitory effect can not be discovered even in the higher concentration and there was no phenomenon of abnormality about the shape of cells,indicating that the compounds are not cytotoxtic.The sensitivity of K562 to the inhibitors is less than that of HL-60 because of its lower expression of APN,in some degree suggesting that the newly synthesized compounds can target APN well.
     The cells assay against the growth of SKOV3 display that the compounds(7i,7r) with moderate activity against MMP can strongly inhibit the expression of MMP-2, MMP-9,and this may be the major reason for their anticancer effect. We used the anti-metastasis model of mice bearing H22 tumor cell to evaluate the inhibiting activities of cyclic-imide derivatives in vivo.All tested compounds were orally administered(p.o.) at a dose of 50 mg/kg,6 days/week for two weeks.The test results demonstrated that most of potent APN inhibitors(9a,24f,24i,34f,34i)showed significant anticancer activities(inhibitory rate>50%) and were devoid of toxicological effects,among which the best compounds were 24f and 9a with the inhibitory rate as high as 72.91%and 81.56%,respectively,showing that they might be a promising lead compound and is worth of further study.
     The possible mechanism of anti-metastasis effect may be:1) to inhibit the activity of APN directly,and then inhibit the degradation of ECM;2) Some cellular factor that can regulate the transcription of gene was activated or inhibited following the inhibition of APN,and the expression of MMP or other molecules was influenced and in turn inhibiting the ECM degradation and the location of tumor cells in lung tissues. The five compounds used in in vivo experiment assay possess potent inhibitory effect in in vitro enzyme and cells assay and both of the experimental results can be fully consistent.All of these discoveries prove the following points:1) The screening ability of the pharmacophore constructed in advance is strong enough to screen out the potent cyclic-imide scaffold from the virtual library;2) The methods used for in vitro and in vivo activity assay are stable and can be reproduced with high degree of confidence;3) The design strategies applied in this study is identical to the novel ideas in modem medicinal chemistry fields,and the pre-consideration of ADME properties result in successful achievements.
     PartⅤ.Conclusion
     The cyclic-imide peptidomimetics derivatives designed in this study displayed potent metalloproteinase inhibitory activity.And some potent compounds can be screened in the in vitro and in vivo experiments and is promising and valuable of further study and used in pre-clinical study.The results of activity assay experiments can manifest quantitatively the tendency of the relationship between the structure and activity and meanwhile build the SAR and QSAR model.All of these discoveries provide a beneficial theoretical basis for the optimization of lead structure and lay a solid foundation for the discovery of novel more potent anti-metastasis agents in future.
引文
[1]Sato H.,Takino T.,Okada Y.A Matrix metalloproteinase expressed on the surface of invasive tumor cells[J].Nature,1994,370(6484):61-65.
    [2]Rawlings N.D.,Barrett A.J.Evolutionary families of peptidases.Biochem.J.,1993,290(1):205-218.
    [3]Hooper N.M.Families of zinc metalloproteases[J].FEBS Lett,1994,354(1):1-6.
    [4]Rawlings N.D.,Barrett A.J.Evolutionary families of metallopeptidases[J].Methods Enzymol,,1995,248:183-228.
    [5]Liotta L.A.,Steeg P.S.,Stetler-Stevenson W.G.Cancer metastasis and angiogenesis:an imbalance of positive and negative regulation[J].Cell.1991,64(2):327-336.
    [6]Rundhaug J.E.Matrix metalloproteinases and angiogenesis[J].J.Cell,Mol.Med.,2005,9(2):267-285.
    [7]Singh S.,Jane B.,Sakata K.,et al.ETS Proteins and MMPs:Partners in Invasion and Metastasis[J].Curr.Drug Targets,2002,3(5):359-367.
    [8]Sounni N.E.,Janssen M.,Foidart J.M.,et al.Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis[J].Matrix Biol.,2003,22(1),55-61.
    [9]Antczak C.,De Meester I.,Bauvois B.Ectopeptidases in pathophysiology[J].Bioessays.2001,23(3):251-260.
    [10]Carl-McGrath S.,Lendeckel U.,Ebert M.,et al.Ectopeptidases in tumour biology:a review[J].Histol.Histopathol.,2006,21(12):1339-1353.
    [11]Bauvois B.,Dauzorme D.Aminopeptidase-N/CD13(EC 3.4.11.2) inhibitors:chemistry,biological evaluations,and therapeutic prospects[J].Med.Res.Rev.,2006,26(1):88-130.
    [12]Look A.T.,Ashmun R.A.,Shapiro L.H.,et al.Human myeloid plasma membrane glycoprotein CD13(gp150) is identical to aminopeotidase N[J].J.Clin.Invest.,1989,83(4):1299-1307.
    [13]Delmas B.,Gelfi J.,L'Haridon R.,et al.Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV[J].Nature,1992,357(6377):417-420.
    [14]Yeager C.L.,Ashmun R.A.,Williams R.K.,et al.Human aminopeptidase N is a receptor for human coronavirus 229E[J].Nature,1992,357(6377):420-422.
    [15]Yaoi K.,Nakanishi K.,Kadotani T.,et al.Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N[J].FEBS Lett.,1999,463(3):221-224.
    [16]Nakanishi K.,Yaoi K.,Nagino Y.,et al.Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella--their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin[J]..FEBS Lett,2002,519(1-3):215-220.
    [17]Dixon J.,Kaklamanis L.,Turley H.,et al.Expression of aminopeptidase-n(CD 13) in normal tissues and malignant neoplasms of epithelial and lymphoid origin[J].J.Clin.Pathol.,1994,47(1):43-47.
    [18]Sato Y.Role of aminopeptidase in angiogenesis[J].Biol.Pharm.Bull,,2004,27(6):772-776.
    [19]Saiki I.,Fujii H.,Yoneda J.,et al.Role of aminopeptidase N(CD13) in tumor-cell invasion and extracellular matrix degradation[J].Int.J.Cancer,1993,54(1),137-143.
    [20]Menrad A.,Speicher D.,Wacker J.,et al.Biochemical and functional characterization of aminopeptidase N expressed by human melanoma cells[J].Cancer Res.,1993,53(6):1450-1455.
    [21]Gros C.,Giros B.,Schwartz J.C.Identification of aminopeptidase M as an enkephalin-inactivating enzyme in rat cerebral membranes[J].Biochemistry,1985,24(9):2179-2185.
    [22]BalogT.,Marotti T.,SverkoV.,et al.Enkephalin degradating enzymes,in pheochromocytoma patients[J].Oncol.Rep.,2003,10(1):253-258.
    [23]Kanayama N.,Kajiwara Y.,Goto J.,et al.Inactivation of interleukin-8 by aminopeptidase N (CD13)[J].J.Leukoc.Biol.,1995,57(1):129-134.
    [24]Mitsui T.,Nomura S.,Itakura A.,et al.Role of aminopeptidases in the blood pressure regulation[J].Biol.,Pharm.Bull.,2004,27(6):768-771.
    [25]Hattori A.,Tsujimoto M.Processing of antigenic peptides by aminopeptidases[J].Biol.Pharm.Bull.,2004,27(6):777-780.
    [26]ShimizuT.,Tani K.,HaseK.,et al.CD13/aminopeptidase N-induced lymphocyte involvement in inflamed joints of patients with rheumatoid arthritis[J].Arthritis.Rheum.,2002,46(9),2330-2338.
    [27]Bedir A.,Ozener I.C.,Emerk K.Urinary leucine aminopeptidase is a more sensitive indicator of early renal damage in non-insulin-dependent diabetics than microalbuminuria[J].Nephron,1996,74(1):110-113.
    [28]Sloane P.D.,Zimmerman S.,Suchindran C.,et al.The public health impact of Alzheimer's disease,2000-2050:potential implication of treatment advances[J].Annu.Rev.Public Health,2002,23:213-231
    [29]Firla B.,Arndt M.,Frank K.,et al.Extracellular cysteines define ectopeptidase(APN,CD13)expression and function[J].Free Radical Biology Medicine,2002,32(7):584-595.
    [30]Vlahovié P.,Stefanovié V.Kidney ectopeptidases.Structure,functions and clinical significance[J].Pathol Biol(Paris),1998,46(10):779-786.
    [31]Kotlo K.,Shukla S.,Tawar U.,et al.Aminopeptidase N reduces basolateral Na+ -K+ -ATPase in proximal tubule cells[J].Am.J.Physiol.Renal.Physiol.,2007,293(4):F1047-F1053.
    [32]Noble F.,Banisadr G.,Jardinaud F.,et al.First discrete autoradiographic distribution of aminopeptidase N in various structure of rat brain and spinal cord using the selective iodinated inhibitor[125I]RB129[J].Neuroscience,2001,105(2):479-488.
    [33]Waksman G.,Bouboutou R.,Devin J.,et al.In vitro and in vivo effects of kelatorphan on enkephalin metabolism in rodent brain[J].Fur.J.Pharmacol.1985,117(2):233-243.
    [34]Montiel J.L.,Cornille F.,Roques B.P.,et al.Nociceptin/orphanin FQ metabolism:role of aminopeptidase and endopeptidase 24.15[J].J.Neurochem.1997,68(1):354-361.
    [35]Nunez L.,Amigo L.,Mingrone G.,et al.Billiary aminopeptidase N and cholesterol crystallization defect in cholelithiasis[J].Gut.1995,37(3):422-426.
    [36]Soderberg C.,Giugni T.D.,Zaia J.A.,et al.CD13(human aminopeptidase N) mediates human cytomegalovirus infection[J].J.Virol,1993,67(11):6576-6585.
    [37]Mechtersheimer G.,Moiler P.Expressionof aminopeptidase N(CD13) in mesenchymal tumor[J].Am.J.Pathol.,1990,137(5):1215-1222.
    [38]Riemann D.,Kehlen A.,Langner J.CD13-Not just a marker in leukemia typing[J].Immunol.Today,1999,20(2):83-88,
    [39]Shipp M.A.,Look A.T.Hematopoietic differentiation antigens that are membrane-associated enzymes:Cutting in the key[J].Blood,1993,82(4):1052-1070
    [40]Ashmun R.A.,Look A.T.Metalloprotease Activity of CD13/Aminopeptidase N on the Surface of Human Myeloid Cells[J].Blood,1990,75(2):462-469.
    [41]Bordessoule D.,Jones M.,Gatter K.C.,et al.Immunohistological patterns of myeloid antigens:tissue distribution of CD13,CD14,CD16,CD31,CD36,CD65,CD66,and CD67[J].Br.J.Haematol.,1993,83(3):370-383.
    [42]Alliot F.,Rutin J.,Leenen P.J.et al.Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N,aminopeptidase A,and nestin[J].J.Neurosci.Res.,1999,58(3):367-378.
    [43]Ansorge S.,Schon E.,Kunz D.Membrane-bound peptidases of lymphocytes:functional implications[J].Biomed Biochim Acta.,1991,50(4-6):799-807.
    [44]Chorlemmer H.U.,Bosslet K.,Sedlacek H.H.Ability of the immunomodulating dipeptide Bestatin to activate cytotoxic mononuclear phagocytes[J].Cancer Res.,1983,43(9):4148-4153.
    [45]van Hensbergen Y.,Broxterman H.J.,Hanemaaijer R.,et al.Soluble aminopeptidase N/CD13in malignant and nonmalignant effusions and intratumoral fluid[J].Clin.Cancer Res.,2002,8(12):3747-3754.
    [46]van-Hensbergen Y.,Broxterman H.J.,Rana S.,et al:Reduced growth,increased vascular area, and reduced response to cisplatin in CD13-overexpressing human ovarian cancer xenografts[J].Clin.Cancer Res.,2004,10(3):1180-1191.
    [47]Fujii H.,Nakajima M.,Saiki I.,et al.Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/CD13[J].Clin.Exp.Metastasis,1995,13(5):337-344.
    [48]Ishii K.,Usui S.,Sugimura Y.,et al.Aminopeptidase N regulated by zinc in human prostate participates in tumor cell invasion[J].Int.J.Cancer,2001,92(1):49-54.
    [49]Kido A.,Krueger S.,Haeckel C.,et al.Inhibitory effect of antisense aminopeptidase N (APN/CD13) cDNA transfection on the invasive potential of osteosarcoma cells[J].Clin.Exp.Metastasis,2003,20(7):585-592.
    [50]Pasqualini R.,Koivunen E.,Kain R.,et al:Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis[J].Cancer Res.,2000,60(3):722-727.
    [51]Bhagwat S.V.,Lahdenranta J.,Giordano R.,et al.CD13/APN is activated by angiogenic signals and is essential for capillary tube formation[J].Blood,2001,97(3):652-659.
    [52]Hanahan D.,Folkman J.Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis[J].Cell,1996,86(3):353-364.
    [53]Bhagwat S.V.,Petrovic N.,Okamoto Y.,et al.The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis[J].Blood,2003,101(5):1818-1826.
    [54]Ikeda N.,Nakajima Y.,Tokuhara T.et al.Clinical Significance of Aminopeptidase N/CD13Expression in Human Pancreatic Carcinoma[J].Clin.Cancer Res.,2003,9(4):1503-1508.
    [55]Aozuka Y.,Koizumi K.,Saitoh Y.,et al:Anti-tumor angiogenesis effect of aminopeptidase inhibitor bestatin against B16-BL6 melanoma cells orthotopically implanted into syngeneic mice[J].Cancer Lett,2004,216(1):35-42.
    [56]Bauvois B.Transmembrane proteases in cell growth and invasion:new contributors to angiogenesis[J].Oncogene,2004,23(2):317-329.
    [57]Zetter B.R.Angiogenesis and tumor metastasis[J].Anna.Rev.Med,1998,49:407-424.
    [58]Bussolino F.,Mantovani A.,Persico G.Molecular mechanisms of blood vessel formation[J].Trends Biochem.Sci.,1997,22(7):251-256.
    [59]Scomik O.A.,Botbol V..Bestatin as experimental tool in mammals[J].Curr.Drug Metab.,2001,2(1):67-85.
    [60]Alexander N.S.,Juergen Langner,Manfred Herrmann,et al.Aminopeptadase N/CD13 is directly linked to signal transduction pathways in monocytes[J].Cell.Immunol.,2000,201(1):22-32.
    [61]Folkman J.Tumor angiogenesis[J].Adv.Cancer Res.1985,43:175-203.
    [62]Lohn M.,Mueller C.,Langner J.Cell cycle retardation in monocytoid cells induced by aminopeptidase N(CD13)[J].Leuk.Lymphoma.,2002,43(2):407-413.
    [63]Lendeckel U.,Arndt M.,Bukowska A.,et al.Synergistic action of DPIV and APN in the regulation of T cell function[B].Adv.Exp.Med.Biol.,2003,524:123-131.
    [64]Swafuji K.,Miyakawa Y.,Weisberg E.,et al:Aminopeptidase inhititors inhibit proliferation and induce apoptosis of K562 and Sti571-resistant K562 cell lines through the MAPK and GSK-3beta Pathways[J].Leuk.Lymphoma.,2003,44(11):1987-1996.
    [65]Mishima Y.,Matsumoto-Mishima Y.,Terui Y.,et al.Leukemic cell-surface CD13/aminopeptidase N and resistance to apoptosis mediated by endothelial cells[J].J.Natl.Cancer.Inst.,2002,94(13):1020-1028.
    [66]林茂芳,何静松,蔡真等.氨肽酶抑制剂Bestatin通过激活半胱天冬酶-3诱导HL60细胞凋亡[J].中华血液学志,2001,22(7):348-350.
    [67]Tani K.,Ogushi F.,Huang L.,et al.CD13/aminopeptidase N,a Novel Chemoattractant for T Lymphocytes in Pulmonary Sarcoidosis[J].Am.J.Respir.Crit.Care Med.,2000,161(5):1636-1642.
    [68]Cohen M.L.,Geary L.E.,Wiley K.S.Enkephalin degradation in the guinea-pig ileum:effect of aminopeptidase inhibitors,puromycin,and bestatin[J].J.Pharmacol.Exp.Ther.1983,224(2): 379-385.
    [69]Abmad S.,Wang L.,Ward P.E.Dipeptidyl(amino) peptidase Ⅳ and aminopeptidase M metabolize circulating substance P in vivo[J].J.Pharmacol.Exp.Then,1992,260(3):1257-1261.
    [70]Furuhashi M.,Mizutani S.,Kurauchi,O.,et al.In vitro degradation of opioid peptides by human placental aminopeptidase M[J].Exp.Clin.Endocrinol.,1988,92(2):235-237.
    [71]Hoffmann T.,Faust J.,Neubert K.,et al.Dipeptidyl peptidase Ⅳ(CD 26) and aminopeptidase N(CD 13) catalyzed hydrolysis of cytokines and peptides with N-terminal cytokine sequences[J].FEBS Lett.,1993,336(1):61-454.
    [72]Pulido-Cejudo G.,Conway B.,Proulx P.,et al.Bestatin-mediated inhibition of leucine aminopeptidase may hinder HIV infection[J].Antiviral Res.,1997,36(3):167-177.
    [73]Christopherson K.2nd,Hromas R.Chemokine regulation of normal and pathologic immune responses[J].Stem Cells,2001,19(5):388-396.
    [74]Deng H.,Liu R.,Ellmeier W.,et al.Identification of a major co-receptor for primary isolates of HIV-1[J].Nature,1996,381(6584):661-666.
    [75]Cocchi E,Devico A.L.,Garzino-Demo A.,et al.Identification of RANTES,MIP-1α,and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells[J].Science,1995,270(5243):1811-1815.
    [76]Schiffmann E.,Corcoran B.A.,Wahl S.N-formylmethionyl peptides as chemoattractants for leukocytes[J].Proc.Natl.Acad.Sci.U.S.A.,1975,72(3):1059-1062.
    [77]Le Y.,Yang Y.,Cui Y.,et al.Receptors for chemotactic formyl peptides as pharmacological targets[J].Int.Immunopharmacolocgy,2002,2(1):1-13.
    [78]Shen W.,Li B.,Wetzel M.A.,et al.Down-regulation of the ehemokine receptor CCR5 by activation of chemotactic formyl peptide receptor in human monocytes[J].Blood,2000,96(8):2887-2894.
    [79]Ali H.,Richardson R.M.,Haribabu B.,et al.Chemoattractant receptor cross-desensitization[J].J.Biol.Chem.,1999,274(10):6027-6030.
    [80]Le Y.,Murphy P.M.,Wang J.M.Formyl-peptide receptors revisited[J].Trends Immunol.,2002,23(11):541-548.
    [81]Li B.X.,Ge J.W.,Li Y.J.Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus[J].Virology,2007,365(1):166-172.
    [82]Tresnan D.B.,Levis R.,Holmes K.V.Feline aminopeptidase N serves as a receptor for feline,canine,porcine,and human coronaviruses in serogroup I[J].J.Virol.,1996,70(12):8669-8674.
    [83]Wentworth D.E.,Holmes K.V.Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N(CD13):influence of N-linked glycosylation[J].J.Virol.,2001,75(20):9741-9752.
    [84]Kasman L.M.CD13/aminopeptidase N and routine cytomegalovirus infection[J].Virology,2005,334(1):1-9.
    [85]Le Guen S.,Mas Nieto M.,Canestrelli C.,et al.Pain management by a new series of dual inhibitors of enkephalin degrading enzymes:long lasting antinociceptive properties and potentiation by CCK2 antagonist or methadone[J].Pain,2003,104(1-2):139-148.
    [86]Noble F.,Roques B.P.Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs[J].Expert.Opin.Ther.Targets,2007,11(2):145-159.
    [87]Hal P.T.,Hopstaken-Broos J.P.,Prins A.,et al.Potential indirect anti-inflammatory effects of IL-4.Stimulation of human monocytes,macrophages,and endothelial cells by IL-4 increases aminopeptidase-N activity(CD13;EC 3.4.11.2)[J].J.Immunol.,1994,153(6):2718-2728.
    [88]Kawai M.,Otake Y.,Hara Y.High-molecular-mass isoform of aminopeptidase N/CD13 in serum from cholestatic patients[J].Clin.Chim.Acta.,2003,330(1-2):141-149.
    [89]Curnis F.,Arrigoni G.,Sacchi A.,et al:Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels,epithelia,and myeloid cells[J].Cancer Res.,2002,62(3):867-874.
    [90]Xu Y.,Wellner D.,Scheinberg D.A.Substance P and Bradykinin are natural inhibitors of CD13/aminopeptidase N[J].Biochem.Biophys.Res.Commun.,1995,208(2):664-674.
    [91]Laouar A.,Wietzerbin J.,Bauvois B.Divergent regulation of cell surface protease expression in HL-60 cells differentiated into macrophages with granulocyte macrophage colony stimulating factor or neutrophils with retinoic acid[J].Int.Immunol.,1993,5(8):965-973.
    [92]Riemann D.,Kehlen A.,Langner J.Stimulation of the expression and the enzyme activity of aminopeptidase N/CD13 and dipeptidylpeptidase IV/CD26 on human renal cell carcinoma cells and renal tubular epithelial cells by T cell-derived cytokines,such as IL-4 and IL-13[J].Clin.Exp.Immunol.,1995,100(2):277-283.
    [93]Olsen J.,Laustsen L.,Karnstrom U.,et al.Tissue-specific interactions between nuclear proteins and the aminopeptidase N promoter[J].J.Biol.Chem.,1991,266(27):18089-18096.
    [94]Shapiro L.H.,Ashmun R.A.,Roberts W.M.,et al.Separate promoters control transcription of the human aminopeptidase N gene in myeloid and intestinal epithelial cells[J].J.Biol.Chem.,1991,266(18):11999-12007.
    [95]Yang C.,Shapiro L.H.,Rivera M.,et al.A role for CREB binding protein and p300transcriptional coactivators in ets-1 transactivation functions[J].Mol.Cell.Biol.1998,18(4):2218-2229.
    [96]Hedge S.P.,Kumar A.,Kurschner C.,et al.c-Maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation[J].Mol.Cell,Biol.,1998,18(5):2729-2737.
    [97]Braun R.K.,Foerster M.,Workalemahu G.,et al.Differential regulation of aminopeptidase N (CD13) by transendothelial migration and cytokines on human eosinophils[J].Exp.Lung Res.,2003,29(2):59-77.
    [98]Ritchie J.C.,Davis T.P.,Nemeroff CB Action of three ectopeptidases on corticotropin-releasing factor:metabolism and functional aspects[J].Neuropsychopharmacology.2003,28(1):22-33.
    [99]Lerche C.,Vogel L.K.,Shapiro L.H.,et al.Human aminopeptidase N is encoded by 20exons[J].Mamm.Genome,1996,7(9):712-713.
    [100]Watt V.M.,Willard H.F.The human aminopeptidase N gene:Isolation,chromosome localization,and DNA polymorphism analysis[J].Hum.Genet.,1990,85(6):651-654.
    [101]Thompson J.D.,Gibson T.J.,Plewniak F.,et al.The ClustalX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J].Nucleic Acids Res.,1997,24:4876-4882.
    [102]Jongeneel C.V.,Bouvier J.,Bairoch A.A unique signature dentifies a family of zinc-dependent metallopeptidases[J].FEBS Lett,1989,242(2):211-214.
    [103]Thunnissen M.M.,Nordlund P.,Haeggstr(o|")m J.Z.Crystal structure of human leukotriene A4hydrolase,a bifunctional enzyme in inflammation[J].Nat.Struct.Biol.,2001,8:131-135.
    [104]Haeggstrom J.Z.,Tholander F.Wetterholm A.Structure and catalytic mechanisms of leukotriene A(4) hydrolase[J].Prostaglandins Other Lipid Mediat.,2007,83(3):198-202.
    [105]Tamura N.,Lottspeich F.,Baumeister W.,et al.The role of tricorn protease and its aminopeptidase-interacting factors in cellular protein degradation[J].Cell,1998,95(5):637-648.
    [106]Kyrieleis O.J.,Goettig P.,Kiefersauer R.,et al.Crystal structures of the tricorn interacting factor F3 from Thermoplasma acidophilum,a zinc aminopeptidase in three different conformations[J].J.Mol.Biol.,2005,349(4):787-800.
    [107]Matthews B.W.Structural basis of the action of thermolysin and related zinc peptidases[J].Acc.Chem.Res.,1988,21:333-340.
    [108]Reddy A.V.Thermolysin:a peptide forming enzyme[J].Indian J.Biochem.Biophys.,1991,28(1):10-15.
    [109]Rost N.D.,Barrett A.J.,MEROPS:the peptidase database[J].Nucl.Acida Res.2000,28(1):323-325.
    [110]Sj(o|")str(o|")m H.,Norén O.,Olsen J.Structure and function of aminopeptidase N[B].Adv.Exp.Med.Biol.,2000,477:25-34.
    [111]Turner A.J.Membrane alanyl aminopeptidase[M]//Barrett A.J.,Rawlings N.D.Woessner J.F.Handbook of Proteolytic Enzymes,2ed,Elsevier,London 2004,289-294.
    [112]Substrates for Aminopeptidase N[OL].http://merops.sanger.ac.uk/
    [113]Onohara Y.,Nakajima Y.,Ito K.,et al.Crystallization and preliminary X-ray characterization of aminopeptidasc N from Escherichia coli[J].Acta.Cryst.,2006,F62(7):699-701.
    [114]Ito K.,Nakajima Y.,Onohara Y.,et al.Crystal structure of aminopeptidase N(proteobacteria alanyl aminopeptidase) from Eschcrichia coli and conformational change of mcthionine 260involved in substrate recognition[J].J.Biol.Chem.,2006,281(44):33664-33676.
    [115]Addlagatta A.,Gay L.,Matthews B.W.Structure of aminopeptichsc N from Escherichia coli suggests a compartmentalized,gated active site[J].Proc.Natl.Acad.Sci,U.S.A.,2006,103(36):13339-13344.
    [116]Nocek B.,Mulligan R.,Bargassa M.,et al.Crystal structure of aminopeptichse N from human pathogen Neisseria meningitides[J].Proteins,2007,70(1):273-279.
    [117]Luciani N.,Marie-Claire C.,Ruffet E.,et al.Characterization of Glu350 as a critical residue involved in the N-terminal amine binding site of aminopeptichse N(EC3.4.11.2):Insights into its mechanism of action[J].Biochemistry,1998,37(2):686-692.
    [118]Wallace A.C.,Laskowski R.A.,Thornton J.M.LIGPLOT:A program to generate schematic diagrams of protcin-ligand interactions.Prot.Eng.,1995,8:127-134.
    [119]Bryce G.F,Rabin B.R.The function of the metal ion in leucine aminopeptidase and the mechanism of action of the enzyme.Biochem J.,1964,90(3):513-518.
    [120]Gordon E.M.,Godfrey J.D.,Delancy N.G.,et al.Design of Novel Inhibitors of Aminopeptidases.Synthesis of Peptide-Derived Diamino Thiols and Sulfur Replacement Analogues of Bestatin[J].J.Med.Chem.,1988,31(11):2199-2211.
    [121]Digregorio M.,Picketing D.S.,Chan W.W.C.Multiple sites and synergism in the binding of inhibitors to microsomal aminopeptidase[J].Biochemistry,1988,27(10):3613-3617.
    [122]Jiang W.,Bond J.S.,Families of metalloendopeptidases and their relationships[J].FEBS Lett,1992,312(2-3):110-114.
    [123]Rudberg P.C.,Tholander F.,Thunnissen M.M.,et al.Leukotriene A4hydrolase/aminopeptidasc.Glutamate 271 is a catalytic residue with specific roles in two distinct enzyme mechanisms[J].J.Biol.Chem.,2002,277(2):1398-1404.
    [124]Hangauer D.G.,Monzingo A.F.,Matthews B.W.An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides[J].Biochemistry.1984,23(24):5730-5741.
    [125]Holmes M.A.,Matthews B.W.Binding of hydroxamic acid inhibitors to crystalline thermolysin suggests a pentacoordinate zinc intermediate in catalysis[J].Biochemistry.1981,20(24):6912-6920.
    [126]Curnis F.,Sacchi A.,Borgna L.,et al.Enhancement of tumor necrosis factor alpha antitumor immunothcrapcutic properties by targeted delivery to aminopcptidase N(CD13).Nat.Biotechnol.,2000,18(11):1185-1190.
    [127]Corti A.,Ponzoni M.Tumor Vascular Targeting with Tumor Necrosis Factor{alpha} and Chemotherapeutic Drugs[J].Ann.N.Y.Acad.Sci.,2004,1028:104-12.
    [128]Gabrilovac J.,Breljak D.,Cupic B,et al.Regulation of aminopeptidase N(EC 3.4.11.2;APN;CD13) by interferon-gamma on the HL-60 cell linc[J].Life Sci.2005,76(23):2681-2697.
    [129]Cumis F.,Gasparri A.,Sacchi A.,et al.Targeted Delivery of IFN{gamma} to Tumor Vessels Uncouples Antitumor from Counterregulatory Mechanisms[J].Cancer Res.,2005,65(7):2906-2913.
    [130]Umezawa H.,Aoyagi T.,Such H.,et al.Bestatin,an inhibitor of aminopeptidase B,produced by actinomycetes[J].J.Antibiot.,1976,29(1):97-99.
    [131]Mathe G.Bestatin,an aminopeptidase inhibitor with a multi-pharmacological function[J].Biomed.Pharmacother.,1991,45(2-3):49-54.
    [132]Ota K.,Kurita S.,Yamada K.,et al.Immunotherapy with bestatin for acute nonlympgocytic leukemia in adults[J].Cancer Immunol.Immunother.,1986,23(1):5-10.
    [133]Ezawa K.,Minato K.,Dobashi K.Induction of apoptosis by ubenimex(Bestatin) in human non-small-cell lung cancer cell lines[J].Biomed.Pharmacother.,1996,50(6-7):283-289.
    [134]Ino K.,Bierman P.J.,Varney M.L.,et al.Monocyte activation by an oral immunomodulator (bestatin) in lymphoma patients following autologous bone marrow transplantation[J].Cancer Immunol.Immunother.,1996,43(4):206-212.
    [135]Ichinose Y.,Genka K.,Koike T.,et al.Randomized double-blind placebo-controlled trial of bestatin in patients with resected stage Ⅰ squamous-cell lung carcinoma[J].J.Natl.Cancer Inst.,2003,95(8):605-610.
    [136]van Hensbergen Y.,Broxterman H.J.,Peters E.,et al.Aminopeptidase inhibitor bestatin stimulates microvascular endothelial cell invasion in a fibrin matrix[J].Thromb.Haemost.,2003,90(5):921-929.
    [137]Furuse K.,Fukuoka M.,Genka K.,et al.Double blind controlled study of ubenimex (Bestatin) against squamous cell lung cancer-a multicenter cooperative study[J].Gan To Kagaku Ryoho,1993,20(9):1187-1194.
    [138]Tokuhara T.,Adachi M.,Hashida H.,et al.Neutral endopeptidase/CD10 and aminopeptidase N/CD13 gene expression as a prognostic factor in non-small cell lung cancer[J].Jpn.J.Thorac.Cardiovasc.Surg.,2001,49(8):489-496.
    139 Ota K.,Kurita S.Immunotherapy with bestatin for acute non-Lymphocytic Leukemia(ANLL)in adults[J].Jpn.J.Cancer Chemother.,1984,11(2):2442-2750.
    [140]Ota K.,Kurita S.Results of investigation into prognosis immunotherapy with bestatin for acute nonlymphocytic Leukemia in adults[J].Jpn.J.Cancer Chemother.,1986,13(1):1017-1025
    [141]Ota K.,Ogawa N.Randomized controlled study of chemoimmunotherapy with bestatin of acute nonlymphocytic leukemia in adults[J].Biomed.Pharmacother.,1990,44(2):93-101.
    [142]Aoyagi T.,Yoshida S.,Nakamura Y.,et al.Probestin,a new inhibitor of aminopeptidase M,produced by Streptomyces azureus MH663-2F6.I.Taxonomy,production,isolation,physico-chemical properties arid biological activities[J].J.Antibiot.,1990,43(2):143-148.
    [143]Repic Lampret B.,Kidric J.,Kralj B.,et al.Lapstatin,a new aminopeptidase inhibitor produced by Streptomyces rimosus,inhibits autogenous aminopeptidases[J].Arch.Microbiol.,1999,171(6):397-404.
    [144]Nagai M.,Kojima F.,Naganawa H.,et al.Phebestin,a new inhibitor of aminopeptidase N,produced by Streptomyces sp.MJ716-m3[J].J.Antibiot.,1997,50(1):82-84
    [145]Aoyagi T.,Tobe H.,Kojima F.,et al.Amastatin,an inhibitor of aminopeptidase A,produced by actinomycetes[J].J.Antibiot.,1978,31(6):636-638.
    [146]Rich D.H.,Moon B.J.,Harbeson S.Inhibition of aminopeptidases by amastatin and bestatin derivatives.Effect of inhibitor structure on slow-binding processes[J].J.Med.Chem.,1984,27(4):417-422.
    [147]Luoh H.F.,Chan S.H.Participation of AT1 and AT2 receptor subtypes in the tonic inhibitory modulation of baroreceptor reflex response by endogenous angiotensins at the nucleus tractus solitarii in the rat[J].Brain Res.,1998,782(1-2):73-82.
    [148]Umezawa H.,Aoyagi T.,Tanaka T.,et al.Production of actinonin,an inhibitor of aminopeptidase M,by actinomycetes[J].J.Antibiot,1985,38(11):1629-1630.
    [149]Lee M.D.,Antczak C.,Li Y.M.,et al.A new human peptide deformylase inhibitable by actinonin[J].Biochem.Biophys.Res.Commun.,2003,312(2):309-315.
    [150]Hachisu M.,Hiranuma T.,Murata S.,et al.Analgesic effect of actinonin,a new potent inhibitor of multiple enkephalin degrading enzymes[J].Life Sci.,1987,41(2):235-240.
    [151]Sui Z.,Salto R.,Li J.,et al.Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes[J].Bioorg.Med.Chem.,1993,1(6):415-420.
    [152]Shim J.S.,Kim J.H.,Cho H.Y.,et al.Irreversible inhibition of APN/aminopeptidase N by the antiangiogenic agent curcumin[J].Chem.Biol.,2003,10(8):695-704.
    [153]Egan M.E.,Pearson M.,Weiner S.A.,et al.Curcumin,a major constituent of turmeric,corrects cystic fibrosis defects[J].Science,2004,304(5670):600-602.
    [154]Shin J.S.,Lee H.S.,Shin J.,et al.Psammaplin A,a marine natural product,inhibits aminopeptidase N and suppresses angiogenesis in vitro[J].Cancer.Lett,2004,203(2):163-169.
    [155]Melzig M.F.,Bormann H.Betulinic acid inhibits aminopeptidase N activity[J].Planta Med.,1998,64(7):655-657.
    [156]Aiken C.,Chen C.H.Betulinic acid derivatives as HIV-1 antivirals[J].Trends Mol.Med., 2005,11(1):31-36.
    [157]Aoyagi T.,Yoshida S.,Matsuda N.,et al.Leuhistin,a new inhibitor of aminopeptidase M,produced by Bacillus laterosporus BMI156-14F1.I.Taxonomy,production,isolation,physico-chemical properties and biological activities[J].J.Antibiot.,1991,44(6):573-578.
    [158]Chung M.C.,Lee H.J.,Chun H.K.,et al.Bestatin analogue from Streptomyces neyagawaensis SL-387[J].Biosci.Biotechnol.Biochem.,1996,60(5):898-900.
    [159]Huang K.,Takahara S.,Kinouchi T.,et al.Alanyl aminopeptidase from human seminal plasma:purification,characterization,and immunohistochemical localization in the male genital tract[J].J.Biochem.,1997,122(4):779-787.
    [160]Yamamoto Y.,Li Y.H.,Ushiyama I.,et al.Puromycin-sensitive alanyl aminopeptidase from human liver cytosol:purification and characterization[J].Forensic.Sci.Int.,2000,113(1-3):143.
    [161]Sedo A.,Vlasicova K.,Bartak P.,et al.Quaternary benzo[c]phenanthridine alkaloids as inhibitors of aminopeptidase N and dipeptidyl peptidase Ⅳ[J].Phytoter.Res.,2002,16(1):84-87.
    [162]Andersson L.,Isley T.C.,Wolfenden R.Alpha-aminoaldehydes:transition state analogue inhibitors of leucine aminopeptidase[J].Biochemistry,1982,21(17):4177-4180.
    [163]Giannousis P.P.,Bartlett P.A.Phosphorus amino acid analogues as inhibitors of leucine aminopeptidase[J].J.Med.Chem.,1987,30(9):1603-1609.
    [164]Chen H.,Noble F.,Coric P.,et al.Aminophosphinic inhibitors as transition state analogues of enkephalin-degrading enzymes:a class of central analgesics[J].Proc.Natl.Acad.Sci.U.S.A.,1998,95(20):12028-12033.
    [165]Lejczak B.,Kafarski P.,Zygmunt J.Inhibition of aminopeptidases by aminophosphonates [J].Biochemistry,1989,28(8):3549-3555.
    [166]Grembecka J.,Mucha A.,Cierpicki T.,et al.The most potent organophosphorus inhibitors of leucine aminopeptidase.Structure-based design,chemistry,and activity[J].J.Med.Chem.,2003,46(13):2641-2655.
    [167]Chen H.,Noble F.,Roques B.P.,et al.Long lasting antinociceptive properties of enkephalin degrading enzyme(NEP and APN) inhibitor prodrugs[J].J.Med.Chem.,2001,44(21):3523-3530.
    [168]Vassiliou S.,Xeilari M.,Yiotakis A.,et al.A synthetic method for diversification of the P10substituent in phosphinic dipeptides as a tool for exploration of the specificity of the S10 binding pockets of leucine aminopeptidases[J].Bioorg.Med.Chem.Lett,2007,15(9):3187-3200
    169 Drag M.,Grzywa R.,Oleksyszyn J.Novel hydroxamic acid-related phosphinates:Inhibition of neutral aminopeptidase N(APN)[J].Bioorg.Med.Chem.Lett.,2007,17(6):1516-1519.
    [170]Fournie-Zaluski M.,Coric P.,Turcaud S.,et al.Potent and systemically active aminopeptidase N inhibitors designed from active-site investigation[J].J.Med.Chem.,1992,35(7):1259-1266.
    [171]Bergin J.D.,Clapp C.H.Inhibition of aminopeptidase M by alkyl D-cysteinates[J].J.Enzym.Inhib.,1989,3(2):127-131.
    [172]马涛,徐文方,王俊丽等.AHPA衍生物的设计、合成及抗癌活性研究[J].中国药物化学杂志,2003,13(2):70-75.
    [173]Wang,J.,Xu,W.The preparation of novel L-iso-glutamine derivativesas potential antitumor agents.J.Chem.Res.Synop.,2003,12,789-791.
    [174]Shenvi A.B.Alpha-Aminoboronic acid derivatives:effective inhibitors of aminopeptidases [J].Biochemistry,1986,25(6):1286-1291.
    [175]Lindsay C.K.,Gomez D.E.,Thorgeirsson U.P.Effect of flavone acetic acid on endothelial cell proliferation:evidence for antiangiogenic properties[J]..Anticancer Res.,1996,16(1):425-431.
    [176]Bibby M.C.,Double J.A.Flavone acetic acid--from laboratory to clinic and back[J].Anti Cancer Drugs,1993,4(1),3-17.
    [177]Bauvois B.,Puiffe M.,Bongui J.,et al.Synthesis and biological evaluation of novel flavone-8-acetic acid derivatives as reversible inhibitors of aminopeptidase N/APN[J].J.Med.Chem.,2003,46(18):3900-3913.
    [178]Schalk C.,d'Orchymont H.,Jauch M.F.,et al.3-Amino-2-tetralone derivatives:novel potent and selective inhibitors of aminopeptidase-M(EC 3.4.11.2)[J].Arch Biochem Biophys,1994,311(1):42-46.
    [179]Albrecht S.,Defoin A.,Salomon E.,et al.Synthesis and structure activity relationships of novel non-peptidic metallo-aminopeptidase inhibitors[J].Bioorg.Med.Chem.,2006,14(21):7241-7257.
    [180]Ocain T.D.,Rich D.H.Alpha-Keto amide inhibitors of aminopeptidases[J].J.Med.Chem.,1992,35(3):451-456.
    [181]Ocain T.D.,Rich D.H.Synthesis of sulfur-containing analogues of bestatin.Inhibition of aminopeptidases by alpha-thiolbestatin analogues[J].J.Med.Chem.,1988,31(11):2193-2199.
    [182]Miyachi H.,Kato M.,Kato F.,et al.Novel potent nonpeptide aminopeptidase N inhibitors with a cyclic imide skeleton[J].J.Med.Chem.,1998,41(3):263-265.
    [183]Takahashi H.,Komoda M.,Kakuta H.,et al.Preparation of novel specific aminopeptidase inhibitors with a cyclic imide skeleton[J].Yakugaku Zasshi,2000,120(10):909-921.
    [184]Lee J.,Shim J.S.,Jung S.A.,et al.N-Hydroxy-2-(naphthalene-2-ylsulfanyl)-acetamide,a novel hydroxamic acid-based inhibitor of aminopeptidase N and its anti-angiogenic activity[J].Bioorg.Med.Chem.Lett.,2005,15(1):181-183.
    [1]Abell A.Advances in Amino Acid Mimetics and Peptidomimetics[M],JAI Press,Greenwich,1 ed,1997.
    [2]Abell A.Advances in Amino Acid Mimetics and Peptidomimetics,JAI Press,Greenwich[M],2ed,1999.
    [3]Athanassiou Z.,Patora K.,Dias R.L.et al.Structure-guided peptidomimetic design leads to nanomolar beta-hairpin inhibitors of the Tat-TAR interaction of bovine immunodeficiency virus.Biochemistry,2007,46(3):741-751.
    [4]Morris T.,Sandham D.,Caddiek S.A microwave enhanced cross-metathesis approach to peptidomimetics.Org.Biomol.Chem.,2007,5(7):1025-1102.
    [5]Giannis A.,Rubsam F.Peptidomimetics in Drug Design[M].Adv.Drug.Res.,1997,29:1-78.
    [6]Ramachandran G.N.,Sasisekharan V.Conformation of polypeptides and proteins[J].Adv.Proteins Chem.,1968,23:283-437.
    [7]Haskell-Luevano C.,Sawyer T.K.,Hendrata S.,et al.Truncation Studies of alpha-Melanotropin Peptides Identifies Tripeptide Analogues Exhibiting Prolonged Agonist Bioactivity[J].Peptides,1996,17:995-1002.
    [8]Manavalan P.,Momany F.A.Conformational energy studies on N-methylated analogs of thyrotropin releasing hormone,enkephalin,and luteinizing hormone-releasing hormone[J].Biopolymers,1980,19(11):943-1973.
    [9]Steer D.L.,Lew R.A.,Perlmutter P.,et al.Beta-amino acids:versatile peptidomimetics[J].Curr.Med.Chem.,2002,9(8):811-822.
    [10]Venkatesan N.,Kim B.H.Synthesis and Enzyme Inhibitory.Activities of Novel Peptide Isosteres[J].Curr.Med.Chem.,2002,9(24):2243-2270.
    [11]Hruby V.J.,Balse P.M.Conformational and Topographical Considerations in Designing.Agonist Peptidomimetics from Peptide Leads.Curr.Med.Chem.,2000,7(9):945-970.
    [12]Cappelletti S.,Pegna M.,Zaliani A.et al.New conformationally constrained Xxx-Pro bicyclic mimetics.Letters in Peptide Science,1995,2(3-4):161-164.
    [13]Gardner B.,Nakanishi H.,Kahn M.Conformationally constrained nonpeptide β-turn mimetics of enkephalin[J].Tetrahedron,1993,49(17):3433-3448.
    [14]Ball J.B.,Alewood P.F.Conformational constraints:nonpeptide beta-turn mimics.J.Mol.Recognit,1990,3(2):55-64.
    [15]Ferguson M.D.,Meara J.P.,Nakanishi H.,et al.The Development of Hydrazide γ-Turn Mimetics[J].Tetrahedron lett,1997,38(40):6961-6964.
    [16]Eguchi M.,Kahn M.Design,Synthesis,and Application of Peptide Secondary Structure Mimeties[J].Mini.Rev.Med.Chem.,2002,2(5):447-462
    [17]Li P.,Roller P.P.Cyclization Strategies in Peptide Derived Drug Design[J].Curr.Top.Med.Chem.,2002,2(3):325-341.
    [18]Abbenante G.,March D.R.,Bergman D.A.,et al.Regioselective structural and functional mimicry of peptides.Design of hydrolytically-stable cyclic peptidomimetic inhibitors of HIV-1protease[J].J.Am.Chem.Soc.,1995,117(41):10220-10226.
    [19]Hanessian S.,McNaughton-Smith G.Lombart H.G.,et al.Design and synthesis of conformationally constrained amino acids as versatile scaffolds and peptide mimetics[J].Tetrahedron,1997,53(38):12789-12854.
    [20]Gilon C.,Halle D.,Chorev M.,et al.Backbone cyclization:A new method for conferring conformational constraint on peptides.Biopolymers.1991,31(6):745-750.
    [21]Levy Y.,Becker O.M.Effect of Conformational Constraints on the Topography of Complex Potential Energy Surfaces[J].Phys.Rev.Lett,1998,81(5):1126-1129.
    [22]Hruby V.J.,Agnes R.S.Conformation-Activity Relationships of Opioid Peptides with Selective Activities at Opioid Receptors[J].Biopolymers,1999,51(6):391-410.
    [23]Schiller P.W.,Schmidt R.,Weltrowska G.,et al.Conformationally constrained opioid peptide analogs with novel activity profiles[J].Letters in Peptide Science,1998,5(2-3):209-214.
    [24]Arttamangku S.,Murray T.F.,DeLander G.E.,et al.Synthesis and Opioid Activity of Conformationally Constrained Dynorphin A Analogues.1.Conformational Constraint in the "Message" Sequence[J].J.Med.Chem.,1996,38(13):2410-2417.
    [25]Arttamangkul S.,Ishmael J.E.,Murray T.F.,et al.Synthesis and Opioid Activity of Conformationally Constrained Dynorphin A Analogues.2.Conformational Constraint in the "Address" Sequence[J].J.Med.Chem.,1997,40(8):1211-1218.
    [26]Pfleger K.D,Bogerd J.,Millar R.P.Conformational Constraint of Mammalian,Chicken,and Salmon GnRHs,But Not GnRH Ⅱ,Enhances.Binding at Mammalian and Nonmammalian Receptors:Evidence for Preconfiguration of GnRH Ⅱ.Mol.Endocrinol.,2002,16(9):2155-2162.
    [27]Khan A.R.,Parrish J.C.,Fraser M.E.,et al.Lowering the Entropic Barrier for Binding Conformationally Flexible Inhibitors to Enzymes.Biochemistry,1998,37(48):16839-16845.
    [28]Kramer R.Z.,Bella J.,Mayville P.,et al.Sequence dependent conformational variations of collagen triple-helical structure.Nat Struct Biol.1999,6(5):454-7.
    [29]Luo S.Q.,Liao C.X.,McClelland J.F.,et al.Formation of a cyclic imide in aspartyl or asparaginyl glycyl peptides induced by heating in the dry state[J].Int.J.Pept.Protein Res.,1987,29(6):728-733.
    [30]Soong C.L.,Ogawa J.,Sukiman H.,et al.Distribution of cyclic imide-transforming activity in microorganisms[J].FEMS Microbiol.Lett.,1998,158(1):51-55.
    [31]Johnson B.A.,Aswad D.W.Enzymatic protein carboxyl methylation at physiological pH:cyclic imide formation explains rapid methyl turnover[J].Biochemistry,1985,24(10):2581-2586.
    [32]Dehart M.P,Anderson B.D.The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins[J].J.Pharm.Sci.,2007,96(10):2667-2685.
    [33]Capasso S.,Mazzarella L.,Sica F.,et al.Deamidation via cyclic imide in asparaginyl peptides[J].Pept.Res.,1989,2(2):195-200.
    [34]Capasso S.,Mazzarella L.,Zagari A.Deamidation via cyclic imide of asparaginyl peptides:dependence on salts,buffers and organic solvents.Pept.Res.,1991,4(4):234-238.
    [35]Markell D.,Hui J.,Narhi L.,et al.Pharmaceutical significance of the cyclic imide form of recombinant human glial cell line derived neurotrophic factor[J].Pharm.Res.,2001,18(9):1361-1366.
    [36]Tomizawa H.,Yamada H.,Ueda T.,et al.Isolation and characterization of 101-succinimide lysozyme that possesses the cyclic imide at Asp101-Gly102[J].Biochemistry,1994,33(29):8770-8774.
    [37]Martin B.L.,Wu D.,Tabatabai L.,et al.Formation of cyclic imide-like structures upon the treatment of calmodulin and a calmodulin peptide with heat[J].Arch.Biochem.Biophys.,1990,276(1):94-101.
    [38]Soong C.L.,Ogawa J.,Honda M.,et al.Cyclic-imide-hydrolyzing activity of D-hydantoinase from Blastobacter sp.strain A17p-4[J].Appl.Environ.Microbiol.,1999,65(4):1459-1462.
    [39]Wakabayashi K.,B(o|")ger P.Target sites for herbicides:entering the 21st century[J].Pest.Manag.Sci.,2002,58(11):1149-1154.
    [40]Wan J.,Zhang L.,Yang G.,et al.Quantitative structure-activity relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors:a study of quantum chemical descriptors from density functional theory[J].J.Chem.Inf.Comput.Sci.,2004,44(6):2099-2105.
    [41]El-Kabbani O.,Darmanin C.,Schneider T.R.,et al.Ultrahigh resolution drug design.Ⅱ.Atomic resolution structures of human aldose reductase holoenzyme complexed with Fidarestat and Minalrestat:implications for the binding of cyclic imide inhibitors[J].Proteins,2004,55(4):805-813.
    [42]El-Kabbani O.,Darmanin C.,Oka M.,et al.High-resolution structures of human aldose reductase holoenzyme in complex with stereoisomers of the potent inhibitor Fidarestat:stereospecific interaction between the enzyme and a cyclic imide type inhibitor[J].J.Med.Chem.,2004,47(18):4530-4537.
    [43]Rastelli G.,Ferrari A.M.,Costantino L.,et al.Discovery of new inhibitors of aldose reductase from molecular docking and database screening[J].Bioorg.Med.Chem.,2002,10(5):1437-1450.
    [44]Brovia V.,Costa A.,Barbeito L.N-acetylsuccinimidylglutamate,a cyclic imide form of the peptide N-acetylaspartylglutamate,is present in low micromolar concentrations in murine and bovine CNS[J].J.Neurochem.,1996,67(1):382-388.
    [45]Stratford E.S.,Curley R.W.Jr.Synthesis of aminomethyl-substituted cyclic imide derivatives for evaluation as anticonvulsants[J].J.Med.Chem.,1983,26(10):1463-1469.
    [46]Burzynski S.R.Antineoplastons:history of the research[J].Drug Exp.Clin.Res.,1986,12(1):1-9.
    [47]Kumabe T.,Tsuda H.,Uchida M.,et al.Antineoplaston treatment for advanced hepatocellular carcinoma[J].Oncol.Rep.,1998,5(6):1363-1367.
    [48]Barlow D.P.,Methylation and imprinting:from host defense to gene regulation[]J.Science,1993,260:309-310.
    [49]Badria F.,Mabed M.,Khafagy W.,et al.Potential utility of antineoplaston A-10 levels in breast cancer[J].Cancer Lett,2000,155(1):67-70.
    [50]Burzynski S.R.,Weaver R.A.,Janicki T.,et al.Long-term survival of high-risk pediatric patients with primitive neuroectodermal tumors treated with antineoplastons A10 and AS2-1[J].Integr.Cancer Ther.,2005,4(2):168-177.
    [51]D'Amato R.J.,Loughnan M.S.,Flynn E.,et al.Thalidomide is an inhibitor of angiogenesis[J].Proc.Natl.Acad.Sci.U.S.A.,1994,91(9):4082-4085.
    [52]Matthews S.J.,McCoy C.Thalidomide:a review of approved and investigational uses[J].Clin.Ther.,2003,25(2):342-395.
    [53]Muckter H.,Frankus E.,More E.Clinical trial of the cyclic imide 1-(morpholinomethyl)-4-phtalimido-piperidindione-2,6(CG 603) in advanced breast cancer.Eur[J].J.Cancer,1972,8(2):157-158.
    [54]Mitsiades C.S.,Mitsiades N.CC-5013(Celgene)[J].Curr.Opin.Investig.Drugs,2004,5(6):635-647.
    [55]Dredge K.,Horsfall R.,Robinson S.P.,et al.Orally administered lenalidomide(CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro[J].Microvasc.Res.,2005,69(1-2):56-63.
    [56]Rao K.V.Lenalidomide in the treatment of multiple myeloma[J].Am.J.Health Syst.Pharm.,2007,64(17):1799-1807.
    [57]Kumar S.,Raje N.,Hideshima T.,et al.Antimyeloma activity of two novel N-substituted and tetraflourinated thalidomide analogs.Leukemia[J].2005,19(7):1253-1261.
    [58]Suátrez A.I.,Blanco.Z.,Delle Monache F.,et al.Three new glutarimide alkaloids from Croton cuneatus[J].Nat.Prod.Res.,2004,18(5):421-426.
    [59]Hung D.T.,Shakhnovich E.A.,Pierson E.,et al.Small-Molecule Inhibitor of Vibrio cholerae Virulence and Intestinal Colonization[J].Science,2005,310:670-674.
    [60]Shakhnovich E.A,Sturtevant D.,Mekalanos J.J.Molecular mechanisms of virstatin resistance by non-O1/non-O139 strains of Vibrio cholerae[J].Mol.Microbial.,2007,66(6):1331-1341.
    [61]Shakhnovich E.A,Hung D.T.,Pierson E.,et al.Virstatin inhibits dimerization of the transcriptional activator ToxT[J].Proc.Natl.Acad.Sci.U.S.A.,2007,104(7):2372-2377.
    [62]Waldor M.K.Disarming pathogens--a new approach for antibiotic development[J].N.Engl.J.Med.,2006,354(3):296-297.
    [63]Hall I.H.,Barnes B.J.,Ward E.S.,et al.Targeting of human Tmolt4 leukemic type Ⅱ IMP dehydrogenase by cyclic imide related derivatives[J].Arch.Pharm.(Weinheim),2001,334(7):229-234.
    [64]Dinsmore C.J.,Bell I.M.Inhibitors of famesyltransferase and geranylgeranyltransferase-Ⅰ for antitumor therapy:substrate-based design,conformational constraint and biological activity[J].Curr.Top.Med.Chem.,2003,3(10):1075-1093.
    [65]Lei M.,Zavodszky M.I.,Kuhn L.A.,et al.Sampling protein conformations and pathways[J].J.Comput.Chem.,2004,25(9):1133-1148.
    [66]Horswill A.R.,Benkovic S.J.Cyclic peptides,a chemical genetics tool for biologists[J].Cell Cycle,2005,4(4):552-555.
    [67]Hayashi T.A Physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics[J].Jpn.J.Pharmacol.,1952,3(1):45-64.
    [68]Lucas D.R.,Newhouse J.P.The toxic effect of sodium L-glutamate on the inner nervous systern[J].AMA.Arch.Ophthalmol.,1957,58(2):193-201.
    [69]Rzeshi W.,Turshi L.,Ikonomidou C.Glutamate antagonists limit tumor growth.Proc.Natl.Acad.Sci.U.S.A.,2001,98(11):6372-6377.
    [70]Rzeski W.,Ikonomidou C.,Turski L.Glutamate antagonists limit tumor growth[J].Biochem.Pharmacol.,2002,64(8):1195-1200.
    [71]Pellegrina C.D.,Padovani G.,Mainente F.,et al.Anti-tumour potential of a gallic acid-containing phenolic fraction from Oenothera biennis[J].Cancer Lett,2005,226(1):17-25.
    [72]Ohno T.,Inoue M.,Ogihara Y.Cytotoxic activity of gallic acid against liver metastasis of mastocytoma cells P-815[J].Anticancer Res.,2001,21(6A):3875-3880.
    [73]Inoue M.,Suzuki R.,Sakaguchi N.,et al.Selective induction of cell death in cancer cells by gallic acid[J].Biol Pharm.Bull.,1995,18(11):1526-1530.
    [74]Jankun J.,Selman S.H.,Swiercz R.,et al.Why drinking green tea could prevent cancer[J].Nature,1997,387(6633):561.
    [75]Birt D.F.,Hendrich S.,Wang W.Diatery agents in cancer prevention:flavonoids and isoflavonoids[J].Pharmacol.Ther.,2001,90(2-3):157-177.
    [76]Stoner G.D.,Mukhtar H.Polyphenols as cancer chemopreventive agents[J].J.Cell Biochem.Suppl,1995,22:169-180.
    [77]Cao Y.,Cao R.Angiogenesis inhibited by drinking tea[J].Nature,1999,398(6726):381.
    [78]Melillo G.,Sausville E.A.,Cloud K.,et al.Flavopiridol,a protein kinase inhibitor,downregulates hypoxic induction of vascular endothelial growth factor expresssion in human monocytes[J].Cancer Res.,1999,59(21):5433-5437.
    [79]Jung Y.D.,Kim M.S.,Shin B.A.,et al.EGCG,a major component of green tea,inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells[J].Brit.J.Cancer,2000,84(6):844-850.
    [80]Scwhartz G.K.,Ilson D.,Saltz L.,et al.Phase Ⅱ study of the cyclin-dependent kinase inhibitor flavopiridol administered to patients with advanced gastric carcinoma[J].J.Clin.Oncol.,2001,19(7):1985-1992.
    [81]Lamy S.,Gingras D.,Beliveau R.Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation[J].Cancer Res.,2002,62(2):381-385.
    [82]Garbisa S.,Sartor L.,Biggin S.,et al.Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate[J].Cancer,2001,91(4):822-832.
    [83]Sartor L.,Pezzato E.,Garbisa S.(-)epigallocatechin-3-gallate inhibits leukocyte elastase:potential of the phyto-factor in hindering inflammation,emphysema,and invasion[J].J.Leuk.Biol.,2002,71(1):73-79.
    [84]Parellada J.,Suárez G.,Guinea M.Inhibition of zinc metallopeptidases by flavonoids and related phenolic compounds:structure-activity relationships[J].J.Enzyme.Inhib.,1998,13(5):347-359.
    [85]Bormann H.,Melzig M.F.Inhibition of metallopeptidases by flavonoids and related compounds[J].Pharmazie,2000,55(2):129-132.
    [86]Mulder G.J.,Meerman J.H.Sulfation and glucuronidation as competing pathways in the metabolism of hydroxamic acids:the role of N,O-sulfonation in chemical carcinogenesis of aromatic amines.Environ.Health Perspect.,1983,49:27-32.
    [87]Whittaker M.,Floyd C.D.,Brown P.,et al.Design and therapeutic application of matrix metalloproteinase inhibitors[J].Chem.Rev.,1999,99(9):2735-2776.
    [88]Vassiliou S.,Mucha A.,Cuniasse P.,et al.Phosphinic pseudo-tripeptides as potent inhibitors of matrix metalloproteinases:a structure-activity study[J].J.Med.Chem.,1999,42(14):2610-2620.
    [1]Zhu X.,Giordano T.,Yu Q.S.,et al.Thiothalidomides:Novel Isosteric Analogues of Thalidomide with Enhanced TNF-alpha Inhibitory Activity[J].J.Med.Chem.,2003,46(24):5222-5229.
    [2]Perino S.,Contino-Pepin C.,Satchi-Fainaro R.,et al.Inhibition of angiogenesis by THAM-derived cotelomers endowed with thalidomide moieties[J].Bioorg.Med.Chem.Lett.,2004,14(2):421-425
    [3]Noyes W.A.,Porter.P.K.Phthalimide[DB],Org.Syn.,1922,2:75-76
    [4]徐文方,王厚全,袁玉梅.抗瘤酮A10的酸酐交换法合成[J].中国医药工业杂志,1989,20(2):58-59.
    [5]Muller G.W.,Konnecke W.E.,Smith A.M.,et al.A Concise Two-Step Synthesis of Thalidomide[J].Org.Proc.Res.Dev.,1999,3(2):139-140.
    [6]Varala R.,Adapa S.R.A Practical and Efficient Synthesis of Thalidomide via Na/Liquid NH3Methodology[J].Org.Proc.Res.Bev.,2005,9(6):853-856.
    [7]Capitosti S.M.,Hansen T.P.,Brown M.L.Facile Synthesis of an Azido-Labeled Thalidomide Analogue[J].Org.Lett,2003,5(16):2865-2867.
    [8]Fox D.J.,Reckless J.,Warren S.G.,et al.Design,Synthesis,and Preliminary Pharmacological Evaluation of N-Acyl-3-aminoglutarimides as Broad-Spectrum Chemokine Inhibitors in Vitro and Anti-inflammatory Agents in Vivo[J].J.Med.Chem.,2002,45(2):360-370.
    [9]Matsumura Y.,Satoh Y.,Shirai K.,et al.New reaction conditions using trifluoroethanol for the E-I Hofmann rearrangement.J.Chem.Soc.,Perkin Trans.,1999,1:2057-2060.
    [10]Sondheimer E.,Holley R.W.Imides from Asparagine and Glutamine.Ⅱ.alpha-Aminoglutarimide[J].J.Am.Chem.Soc.,1957,79(14):3767-3770.
    [11]Hoey G.B.,Lester C.T.The Reaction of Succinic and Glutaric Acid with Amines[J].J.Am.Chem.Sac.,1951,73(9):4473-4474.
    [12]Ares J.J.,Kador P.F.,Miller D.D.Synthesis and Biological Evaluation of Irreversible Inhibitors of Aldose Reductase.J.Med.Chem.,1986,29(11):2384-2389.
    [13]Bose A.K.N-Phthalyl-L-β-Phenylalanine[DB].Org.Syn.,1960,40:82-84
    [14]Bose A.K.,Greer F.,Price C.C.A Procedure for Phthaloylation under Mild Conditions[J].J.Org.Chem.,1958,23(9):1335-1338.
    [15]McCluskey A.,Walkom C.,Michael C.M.C.,et al.Cantharimides:A New Class of Modified Cantharidin Analogues Inhibiting Protein Phosphatases 1 and 2A.Bioorg.Med.Chem.Lett,2001,11(22):2941-2946.
    [16]Kravchenko D.V.,Kuzovkova Y.A.,Kysil V.M.,et al.Synthesis and Structure-Activity Relationship of 4-Substituted 2-(2-Acetyloxyethyl)-8-(morpholine -4-sulfonyl)pyrrolo[3,4-c]quinoline-1,3-diones as Potent Caspase-3 Inhibitors.J.Med.Chem.2005,48(11):3680-3683.
    [17]Roy I.L.,Mouysset D.,Mignani S.,et al.Solid phase b-lactams synthesis using the Staudinger reaction,monitored by 19F NMR spectroscopy.Tetrahedron,2003,59(21):3719-3727._
    [18]Tipson R.S.N,N-Phthaloyl-L-glutamic Acid and Some Derivatives[J].J.Org.Chem.,1956,21(12):1353-1357.
    [19]Zavyalov S.I.,Dorofeeva O.V.,Rumyantseva E.E.,et al.Synthesis of N-Phthaloyl Derivatives of Amino Acids.Pharmaceutical Chemistry Journal.2002,36(8):440-442.
    [20]Muller P.,Allenbach Y.,Robert E..Rhodium(Ⅱ)-catalyzed olefin cyclopropanation with the phenyliodonium ylide derived from Meldrum's acid.Tetrahedron:Asymmetry,2003,14(7): 779-785.
    [21]Abraham B.,Kelly L.A.Photooxidation of Amino Acids and Proteins Mediated by Novel 1,8-Naphthalimide Derivatives[J].J.Phys.Chem.,B 2003,107(45):12534-12541.
    [22]Borah H.N.,Boruah R.C.,Sandhu J.S.Microwave-induced One-pot Synthesis of N-carboxyalkyl Maleimides and Phthalimides[J].J.Chem.Res.(S),1998,272-273.
    [23]Antunes R,Batista H.,Srivastava R.M.,et al.New Phthalimide with Analgesic Activity Ⅱ[J].Bioorg.Med.Chem.Lett,1998,8(21):3071-3076.
    24 Antunes R.,Batistaa H.,Rajendra M.,et al.Synthesis,characterization and interaction mechanism of new oxadiazolo-phthalimides as peripheral analgesics.Ⅳ[J].J.Mol.Struct.,2003,660(1-3):1-13.
    [25]Vidal T.,Petit A.,Loupy A.,et al.Re-examination of Microwave-Induced Synthesis of Phthalimides[J].Tetrahedron,2000,56(30):5473-5478
    [26]Cava M.P.,DeanaA.A.,MuthK.,et al.N-Phenylmaleimide[DB].Org.Syn,1961,41:93-95.
    [27]Kometani T.,Fitz T.,Watt D.S.A synthesis of succinimides and glutarimides from cyclic anhydrides[J].Tetrahedron Lett,1986,27(8):919-922.
    [28]Khan S.A.,Erickson B.W.Synthesis and Regioselective Hydrolysis of Peptides Containing an Internal Residue of Pyroglutamic Acid[J].J.Am.Chem.Soc.,1984,106(3):798-799.
    [29]Bodanszky M.,Martinez J.Side Reactions in Peptide Synthesis.On the Phenacyl Group in the Protection of the Carboxyl Function of Aspartyl Residues[J].J.Org.Chem.1978,43(15):3071-3073
    [30]Le Z.G,Chen Z.C.,Hu Y.,et al.Organic Reactions in Ionic liquids:N-Alkylation of Phthalimide and Several Nitrogen Heterocycles.Synthesis,2004,2:208-212.
    [31]Takeuchi Y.,Shiragami T.,Kimura K.,et al.(R)- and(S)-3-Fluorothalidomides:Isosteric Analogues of Thalidomide[J].Org.Lett,1999,1(10):1571-1573.
    [32]Hess S.,Akermann M.A.,Wnendt S.,et al.Synthesis and immunological activity of water-soluble Thalidomide prodrugs[J].Bioorg.Med.Chem.,2001,9(5):1279-1291.
    [33]Sen S.E.,Roach S.L.A convenient Two-Step Procedure for the Synthesis of Substituted Allylic Amines from Allylic Alcohols[J].Synthesis,1995,7:756-758.
    [1]Sehine K.,Fujii H.,Abe F.Induction of apoptosis by Bestatin(ubenimex) in human leukemic cell lines[J].Leukemia,1999,13(5):729-734.
    [2]Ezawa K.,Minato K.,Dobashi K.Induction of apoptosis by ubenimex(Bestatin) in human non-small-cell lung cancer cell lines[J].Biomed.Pharmaco.Ther.,1996,50(6-7):283-289.
    [3]Ansorge S.,Schon E.,Kunz D.Membrane-bound peptidases of lymphocytes:functional imp licatiom[J].Biomed.Biochim.Aeta.,1991,50(4-6):799-807.
    [4]Sakurada K.,Imamura M.,Kobayashi M.,et al.Inhibitory effect of Bestatin on the growth of human leukemic cells[J].Acta.Oncol.,1990,29(6):799-802.
    [5]袁云霞,徐文方,刘健,等.基质金属蛋白酶抑制剂LY52对人卵巢上皮癌细胞SKOV3MMP-2,MMP-9活性的抑制作用[J],癌症,2006,25:663-670.
    [6]Qu X.,Yuan Y.,Xu W.,et al.Caffeoyl pyrrolidine derivative LY52 inhibits tumor invasion and metastasis via suppressing matrix metalloproteinase activity[J].Anticancer Res.,2006,26,3573-3578.
    [7]李海燕,方肇勤,梁尚华.小鼠移植性肝癌(H22)模型的研究及在中医药抗肿瘤中的应用[J].中国中医基础医学杂志,2000,6(1):27-30.
    [8]Cramer R.D.,Patterson D.E.,Bunce J.D.Comparative molecular field analysis(CoMFA).1.Effect of Shape on Binding of Steroids to Carrier Proteins[J].Journal of Am.Chem.Sac.,1988,110:5959-5967.
    [9]Klebe,G,Abraham,U.,and Mietzner,T.Molecular Similarity Indices in a Comparative Analysis(CoMSIA) of Drug Molecules to Correlate and Predict their Biological Activity[J].J.Med.Chem.,1994,37:4130-4146.
    [10]SYBYL 7.0,Tripos Inc.:1699 South Hanley Rd.,St.Louis,Missouri,63144.
    [11]SYBYL 7.3,Tripos Inc.:1699 South Hanley Rd.,St.Louis,Missouri,63144.
    [12]Berman H.M.,Westbrook J.,Feng Z.,et al.The Protein Data Bank[J].Nucleic Acids Res.,2000,28(1):235-242.
    [13]GALAHADTM is distributed by Tripos Inc.,1699 South Hanley Rd.,St.Louis,Missouri,USA(http://www.tripos.com)
    [14]Richmond N.J.,Abrams C.A.,Wolohan P.R.,et al.GALAHAD:1.pharmacophore identification by hypermolecular alignment of ligands in 3D[J].J Comput Aided Mol Des,2006,20(9):567-587.
    [15]Labrie P.,Maddaford S.P.,Fortin S.et al.A comparative molecular field analysis(CoMFA)and comparative molecular similarity indices analysis(CoMSIA) of anthranilamide derivatives that are multidrug resistance modulators[J].J Med Chem.,2006,49(26):7646-7660.
    [16]GALAHAD,Tripos,South Hardey Rd.,St.Louis,Missouri,http://www.tripos.com/data /SYBYL/GALAHAD_9-7-05.pdf
    [1]樊能廷.有机合成事典.北京:北京理工大学出版社.1992:281-282.
    [2]A.H.Abo-sier,M.M.Baoran and M.Knalifa,Synthesis of 3,4,5-trimethoxybenzyl derivatives of certain amino compounds likely to possess CNS activity[J].Pharmazie 1977;32:149-150.
    [3]Varala R.,Adapa S.R.A Practical and Efficient Synthesis of Thalidomide via Na/Liquid NH3Methodology[J].Org.Proc.Res.Dev.,2005,9(6):853-856
    [4]Drag M.,Grembecka J.,Pawelczak M.,et al.α-Aminoalkylphosphonates as a tool in experimental optimisation of P1 side chain shape of potential inhibitors in S1 pocket of leucineand neutral aminopeptidases[J].Eur.J.Med.Chem.,2005,40(8):764-771.
    [5]Baragi V.M.,Shaw B.I.,Renkiewicz R.R.,et al:A versatile assay for gelatinases using succinylated gelatin[J].Matrix Biol,2000,19:267-273.
    [6]何静松,林茂芳,麦文渊,等.乌苯美司对人白血病细胞生长抑制及其机制探讨[J].浙江大学学报(医学版),2002,31(4):259-264.
    [7]袁云霞,徐文方,刘健,等.基质金属蛋白酶抑制剂LY52对人卵巢上皮癌细胞SKOV3MMP-2,MMP-9活性的抑制作用[J].癌症,2006,25:663-670.
    8 Qu X.,Yuan Y.,Xu W.,et al.Caffeoyl pyrrolidine derivative LY52 inhibits tumor invasion and metastasis via suppressing matrix metalloproteinase activity[J].Anticancer Res.,2006,26:3573-3578.
    9 Tian B.,Li Y.,Ji X.N.,et al:Basement membrane proteins play an active role in the invasive process of human hepatocellular carcinoma cells with high metastasis potential[J].J Cancer Res Clin Oneol,2005,131:80-86.
    [10]李海燕,方肇勤,梁尚华.小鼠移植性肝癌(H22)模型的研究及在中医药抗肿瘤中的应用[J].中国中医基础医学杂志,2000,6(1):27-30.
    [11]马兴铭,医学免疫学实验技术[M].兰州:兰州大学出版社,2005:43-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700