用户名: 密码: 验证码:
表面增强拉曼光谱化学增强的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪70年代,人们在电化学拉曼散射实验中发现一种新颖的现象:当分子吸附或靠近某种特定金属表面时,分子的拉曼散射信号被极大地增强。这种现象后来被称为表面增强拉曼光谱散射(SERS),它可将拉曼信号强度提高10~6数量级。由于SERS现象使常规拉曼光谱(NRS)的拉曼信号得到显著增强,因此SERS已经成为一种重要的激光光谱技术。SERS光谱可以克服NRS光谱拉曼散射截面很低的缺点,并且成为一种有效的单分子检测工具。20世纪90年代,由于计算机科学和计算化学的发展,拉曼光谱的计算工作已经成为一个十分重要研究领域,对分子拉曼光谱的计算,为其谱峰指认提供了一种强有力的工具。在本论文中,采用量子化学方法研究了三种分子-金属系统的NRS和SERS光谱。基于密度泛函(DFT)和含时密度泛函(TDDFT)的计算结果,理论分析了三种体系的结合性质,吸收光谱,并对分子的拉曼谱峰进行指认。着重讨论了三种体系中表面增强拉曼光谱的化学增强机理,其中包括基态化学增强,电荷转移共振拉曼增强。同时,我们采用一种被称为电荷差异密度(CDDs)的理论方法来描述化学增强机理。这方法可以形象的展示金属团簇和吸附分子间在共振电子跃迁过程中的电荷转移,而分子间的电荷转移正是化学增强机理的直接证据之一。
     1.1977年,Albrecht等人和Van Duyne等人分别发现当吡啶分子吸附到粗糙银表面时其拉曼信号得到明显的提高,这种现象就是表面增强拉曼散射。我们采用DFT和TDDFT方法对吡啶-银团簇pyridine-Ag_n(n=2-8,20)和pyridine-Ag_(4X)(X=L(长轴),S(短轴),V(顶点))复合物的拉曼光谱进行研究。在NRS散射中,pyridine-Ag_n(n=2-8,20)和pyridine-Ag_(4X)(X=L,S,V)复合物的拉曼光谱与吡啶分子的拉曼光谱线型基本一致。通过量化计算和CDDs理论方法的分析,我们发现复合物中产生的电荷转移跃迁对预共振拉曼(pre-RRS)光谱的强度有着直接的影响,因此我们采用与纯电荷转移激发态共振的波长作为入射光计算pyridine-Ag_n(n=2-8)和pyridine-Ag_(4X)(X=L,S,V)复合物的预共振拉曼光谱。与NRS光谱相比pre-RRS光谱中获得的增强因子大约为10~4到10~5。拉曼信号的明显增强主要来源于电荷转移共振增强机理。计算结果显示,SERS光谱的强度取决于吸附位、团簇的尺寸以及复合体的构型。
     2.利用表面增强拉曼散射(SERS)效应,罗丹明6G(R6G)可用于高灵敏度标记检测。在可见光区,R6G阳离子染料有很强的光吸收同时伴随着剧烈的荧光效应。然而,强烈的荧光效应将妨碍R6G分子拉曼光谱的观测。有大量的实验和理论方面的研究揭示了R6G分子的几何结构,电子结构和光学性能。可是大多数前人的工作仅提供了SERS或者SERRS的增强机理的部分解释,而且化学增强机理还十分容易与电磁增强机理(EM)混淆。我们采用CDDs理论方法研究了吸附在银团簇上R6G分子的化学增强,并给出了电荷转移的直接证据。对于R6G分子在入射光为514.5 nm时产生的SERRS中,振动模v151和v154的增强分别来自分子间微弱的电荷转移(从Ag_2团簇到R6G分子)和强烈的分子内电荷转移(类似R6G的共振拉曼光谱)。当入射能量光接近金属-R6G复合物的纯电荷转移激发态1571.4 nm时,R6G的SERRS增强来自纯的分子间电荷转移共振增强。同时,为了与光吸收过程做对比,我们采用跃迁密度和CDDs方法研究了R6G的荧光效应。
     3.4-氨基苯硫酚(4-aminothiophenol,PATP)分子是一个带有π-共轭苯环的双官能团分子。在苯环的两端分别连接着一个电子供体(-NH_2)和一个电子受体(-SH)。当PATP分子吸附在Au表面时,-SH官能团容易劈裂形成Au-S键,同时-NH_2官能团通过静电力与Ag团簇作用。我们采用DFT和TDDFT方法研究金属-分子复合体和金属-分子-金属三明治结构的拉曼散射。两种复合体(Ag_2-PATP和PATP-Au_2)和两种三明治结构的(Ag_2-PATP-Au_2和Au_2-PATP-Ag_2)的NRS光谱线型是一致的,但是拉曼强度却存在明显不同。这是由于两种三明治结构拥有较大的静极化率,静极化率将直接影响NRS光谱的强度,Ag_2-PATP-Au_2和Au_2-PATP-Ag_2复合物的NRS强度比Ag_2-PATP和PATP-Au_2复合物的强度高约10~2倍。我们计算了入射光为1064 nm的预共振拉曼散射(RRS)光谱,该入射光的能量距离银团簇或金团簇的表面等离子共振(SPR)带很远。在这种情况下,Ag_2-PATP-Au_2和Au_2-PATP-Ag_2结构比Ag_2-PATP和PATP-Au_2复合物获得更高的拉曼强度特别是b_2振动模。这种增强来自于PAPT分子和金属团簇之间的电荷转移激发态与入射光的共振,即电荷转移共振增强。通过CDDs理论方法,我们直观的描述了Ag_2-PATP-Au_2和Au_2-PATP-Ag_2结构中的分子间电荷转移现象,即Herberg-Teller效应的直接证据,从而给出了三明治结构pre-RRS光谱的化学增强机理。
In 1970s, a novel phenomena had been presented that the Raman scattering could be enormously enhanced by molecular adsorbed on or near the rough surface of noble metal. This phenomenon was known as surface-enhanced Raman scattering (SERS) spectrum which enhanced the Raman intensity by 6 orders of magnitude. The great advancements in SERS spectra made it evolve as a significant laser spectroscopic characterization technique which overcame the defect of low scattering cross section in Normal Raman Scattering (NRS) spectrum and grew to an available tool in single-molecular detection. From the nineties of the 20th century, advance in computer science and computational chemistry made Raman spectrum simulation become a well-established and important research area. And Raman spectrum simulation became a powerful tool for band assignment. In the current thesis, quantum chemistry was preformed to investigate three molecule-metal system Raman spectra and SERS spectra. Theoretical analysis of binding properties, band assignment, adsorption spectra was been carried out based on Density functional theory (DFT) and Time-dependent DFT (TDDFT) methods. We focused on chemical enhancement mechanism of three system, including ground state chemical enhancement and charge transfer resonant enhancement. In addition, a theoretical methodology called Charge Difference Densities (CDDs) is adopted in describing chemical enhancement mechanism. This methodology aims at visualizing charge transfer between metal clusters and target molecule on resonant electronic transition, which is one of the most direct evidences for chemical enhancement mechanism.
     1. The Raman intensity of pyridine was strongly enhanced when the molecular adsorbed on rough silver surface which was found by Albrecht et al. and Van Duyne et al. in 1977, respectively. This phenomenon was commonly said to be SERS spectra. We investigated the Raman Scattering spectra of pyridine-Ag_n (n = 2-8, 20) and pyridine-Ag_(4X) (X = L, S, V) complexes by DFT and TDDFT methods. In normal Raman scattering (NRS) spectra, profiles of pyridine-Ag_n (n = 2-8, 20) and pyridine-Ag_(4X) (X = L, S, V) complexes were analogical with that of single pyridine. Through quantum chemistry computation and CDDs results, we found the pre-Resonance Raman Scattering (RRS) spectra were strongly dependent on the electronic transition state of new complexes. Wavelengths were nearly resonant with the pure charge transfer excitation states, which were adopted as incident light when simulating the pre-RRS spectra for pyridine-Ag_n (n = 2-8) pyridine-Ag_(4X) (X = L, S, V) complexes, respectively. We obtained the enhancement factors about 10~4 to 10~5 in pre-RRS spectra compared with the corresponding NRS spectra. The obvious increase in Raman intensities mainly resulted from charge transfer resonance Raman enhancement. The calculated results showed that the SERS spectra were strongly dependent on adsorption site, cluster size and the configuration of new complexes.
     2. Owing to the significant role in surface-enhanced Raman spectroscopy, Rhodamine 6G (R6G) has been used in high sensitive detection. In visible light R6G cationic dye has a strong adsorption accompanying with a severe fluorescence yield. However, the strong fluorescence yield of R6G may prevent observation of the Raman spectrum. Numerous experimental and theoretical investigations have been carried out to reveal the structural, electronic and optical properties of R6G. Those previous works mentioned above have provided some understandings of the enhancement of SERS or SERRS but it is easy to confuse chemical enhancement with EM in SERS or SERRS. The problem of the chemical enhancement of R6G absorbed on silver cluster has been theoretically investigated by CDDs to show direct evidence of charge transfer. For SERRS of R6G excited at 514.5 nm, the enhancements of v151 and v154 are resulted from weak intermolecular (from Ag_2 cluster to R6G) CT and the strong intramolecular charge transfer (similar to that of RRS of R6G), respectively. The possibility of the SERRS of R6G contributed from pure intermolecular CT is also discussed, when the incident light is close to the new metal-R6G charge transfer excited state at 1571.4 ran. Meanwhile, compared with the absorption process, the fluorescence yield of R6G is investigated by transition densities and CDDs.
     3. 4-aminothiophenol (PATP) is a typical bifunctional molecule with aπ-conjugated benzene ring linked by an electron-donor (-NH_2) and an electron-accepter (-SH) group in each side. When the PATP molecule absorbed on Au surface, the -SH group easily splits to form Au-S bond and amino group attaches to silver NPs through the electrostatic force. DFT and TDDFT methods have been performed to investigate the Raman Scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with PATP molecule. Profiles of calculated NRS spectra for two complexes (Ag_2-PATP and PATP-Au_2) and two junctions (Ag_2-PATP-Au_2 and Au_2-PATP-Ag_2) are similar to each other, but with obviously different Raman intensities. Due to two junctions possess lager static polarizabilities, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 10~2. We calculate pre-Resonance Raman Scattering (RRS) spectra with incident light at 1064 nm, which is far away from the Surface Plasma Resonance (SPR) bands of silver or gold nanoparticles. Ag_2-PATP-Au_2 and Au_2-PATP-Ag_2 junctions obtain higher Raman intensities than those of Ag_2-PATP and PATP-Au_2 complexes especially for b_2 modes. It is mainly caused by charge transfer between metal gap and PAPT molecule which results in the occurrence of charge transfer resonance enhancement. Calculated pre-RRS spectra are strongly dependent on the electronic transition state produced by new structures. CDDs method has been used to visually describe chemical enhancement mechanism of Ag_2-PATP-Au_2 and Au_2-PATP-Ag_2 junctions in pre-RRS spectrum. This methodology aims at visualizing intermolecular CT which is the direct evidence of Herberg-Teller mechanism.
引文
[1] Smekal A. Naturwissenschaften, 1923, 11: 873.
    [2] Raman C V, Krishinan K S. A new type of secondary radiation. Nature, 1928, 121: 501.
    [3] Weber A. Raman Spectroscopy of Gases and Liquids. Topics Current Phys. Vol. 11 springer, Berlin, Heidelberg, New York, 1980.
    [4] Synge E H. A suggested method for extending microscopic resolution into the ultra-microscopic region. Philosophical Magazine, 1928, 6(35): 356-362.
    [5] Kneipp K, Kneipp H. Surface-enhanced Raman scattering and biophysics. Journal of Physics Condensed Matter, 2002,14: R597-R624.
    [6] 程光煦.拉曼布里渊散射,2001,北京:科学出版社.
    [7] Long D A. The Raman Effect: a Unified Treatment of the Theory of Raman Scattering by Molecules. 2002, West Sussex, England: John Wiley & Sons, Ltd.
    [8] 梁映秋.分子振动和振动光谱,1990,北京:北京大学出版社.
    [9] 吴国祯.分子振动光谱学原理与研究,2001,北京:清华大学出版社.
    [10] Fleischmann M, Hendra P J, McQuilla A J. Raman Spectraof Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters, 1974, 26(2): 163-166.
    [11] Albrecht M G, Creighton J A. Anomalously Intense RamanSpectra of Pyridine at a Silver Electrode. Journal of the American Chemical Society, 1977, 99(15):5215-5217.
    [12] Jeanmaire D L, Vanduyne R P. Surface Raman Spectroelectrochemistry .1.Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on Anodized Silver Electrode. Journal of Electroanalytical Chemistry, 1977,84(1):1-20.
    [13] Ren B, Lin X F, Yang Z L, Liu GK, Aroca R F, Mao B W, Tian Z Q. Surface enhanced Raman scattering in the ultraviolet spectral region: UVSERS on rhodium and ruthenium electrodes. Journal of the American Chemical Society, 2003, 125(32): 9598-9599.
    [14] 任斌,田中群.电极催化剂的原位拉曼方法;固体催化剂研究方法,辛勤,主编.2004,科学出版社:北京.
    [15] Van Duyne R P. In Chemical and Biochemical Application of Lasers, ed. By C. B. Moore, Academic Press, New York, 1979, Vol. 4, Chapter 5.
    [16] 任斌,田中群,电化学催化中的激光拉曼光谱法.石油化工,2002,31(6):488.
    [17] Moskovits M. Surface-Enhanced Spectroscopy. Reviews of Modern Physics, 1985, 57(3):783-826.
    [18] Kerker M, Wang D S, Chew H, Surface Enhanced RamanScattering (SERS) by Molecules Adsorbedat SphericalParticles. Applied Optics, 1980, 19(24):4159-4174.
    [19] Wang D S, Chew H, Kerker M. Enhanced Raman Scatteringat the Surface (SERS) of a Spherical Particle. Applied Optics, 1980, 19(14): 2256-2257.
    [20] Wang D S, Chew H, Kerker M. Enhanced Raman Scatteringat the Surface (SERS) of a Spherical Particle. Applied Optics, 1980, 19: 3373.
    [21] Aravind P K, Nitzan A, Metiu H. The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres. Surface Science. 1981, 110: 189-204.
    [22] Kin F W, Van Duyne R P, Schatz G C. Theory of Raman scattering by molecules adsorbed on electrode surfaces. Journal of Chemical Physics, 1978,69:4472-4481.
    [23] Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. Journal of Chemical Physics, 1978,69(9): 4159-4161.
    [24] Fuchs R. Theory of the Optical Properties of ionic Crystal Cubes. Physical Review B, 1975, 11:1173-1174.
    [25] Creighton J A, Blatchford C G, Albrecht M G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society, Faraday Transactions 2, 1979, 75: 790-798.
    [26] Blatchford C G, Cambell J R, Creighton J S. Plasma resonance enhanced raman scattering by absorbates on gold colloids: The effects of aggregation. Surface Science, 1982,120:435-455.
    [27] Mo Y J, Lei J, Li X Y, Wachter P. Surface Enhanced Raman Scattering of Rhodamine6g and Dye-1555 Adsorbed on Roughened Copper Surfaces. Solid State Communications, 1988,66(2): 127-131.
    [28] 裴宁,莫育俊,刘长春等.用天线共振子模型研究银镜的紫外可见吸收光谱.光散射学报,1999,11(3):183-186.
    [29] Chang P K, Furtak T E. Surface enhanced Raman scattering. 1982, New York:Plenum Press.
    [30] Moskovits M. SurfaceEnhanced Spectroscopy. Reviews of Modern Physics, 1985, 57(3): 783-826.
    [31] Campion A, Ivanecky J E, Child III C M et al. On The Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 1995, 117(47): 11807-11808.
    [32] Kneipp K, Kneipp H, Itzkan I et al. Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chemical Reviews, 1999, 99(10):2957-2975.
    [33] Otto A, Grabhorn H, Akemann W. Surface-Enhanced Raman-Scattering. Journal of Physics-Condensed Matter, 1992,4(5): 1143-1212.
    [34] Lombardi J R, Birke R L, Lu T et al. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg--Teller contributions. Journal of Chemical Physics, 1986, 84(8):4174-4180.
    [35] Jensen L, Aikens C M, Schatz G C. Electronic Structure Methods for Studying Surface-Enhanced Raman Scattering. Chemical Society Reviews, 2008,37(5): 1061 -1073.
    [36] Hallmark V M, Campion A. Unenhanced Raman Spectroscopy of Benzene Adsorbed on Single Crystal Silver Surfaces Evidence for Surface Selection Rules. Chemical Physics Letters, 1984, 110(6): 561-564.
    [37] Adrian F J. Charge Transfer Effects in Surface Enhanced Raman Scattering. Journal of Chemical Physics, 1982, 77(11): 5302-5314.
    [38] Ueba H, Theory of Charge Transfer Excitation in Surface Enhanced Raman Scattering. Surface Science, 1983, 131(23):347-366.
    [39] Plieth W J. Electrochemical Properties of Small Clusters of Metal Atoms and Their Role in Surface Enhanced RamanScattering. Journal of Physical Chemistry, 1982, 86(16): 3166-3170.
    [40] Roy D, Furtak T E. Characterization of Surface Complexes in Enhanced Raman Scattering. Journal of Chemical Physics, 1984. 81(9): 4168-4175.
    [41] Kneipp J, Kneipp H, Kneipp K. SERS - A Single-Molecule and Nanoscale Tool for Bioanalytics. Chemical Society Reviews. 2008. 37(5): 1052-1060.
    [42]Xu H X,Bjerneld E J,Kall M et al.Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering.Physical Review Letters,1999,83(21):4357.
    [43]Billmann J,Kovacs G,Otto A.Enhanced Raman effect from cyanide adsorbed on a silver electrode.Surface Science,1980,92(1):153-173.
    [44]Otto A.Raman spectra of (CN)" adsorbed at a silver surface.Surface Science,1978,75(2):L392-L396.
    [45]Barz F,Gordon JG,Philpott MR.Effect of laser illumination oxidation-reduction cycles upon surface-enhanced Raman scaterring from silver electrodes.Chemical Physics Letters,1982,91(4):291-295.
    [46]Chen T T,Von Raben K U,Chang J F et al.Laser illumination effects on the surface morphology,cyclic voltammetry,and surface-enhanced raman scattering of Ag electrodes.Chemical Physics Letters,1982,91(6):494-500.
    [47]Holze R.Preparation of gold electrodes for surface enhanced Raman spectroscopy SERS.Surface Science,1988,202(3):L612-L620
    [48]Patterson M L,Weaver M J.Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding:simple alkenes and alkynes adsorbed at gold electrodes.Journal of Physical Chemistry,1985,89(23):5046-5051.
    [49]Leung L W H,Weaver M J.Extending surface-enhanced raman spectroscopy to transition-metal surfaces:carbon monoxide adsorption and electrooxidation on platinum-and palladium-coated gold electrodes.Journal of the American Chemical Society,1987,109(17):5113-5119.
    [50]Chang R K,Furtak T E.Surface-Enhancement Raman Scattering.Plenum,New York:1982.
    [51]Wetzel H,Gerischer H.Surface enhanced Raman scattering from pyridine and halide ions adsorbed on silver and gold sol particles.Chemical Physics Letters,1980,76:460-464.
    [52]Von Raben K U,Chang R K et al.Wavelength dependence of surface-enhanced Raman scattering from silver colloids with adsorbed cyanide complexes,sulfite and pyridine.Journal of Physical Chemistry,1984,88:5290-5296.
    [53]Kerker M,Wang D S,Chew H.Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles.Applied Optics,1980,19(19),3373-3388.
    [54]Efrima S,Metiu H.Resonant Raman scattering by adsorbed molecules.Journal of Chemical Physics,1979,72:1939-1947.
    [55]Ayars E J,Hallen H D.Electric field gradient effects in Raman spectroscopy.Physical Review Letters,2000,85:4180-4183.
    [56]Mulvaney S P,He L,Natan MJ.Surface enhanced Raman scattering (SERS) as a method for identification and quantification of herbicides,pesticides,and disinfection byproducts.Abstracts of Papers of the American Chemical Society,1999,217:U742-U742.
    [57]Moskovits M,Suh J S.Conformation of Mono Carboxylic and Dicarboxylic Acids Adsorbed on Silver Surfaces.Journal of the American Chemical Society,1985,107(24):6826-6829.
    [58]Hu G S,Feng Z C,Li J,Jia G Q,Han D F,Liu Z M,Li C.Adsorption of Ethanediamine on Colloidal Silver:A SERS Study Combined with DFT Calculations.Journal of Physical Chemistry C,2007,111(30):11267-11274.
    [59]Kudelski A. Structures of monolayers formed from different HS-(CH_2)_2-X thiols on gold, silver and copper: comparitive studies by surfaceenhanced Raman scattering. Journal of Raman Spectroscopy, 2003, 34(11): 853-862.
    [60]Kelly K L , Coronado E, Zhao L L, Schatz George C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. Journal of Physical Chemistry B, 2003, 103(3):668-677.
    [61]乔俊莲,李风亭,章非娟.酸性染料在银溶胶上吸附状态的表面增强拉曼光谱研究.分析测试学报,2004,23(2):69-71.
    [62]祖恩东,段云彪,张鹏翔.显微共焦拉曼光谱在宝石鉴定中的应用.云南大学学报,2004,26(1):51-55.
    [63]徐光宪,黎乐民,量子化学,北京:科学出版社,1999
    [64]Heitler著,丁陈汉译,《量子化学初步及价键理论》,台湾中华书局,1973,10
    [65]孙志拥,“南开之星”重在科研与人才培养,开放系统世界,10,2003,17-19
    [66]Hatree D R. The wave mechanics of an atom with a non-coulombic central field, Proc. Cambridge Phill. Soc., 1927,24:89-132.
    [67]何天敬,量子化学(Ⅱ),中国科学技术大学化学物理系,1997
    [68]Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review, 1964, 136: B864-B871.
    [69]Harris J. Simplified method for calculating the energy of weakly interacting fragment. Physical Review B, 1985,31: 1770-1779.
    [70]Fock V. Naherungsmethode zur Losung des quantenmechanischen mehrkorper problems. Z. Physik, 1930,61:126-148.
    [71]Frresner R A. An automatic grid generation scheme for pseudospectral self-consistent field calculations on polyatomic molecules. Journal of the American Chemical Society, 1988,92: 3091-3096.
    [72]Ringnalda M N, Belhadj M, Friesner R A. Pseudospectral Hatree-Fock theory: applicat- ions and algorithmic improvements. Journal of Chemical Physics, 1990, 93: 3397-3407.
    [73]Thomas L. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 1927, 23(5): 542- 548.
    [74]Hodges C H. Quantum corrections to the Thomas-Fermi approximation-the Kirzhnits method. Canadian Journal of Physics, 1973, 51:1428-1437.
    [75]Grammmicos B, Voros A. Semidassical approximations for nuclear Hamiltonians, Ⅱ. Spin-dependent potentials. Annals of Physics, 1979, 129:153-171.
    [76]Murphy D R. Sixth-order term of the gradient expansion of the kinetic-energy density functional, Physical Review A, 1981,24:1682-1688.
    [77]Yang W. Gradient correction in Thomas-Fermi theory. Physical Review A, 1986, 34:4575-4585.
    [78]Von B U, Hedin L. A local exchange-correlation potential for the spin polarized case. Journal of Physical Chemistry: Solid State Phys, 1972, 5:1629-1642.
    [79]Langreth D C, Perdew E P. Theory of Nonuniform Electronic Systems. Physical Review B, 1980, 21:5469-5493.
    [80]Perdew J P. Transport and relaxation of hot condition electrons in an organic dielectric. Physical Review B, 1986, 33:8822-8827.
    [81]Perdew J P.Generalized gradient approximations for exchange and correlation:a look backward and forward.PhysicaB,1991,172:1-2.
    [82]Perdew J P,Wang Y.Theory of the cyclotron resonance spectrum of a polaron in two dimensions.Physical Review B,1986,33:8800-8809.
    [83]Perdew J P,Chevary J A,Vosko S et al.Atom,molecules,solid and surfaces:Approximation of the generalized gradient approximation for exchange and correlation.Physical Review B,1992,46:6671-6687.
    [84]Perdew J P,Ziesche P I,Eshring H.Eletronic Structure of Solids.Berlin,Akademie Verlag,1991.
    [85]Becke A D.Density-functional exchange-energy approximation with correct asymptotic behavior.Physical Review A,1988,38:3098-3100.
    [86]Becke A D.Density-Functional Thermochemistry,l.The Effect of the Exchange-only Gradient Correction.Journal of Chemical Physics,1992,96:2155-2160.
    [87]Lee C,Wang W,Parr R G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Physical Review B,1988,37:785-789.
    [88]Kudmovsky J,Turek I.Drehal V.Self-consistent Green's functional method for random alloys and their surfaces,in:Lectures on Methods of Electronic Structure Calculations,eds.World Scientific,Singapore,1994:231-258.
    [89]Becke A D.Density-functional thermochemistry IV.A new dynamical correlation functional and implications for exact-exchange mixing.Journal of Chemical Physics,1996,104:1040-1046.
    [90]Becke A D.Density-functional thermochemistry Ⅱ The effect of the Perdew-Wang generalized-gradient correlation correction.Journal of Chemical Physics,1992,97:9173-9177.
    [91]Ziegler T,Rauk A.On the calculation of Bonding Energies by the Hartree Fock Slater method.I.The Transition State Method.Theoretical Chemistry Accounts:Theory,Computation,and Modeling,1978,46(3):1-10.
    [92]Beenken W J D,Pullerits T.Spectroscopic Units in Conjugated Polymers:A Quantum Chemically Founded Concept?.Journal of Physical Chemistry B,2004,108:6164-6169.
    [93]Persson N K,Sun M T,Kjellberg P et al.Optical properties of low band gap alternating copolyfluorenes for photovoltaic devices.Journal of Chemical Physics,2005,123:204718.
    [94]Sun M T,Kjellberg P,Beenken W J D,Pullerits T.Comparison of The Electronic Structure of PPV and Its Derivative DIOXA-PPV.Chemical Physics,2006,327:474-484.
    [95]Beenken W J D,Pullerits T.Excitonic coupling in polythiophenes:Comparison of different calculation methods.Journal of Chemical Physics,2004,120(5):2490-2495.
    [96]Jespersen K G,Beenken W J D,Zaushitsyn Y et al.The Electronic States of Polyfluorene Copolymers with Alternating Donor-Acceptor Units.Journal of Chemical Physics,2004,121 (24):12613-12617.
    [97]Br(?)das J L,Beljonne D,Coropceanu V.Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers:A Molecular Picture.Chem.Rev,2004,104(11):4971-5004.
    [98]Frisch M J,Trucks G W,Schlegel H B et al.Gaussian,Inc.,Pittsburgh PA,2003.
    [99]Ahirichs R,B(a|¨)r M,Baron HP et al.Turbomole 5.71;The Quantum Chemistry Group,University of Karlsruhe:Karlsruhe,Germany,2005.
    [100]Baerends E J,Autschbach J,Be'rces A et al.“ADF”,http://www.scm.com,2005.
    [101]Xu H X,Wang X H,Persson M P et al.Unified Treatment of Fluorescence and Raman Scattering Processes near Metal Surfaces.Physical Review Letters,2004,93(24):243002.
    [102 Sun M T,Wan S B,Liu Y et al.Chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer in pyridine-Ag2 complex.Journal of Raman Spectroscopy,2008,39(3):402-408.
    [103]Draine B T,Flatau P J.Discrete-dipole approximation for scattering calculations.Journal of the Optical Society of America A,1994,11(4):1491-1499.
    [104]Jensen T,Kelly L,Lazarides A,Schatz G C.Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters.Journal of Cluster Science,1999,10(2):295-317.
    [105]Xu H X,Kail M.Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates.Physical Review Letters,2002,89(24):246802.
    [106]Zhao L L,Jensen L,Schatz G C.Pyridine-Ag2o Cluster:A Model System for Studying Surface-Enhanced Raman Scattering.Journal of the American Chemical Society,2006,128(9):2911-2919.
    [107]Liu S S,Wan S B,Chen M D,Sun M T.Theoretical Study on SERRS of Rhodamine 6G Adsorbed on Ag2 Cluster:Chemical Mechanism via Intermolecular or Intramolecular Charge Transfer.Journal of Raman Spectroscopy,2008,39(9):1170-1177.
    [108]Sun M T,Liu S S,Chen M D,Xu H X.Direct Visual Evidence for Chemical Mechanism of Surface-Enhanced Resonance Raman Scattering via Charge Transfer.Journal of Raman Spectroscopy,2009,40:137-143.
    [109]Futamata M,Maruyama Y.Electromagnetic and Chemical Interaction Between Ag Nanoparticles and Adsorbed Rhodamine Molecules in Surface-Enhanced Raman Scattering.Analytical and Bioanalytical Chemistry,2007,388:89-102.
    [110]Michaels A M,Nirmal M,Brus L E.Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals.Journal of the American Chemical Society,1999,121(43):9932-9939.
    [111]Jensen L,Schatz G C.Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory.Journal of Physical Chemistry A,2006,110(18):5973-5977.
    [112]Zuo C,Jagodzinski P W.Surface-Enhanced Raman Dcattering of Pyridine Using Different Metals:Differences and Explanation Based on The Selective Formation of Alpha-Pyridyl on Metal Surfaces.Journal of Physical Chemistry B,2005,109(5):1788-1793.
    [113]Cao P G,Gu R A,Ren B,Tian Z Q.Surface-Enhanced Raman Scattering of Pyridine on Platinum and Nickel Electrodes in Nonaqueous Solutions.Chemical Physics Letters,2002,366(3-4):440-446.
    [114]Yang X M,Ajito K,Tryk D A et al.Two-Dimensional Surface-Enhanced Raman Imaging of A Roughened Silver Electrode Surface with Adsorbed Pyridine and Comparison with AFM Images.Journal of Physical Chemistry,1996,100(18):7293-7297.
    [115]Golab J T,Sprague J R,Carron K T et al.A Surface Enhanced Hyper-Raman Scattering Study of Pyridine Adsorbed onto Silver:Experiment and Theory.Journal of Chemical Physics,1988,88(12):7942-7951.
    [116]Hahn J R,Ho W.Imaging and vibrational spectroscopy of single pyridine molecules on Ag(110) using a low-temperature scanning tunneling microscope.Journal of Chemical Physics,2006,124(20):204708.
    [117]Otto A,Frank K H,Reihl B.Inverse photoemission of pyridine on silver (111).Surface Science,1985,163(1):140-152.
    [118]Zhong Q,Gahl C,Wolf M.Two-Photon Photoemission Spectroscopy of Pyridine Adsorbed on Cu(111).Surface Science,2002,496(1-2):21-32.
    [119]Chlucker S,Singh R K,Asthana B P et al.Hydrogen-Bonded Pyridine-Water Complexes Studied by Density Functional Theory and Raman Spectroscopy.Journal of Physical Chemistry A,2001,105(45):9983-9989.
    [120]Wu D Y,Ren B,Tian Z Q.Binding Interactions and Raman Spectral Properties of Pyridine Interacting with Bimetallic Silver-Gold Clusters.Chemphyschem,2006,7(3):619-628.
    [121]Muniz-Miranda M,Cardini G,Pagliai M,Schettino V.DFT Investigation on the SERS Band at Similar to 1025 cm~(-1) of Pyridine Adsorbed on Silver.Chemical Physics Letters,2007,436(1-3):179-183.
    [122]Zhao L L,Jensen L,Schatz G C.Surface-Enhanced Raman Scattering of Pyrazine at the Junction between Two Ag_(20) Nanoclusters.Nano Letters,2006,6(6):1229-1234.
    [123]Wu D Y,Hayashi M,Lin S H et al.Theoretical Differential Raman Scattering Cross-Sections of Totally-Symmetric Vibrational Modes of Free Pyridine and Pyridine-Metal Cluster Complexes.Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2004,60(1-2):137.
    [124]Cardini G,Muniz-Miranda M,Pagliai M,Schettino V.A density functional study of the SERS spectra of pyridine adsorbed on silver clusters.Theoretical Chemistry Accounts,2007,117(3):451-458.
    [125]Arenas J F,Tocon I L,Otero J C,Marcos J I.Charge Transfer Processes in Surface-Enhanced Raman Scattering Franck-Condon Active Vibrations of Pyridine.Journal of Physical Chemistry,1996,100(22):9254-9261.
    [126]Schlucker S,Singh R K,Asthana B P et al.Hydrogen-Bonded Pyridine-Water Complexes Studied by Density Functional Theory and Raman Spectroscopy.Journal of Physical Chemistry A,2001,105(43):9983-9989.
    [127]Wu D Y,Liu X M,Duan S et al.Chemical Enhancement Effects in SERS Spectra:A Quantum Chemical Study of Pyridine Interacting with Copper,Silver,Gold and Platinum Metals.Journal of Physical Chemistry C,2008,112(11):4195-4204.
    [128]Wu D Y,Ren B,Tian Z Q.Binding Interactions and Raman Spectral Properties of Pyridine Interacting with Bimetallic Silver-Gold Clusters.Chemphyschem,2006,7(3):619-628.
    [129]Jensen L,Zhao L L,Schatz G C.Size-Dependence of The Enhanced Raman Scattering of Pyridine Adsorbed on Ag_n (n=2-8,20) Clusters.Journal of Physical Chemistry C,2007,111(12):4756-4764.
    [130]Aikens C M,Schatz G C.TDDFT studies of absorption and SERS spectra of pyridine interacting with Au-20.Journal of Physical Chemistry A,2006,110(49):13317-13324.
    [131]Wang J L,Wang G H,Zhao J J.Structures and Electronic Properties of Cu_(20),Ag_(20),and Au_(20)Clusters with Density Functional Method.Chemical Physics Letters,2003,380(5-6):716-720.
    [132]Liu S S,Zhao X H,Li Y Z et al.DFT Study of Adsorption Site Effect on Surface-Enhanced Raman Scattering of Neutral and Charged Pyridine-Ag_4 Complexes.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,accepted.
    [133]Muniz-Miranda M,Cardini G,Schettino V.Surface-Enhanced Raman Spectra of Pyridine and Pyrazolide on Silver Colloids:Chemical and Electromagnetic Effects.Theoretical Chemistry Accounts,2004,111(2-6):264-269.
    [134]Hohenberg P,Kohn W.Inhomogeneous Electron Gas.Physical Review,1964,136(3B):864-871.
    [135]Becke A.D.Density-functional exchange-energy approximation with correct asymptotic behavior.Physical Review A,1988,38(6):3098-3100.
    [136]Perdew J.P.Density-functional approximation for the correlation energy of the inhomogeneous electron gas.Physical Review B,1986,33(12):8822-8824.
    [137]Hay P.J,Wadt W R.Ab initio effective core potentials for molecular calculations.Potentials for the transition metal atoms Sc to Hg.Journal of Chemical Physics,1985,82(1):270-299.
    [138]Gross E K U,Kohn W.Local density-functional theory of frequency-dependent linear response.Physical Review Letters,1985,55:2850-2852.
    [139]Neugebauer J,Reiher M,Kind C et al.Quantum Chemical Calculation of Vibrational Spectra of Large Molecules-Raman and IR Spectra for Buckminsterfullerene.Journal of Computational Chemistry,2002,23(5):895-910.
    [140]Tian D X,Zhang H L,Zhao J J.Structure and structural evolution of Ag? (n=3-22) clusters using a genetic algorithm and density functional theory method.Solid State Communications,2007,144(3-4):174-179.
    [141]Bonacic-Koutecky V,Pittner J,Boiron M,Fantucci P.An Accurate Relativistic Effective Core Potential for Excited States of Ag Atom:An Application for Studying the Absorption Spectra of Ag_n and Ag_n~+ clusters.Journal of Chemical Physics,1999,110(8):3876-3886.
    [142]Bonacic-Koutecky V,Veyret V,Mitric R.Ab Initio Study of the Absorption Spectra of Ag_n(n=5-8) Clusters.Journal of Chemical Physics,2001,115(20):10450-10460.
    [143]Idrobo J C,Ogut S,Jellinek J.Size dependence of the static polarizabilities and absorption spectra of Ag_n(n=2-8) clusters.Physical Review B,2005,72(8):085445.
    [144]Peyser-Capadona L,Zheng J,Gonzalez J L et al.Nanoparticle-Free Single Molecule Anti-Stokes Raman Spectroscopy.Physical Review Letters,2005,94(5):058301.
    [145]Campion A,Kambhampati P.Surface-Enhanced Raman Scattering.Chemical Society Reviews,1998,27(4):241-250.
    [146]Otto A,Futamata M.Electronic Mechanisms of SERS.In Surface-Enhanced Raman Scattering:Physics and Applications,2006,103:147-148.
    [147]Kneipp K,Wang Y,Kneipp H et al.Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS).Physical Review Letters,1997,78(9):1667.
    [148]Moskovits M.Surface-enhanced Raman spectroscopy:a brief retrospective,Journal of Raman Spectroscopy,2005,36:485-496.
    [149]Kneipp K,Kneinpp H,Moskovits M.Surface-Enhanced Raman Scattering.Physics and Applications,Heidelberg:Springer,2006.
    [150]Garrell R L.Surface-enhanced Raman spectroscopy.Analytical Chemistry,1989,61(6):401A-411A.
    [151]Liang E J,Kiefer W.Chemical Effect of SERS with Near-Infrared Excitation.Journal of Raman Spectroscopy,1996,12:879-885.
    [152]Otto A.The'chemical'(electronic) contribution to surface-enhanced Raman scattering.Journal of Raman Spectroscopy,2005,36:497-509.
    [153]Arenas J F,Lopez-Tocon 1,Castro J L et al.Resonant charge transfer on the nanoscale:studying doublet states of adsorbates by surface-enhanced Raman scattering.Journal of Raman Spectroscopy,2005,36(6-7):515-521.
    [154]Lombardi J R,Birke R L.A Unified Approach to Surface-Enhanced Raman Spectroscopy.Journal of Physical Chemistry C,2008,112(14):5605-5617.
    [155]Brandbyge M,Mozos J L,Ordejon P et al.Density-functional method for nonequilibrium electron transport.Physical Review B,2002,65:165401.
    [156]Sun M T.Control of structure and photophysical properties by protonation and subsequent intramolecular hydrogen bonding.Journal of Chemical Physics,2006,124(5):054903.
    [157]Kunz K S,Luebber R J.The Finite Difference Time Domain Method for Electromagnetics.CRC Press:1993.
    [158]Xu H.X.Calculation of the near field of aggregates of arbitrary spheres.Journal of the Optical Society of America A,2004,21:804-809.
    [159]Metiu H,Das P.The Electromagnetic Theory of Surface Enhanced Spectroscopy.Annual Review of Physical Chemistry,1984,35:507-536.
    [160]Weaver M J S,Farquharson S,Tadayyoni M A.Surface enhancement factors for Raman scattering at silver electrodes.Role of adsorbate-surface interactions and electronic structure.Journal of Chemical Physics,1985,82(11):4867.
    [161]Centeno S P,Lopez-Tocon I,Arenas J F et al.Selection Rules of the Charge Transfer Mechanism of Surface-Enhanced Raman Scattering:The Effect of the Adsorption on the Relative Intensities of Pyrimidine Bonded to Silver Nanoclusters.Journal of Physical Chemistry B,2006,110:14916.
    [162]Nie S,Emory S R.Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering.Science,1997,275(21):1102-1106.
    [163]Zhao J,Jensen L,Sung J H et al.Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles.Journal of American Chemical Society,2007,192:7647-7656.
    [164]Michaels A M,Jiang J,Brus L.Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules.Journal of Physical Chemistry B,2000,104(50):11965-11971.
    [165]Hibara A,Saito T,Kim H B et al.Nanochannels on a Fused-Silica Microchip and Liquid Properties Investigation by Time-Resolved Fluorescence Measurements.Analytical Chemistry,2002,74(24):6170-6176.
    [166]Watanabe H,Hayazawa N,Inouye Y et al.DFT vibrational calculations of Rhodamine 6G adsorbed on silver:Analysis of tip-enhanced Raman spectroscopy.Journal of Physical Chemistry B,2005,109(11):5012-5020.
    [167]Schafer A,Horn H,Ahlrichs R.Fully optimized contracted Gaussian basis sets for atoms Li to Kr.Journal of Chemical Physics,1992,97:2571.
    [168]Katan C,Terenziani F,Mongin O et al.Effects of (Multi)branching of Dipolar Chromophores on Photophysical Properties and Two-Photon Absorption.Journal of Physical Chemistry A,2005,109(13):3024-3037.
    [169]Adhikesavalu D N,Mastropaolo D,Camerman A et al.Crystal Structure Communications.Acta Crystallographica Section C,2001,C57:657-659.
    [170]Peyratout C,Donath E,Daehne L.Electrostatic interactions of cationic dyes with negatively charged polyelectrolytes in aqueous solution.Journal of Photochemistry and Photobiology A:Chemistry,2001,14:51-57.
    [171]Zheng X Y,Wachi M,Harata A et al.Acidity effects on the fluorescence properties and adsorptive behavior of rhodamine 6G molecules at the air-water interface studied with confocal fluorescence microscopy.Spectrochimica Acta Part A,2004,60:1085-1090
    [172]郭立俊,张兴堂,杜祖亮,黄亚彬,莫育俊.银纳米粒子与R6G分子间的电荷转移.光谱学与光谱分析,2001,21(1):16-18
    [173]Haes A J,Zou S L,Zhao J,Schatz G C,Van Duyne R P.Localized Surface Plasmon Resonance Spectroscopy near Molecular Resonances.Journal of American Chemical Society,2006,128(33):10905-10914.
    [174]Kambhampati P,Child C M,Foster M C et al.On the chemical mechanism of surface enhanced Raman scattering:Experiment and theory.Journal of Chemical Physics,1998,108(12):5013.
    [175]Persson B N J,Zhao K,Zhang Z Y.Chemical contribution to surface-enhanced Raman scattering.Physical Review Letters,2006,96(20):207401.
    [176]Thomas S,Biswas N,Venkateswaran S et al.Studies on Adsorption of 5-Amino Tetrazole on Silver Nanoparticles by SERS and DFT Calculations.Journal of Physical Chemistry A,2005,109(44):9928-9934.
    [177]Arenas J F,Fernandez D J,Soto J et al.Role of the Electrode Potential in the Charge-Transfer Mechanism of Surface-Enhanced Raman Scattering.Journal of Physical Chemistry B,2003,107(47):13143-13149.
    [178]Tretiak S,Igumenshchev K,Chernyak V.Exciton sizes of conducting polymers predicted by time-dependent density functional theory.Physical Review B,2005,71(3):033201.
    [179]Otto A.Surface Enhanced Raman Scattering:"Classical" and "Chemical" origins.Light Scattering in Solids,Springer:Secaucus,NJ,Vol.4,1984.
    [180]Schatz G C,Van Duyne R P.Electromagnetic Mechanism of Surface Enhanced Spectroscopy.In Handbook of Vibrational Spectroscopy,John Wiley and Sons,New York,Vol.1,2002.
    [181]Yang W H,Schatz G C.Ab initio and semiempirical molecular orbital studies of surface enhanced and bulk hyper-Raman scattering from pyridine.Journal of Chemical Physics,1992,97(5):3831.
    [182]Aroca R F,Clavijo R E,Halls M D et al.Surface-Enhanced Raman Spectra of Phthalimide Interpretation of the SERS Spectra of the Surface Complex Formed on Silver Islands and Colloids.Journal of Physical Chemistry A,2000,104(42):9500-9505.
    [183]Cardini G,Muniz-Miranda M.Density Functional Study on the Adsorption of Pyrazole onto Silver Colloidal Particles.Journal of Physical Chemistry B,2002,106(27):6875-6880.
    [184]Vivoni A,Birke R L,Foucault R,Lombardi J R.Ab Initio Frequency Calculations of Pyridine Adsorbed on an Adatom Model of a SERS Active Site of a Silver Surface.Journal of Physical Chemistry B,2003,107:5547-5557.
    [185]Johansson P.Illustrative direct ab initio calculations of surface Raman spectra.Physical Chemistry Chemical Physics,2005,7(3):475-482.
    [186]Li J,Li X,Zhai H.J,Wang L S.Au_(20):A tetrahedral cluster.Science,2003,299:864-867.
    [187]Fernandez E M,Soler J M,Garzon I L et al.Trends in the structure and bonding of noble metal clusters.Physical Review B,2004,70:165403.
    [188]Futamata M,Maruyama F,Ishikawa M.Adsorbed Sites of Individual Molecules on Ag Nanoparticles in Single Molecule Sensitivity Surface-Enhanced Raman Scattering.Journal of Physical Chemistry B,2004,108(35):13119-13127.
    [189]Cao L Y,Diao P,Tong L M,T.Zhu et al.Surface-Enhanced Raman Scattering of P-aminothiophenol on a Au(core)/Cu(shell) Nanoparticle Assembly.Chemphyschem,2005,6(5):913-918.
    [190]Wang Y L,Chen H J,Dong S J et al.Surface Enhanced Raman Scattering of P-aminothiophenol Self-Assembled Monolayers in Sandwich Structure Fabricated on Glass.Journal of Chemical Physics,2006,124(7):074709.
    [191]Borodko Y,Humphrey S M,Tilley T D et al.Charge-Transfer Interaction of Poly (Vinylpyrrolidone) with Platinum and Rhodium Nanoparticles.Journal of Physical Chemistry C.2007,111(17):6288-6295.
    [192]Osawa M,Matsuda N,Yoshii K et al.Charge Transfer Resonance Raman Process in Surface-Enhanced Raman Scattering from P-aminothiophenol Adsorbed on Silver:Herzberg-Teller Contribution.Journal of Physical Chemistry,1994,98(48):12702-12707.
    [193]Zhou Q,Li X W,Fan Q et al.Charge Transfer Between Metal Nanoparticles Interconnected with A Functionalized Molecule Probed by Surface-Enhanced Raman Spectroscopy.Angewandte Chemie-International Edition,2006,45(24):3970-3974.
    [194]Hu X G,Wang T,Wang L et al.Surface-Enhanced Raman Scattering of 4-Aminothiophenol Self-Assembled Monolayers in Sandwich Structure with Nanoparticle Shape Dependence:Off-Surface Plasmon Resonance Condition.Journal of Physical Chemistry C,2007,111(19):6962-6969.
    [195]Sun M T,Xu H X.Direct Visualization of the Chemical Mechanism in SERRS of 4-Aminothiophenol/Metal Complexes and Metal/4-Aminothiophenol/Metal Junctions.ChemPhysChem,2009,10:392-399.
    [196]Albrecht A C.Albrecht A C.On the Theory of Raman Intensities.Journal of Chemical Physics,1961,34(5):1476-1484.
    [197]Billmann J,Otto A.Electronic Surface State Contribution to Surface Enhanced Raman Scattering.Solid State Communications,1982,44:105-107.
    [198]Kim K,Lee H S.Effect of Ag and Au Nanoparticles on the SERS of 4-Aminobenzenethiol Assembled on Powdered Copper.Journal of Physical Chemistry B,2005,109(40):18929-18934.
    [199]Kim K,Yoon J.K.Raman Scattering of 4-Aminobenzenethiol Sandwiched between Ag/Au Nanoparticle and Macroscopically Smooth Au Substrate.The Journal of Physical Chemistry B,2005,109(44):20731-20736.
    [200]Zheng J W,Li X W,Gu R N et al.Comparison of the Surface Properties of the Assembled Silver Nanoparticle Electrode and Roughened Silver Electrode.Journal of Physical Chemistry B,2002,106(5):1019-1023.
    [201]Zheng Y,Zhou X,Li Y et al.Surface-Enhanced Raman Scattering of 4-Aminothiophenol in Assemblies of Nanosized Particles and the Macroscopic Surface of Silver.Langmuir,2003,19(3):632-636.
    [202]Beenken W J D,Pullerits T.Excitonic coupling in polythiophenes:Comparison of different calculation methods.Journal of Chemical Physics,2004,120(5):2490-2495.
    [203]Wilson E B.The Normal Modes and Frequencies of Vibration of the Regular Plane Hexagon Model of the Benzene Molecule.Physical Review,1934,45(10):706-714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700