用户名: 密码: 验证码:
曲面激光直写系统与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在曲面上进行微光刻是当前制作微器件的发展方向之一,曲面激光直写则是曲面微器件,特别是微光学器件制作的一个重要发展方向。相比平面激光直写,曲面激光直写由于曲面基片可变倾斜角的引入,使得在其上的光刻曝光困难许多。目前,和曲面激光直写相关的技术、工艺、设备尚处于起步阶段。
     本论文搭建了一套新型的曲面激光直写系统。.该系统通过创新的光刻头恒姿态结构,实现曲面基片上光焦点的检测、控制与曝光。此外,论文对基于曲面的光刻理论、基于曲面的焦点检测,和基于曲面的焦点控制分别进行了研究。
     论文对曲面基片上光刻胶胶层内光场的传输、曝光,以及工艺参数在曲面基片情况下对微结构线条的影响等内容进行了研究。论文首先建立了曲面基片上光刻胶胶层内光场传输与分布模型,之后分析了曲面各种不同的扫描曝光方式,并建立了曲面下的Dill曝光模型,以及不同扫描曝光方式下光刻胶胶层内的曝光模型。在此基础上,论文分别建立了曲面不同扫描曝光方式下的线宽模型,并分析了不同扫描曝光方式下各种工艺参数对线条的影响。
     曲面上光焦点的检测与控制是曲面激光直写的关键。论文在共焦显微技术的基础上,建立了曲面上光焦点的系统响应模型,在此基础上得出了曲面上光焦点的系统径向、轴向响应特性,并据此提出了适合于曲面的光焦点探测新方案,也即动态扫描检测法。论文对新方案原理、参数进行了分析和研究。在此基础上,论文构建了反映曲面上光焦点位置信息的焦点误差信号FES。
     曲面上焦点的控制方面,论文根据曲面基片上光刻的特点,使用了宏/微双驱动控制系统对光焦点进行控制。由于直写光刻的特殊性,论文对宏/微控制系统进行了针对性的设计,包括反映定位误差的信号构建、宏微系统同步方式等。此外,论文研究并提出了两种曲面基片上的焦点搜索机制。这两种机制分别用于激光直写系统初始化时焦点的搜索,以及光刻过程中失去焦点或闭环控制失控时的焦点重新搜索。
     论文最后在所搭建的曲面激光直写系统基础上,进行了初步性的实验,并进行了圆光栅和直线光栅的制作。
Microlithography on non-planar surfaces is a development direction of micro-element fabrication now, and laser lithography on non-planar surfaces is an important development direction of the fabrication of micro-elements, particularly micro-optics, on non-planar surfaces. Compared with on planar surfaces, laser lithography on non-planar surfaces faces more difficulties due to the introduction of the variable tilt angles of non-planar substrates. Now, the technologies, processes, and equipments relating to laser lithography on non-planar surfaces are still in primary stages.
     A novel laser lithography system on non-planar surfaces is constructed in this dissertation. This system can realize the detection and control of optical focus and exposure on non-planar substrates with the innovative constant posture configuration of lithography head. In addition, the theory of exposure on non-planar surfaces, the detection of optical focus on non-planar surfaces, and the control of optical focus on non-planar surfaces are respectively researched in this dissertation.
     The transmission and exposure of the light field in the photoresist layer on non-planar surfaces, and the influences of process parameters on micro-structure lines in the case of on non-planar surfaces and so on, are researched in the dissertation. Firstly, the dissertation constructs the transmission and distribution models of the light field in the photoresist layer on non-planar surfaces. Secondly, the dissertation analyses various scan-exposure modes for non-planar surfaces, and constructs the Dill exposure model for non-planar surfaces, and the exposure models of the photoresist layer for various scan-exposure modes. On the basis of these, the dissertation constructs the line-width models for non-planar surfaces for various scan-exposure modes, analyses the influences of various process parameters on lines in the case of various scan-exposure modes.
     The detection and control of optical focus on non-planar surfaces is the key to the laser lithography system on non-planar surfaces. On the basis of confocal microscopy technology, a response model of optical focus on non-planar surfaces is constructed in the dissertation. Based on this model, the dissertation obtains the response properties of optical focus on non-planar surfaces, and then presents a novel approach for the detection of optical focus on non-planar surfaces, that is so-called dynamic scan detection method. The principle and parameters of this method are analysed and researched in the dissertation. Based on this method, the dissertation constructs a focus error signal (FES) reflecting the position of optical focus on non-planar surfaces.
     For the control of optical focus on non-planar surfaces, a macro/micro dual-drive control system is applied in the dissertation, according to the properties of lithography on non-planar surfaces. Because of the particularities in laser lithography, some special designs are made for the macro/micro dual-drive control system, including FES signal construction, synchronous configuration and so on. In addition, two focus-searching mechanisms for non-planar surfaces are presented in the dissertation, which are respectively applied to searching for focus during the initialization of the laser lithography system, and during the exposure in the case of losing focus or out-of-control of the closed loop.
     On the basis of the laser lithography system constructed in the dissertation, some preliminary experiments are conducted, and a circular grating and a linear grating are also produced on non-planar substrates.
引文
[1]杨国光,沈亦兵,侯西云.微光学技术及其发展[J].红外与激光工程,2001,30(4):157-162.
    [2]Stefan Sinzinger and Jurgen Jahns. Microoptics [M]. Hagen:WILEY-VCH GmbH & Co. KGaA, 2003.
    [3]Hiroshi Nishihara and Erich W. Marchand. Microoptics:introduction by the feature editors[J]. Applied Optics,1990,29(34):5049-5049.
    [4]杨国光等.微光学与系统[M].杭州:浙江大学出版社,2008.
    [5]T. H. Jamieson. Thermal effects in optical systems [J]. Opt. Eng.,1981,20(2):156-160.
    [6]Gregory P. Behrmann and John P. Bowen. Influence of temperature on diffractive lens performance [J]. Applied Optics,1993,32(14):2483-2489.
    [7]Bigwood, R. Christopher. New infrared optical systems using diffractive optics [J]. Proc SPIE, 2002,4767:1-12.
    [8]Caldwell J. Brian. Apochromatic telephoto lens with a diffractive element [J]. Optics & Photonics News,1998,9(10):38-39.
    [9]Yitzhak Nevo, D. Nir, Sylvie Wachtel. Use of diffractive elements to improve IR optical systems [J]. Proc SPIE,2003,4820:744-750.
    [10]Gary J. Swanson, Wilfrid B. Veldkamp. High-efficiency, multilevel, diffractive optical elements: US,4895790 [P],1992-11-3.
    [11]Ichiro Fujieda, Osamu Mikami, and Atsushi Ozawa. Active Optical interconnect based on liquid-crystal grating [J]. Applied Optics,2003,42(8):1520-1525.
    [12]Revital Shechter, Yaakov Amitai, and Asher A. Friesem. Compact wavelength division multiplexers and demultiplexers [J]. Applied Optics,2002,41(7):1256-1261.
    [13]Youngshik Yoon. Design and tolerancing of achromatic and anastigmatic diffractive-refractive lens systems compared with equivalent conventional lens systems[J]. Applied Optics,2000, 39(16):2551-2558.
    [14]Svetomir Stankovic, et al. Integrated optical pickup system for axial dual focus[J]. Applied Optics, 2001,40(5):614-621.
    [15]Brian DeBoo and Jose Sasian. Precise focal-length measurement technique with a reflective fresnel-zone hologram [J]. Applied Optics,2003,42(19):3903-3909.
    [16]Manouchehr E. Motamedi. MOEMS:Micro-Opto-Electro-Mechanical Systems[M]. Washington: SPIE,2005.
    [17]Grigoriy I. Greisukh, Evgeniy G. Ezhov, and Sergei A. Stepanov. Diffractive-refractive hybrid corrector for achro- and apochromatic corrections of optical systems [J]. Applied Optics,2006, 45(24):6137-6141.
    [18]Angel Flores, Michael R. Wang, and Jame J. Yang. Achromatic hybrid refractive-diffractive lens with extended depth of focus [J]. Applied Optics,2004,43(30):5618-5630.
    [19]Hong Young-Ghi, Kim Sun II, Yeo Wan-Gu, Lee Chul-Koo. Telephotolens design with refractive/diffractive hybrid lens [J]. Journal of the Optical Society of Korea,1997,1(2):74-80.
    [20]Chuan Yang, Perry Edwards, Kebin Shi and Zhiwen Liu. Hybrid diffractive optical element based spectrometer [J]. CLEO:Applications and Technology,2011:JWA64.
    [21]Yongqi Fu and Ngoi Kok Ann Bryan. Design of hybrid micro-diffractive-refractive optical element with wide field of view for free space optical interconnections [J]. Optics Express,2002, 10(13):540-549.
    [22]马韬.多层衍射光学元件设计理论及其在混合光学系统中的应用[D].杭州:浙江大学,2006.
    [23]Loukas Athanasekos, Miltiadis Vasileiadis, et al. Multilayer metal/metal-oxide diffractive structure for photonic temperature sensing [J]. Optics Letters,2010,35(23):4003-4005.
    [24]Changxi Xue, Qingfeng Cui, et al. Optimal design of a multilayer diffractive optical element for dual wavebands [J]. Optics Letters,2010,35(24):4158-4159.
    [25]Changxi Xue and Qingfeng Cui. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency [J]. Optics Letters,2010,35(7):986-988.
    [26]黄占喜,吴亚明,李四华.基于多掩膜光刻工艺的MEMS体硅加工[J].功能材料与器件学报,2011,17(3):313-318.
    [27]Carver Mead, Lynn Conway. Introduction to VLSI systems [M]. Boston:Addison-Wesley,1980.
    [28]Hradil Milan, Miler Miroslav. Diffraction efficiency of surface-relief gratings with various profiles[J]. Proc. SPIE,2003,5036:668-673.
    [29]J. Allen Cox, Thomas R. Werner; James C. Lee, et al. Diffraction efficiency of binary optical elements[J]. Proc. SPIE,2003,1211:116-124.
    [30]Margit Ferstl, Berndt Kuhlow, Edgar Pawlowski. Blazed Fresnel zone lenses approximated by discrete step profiles:effects of fabrication errors[J]. Proc. SPIE,1993,1732:89-99.
    [31]Gimkiewicz Christiane, Hagedorn Detlev, et al. Fabrication of microprisms for planar optical interconnections by use of analog gray-scale lithography with high-energy-beam-sensitive glass[J]. Applied Optics,1999,38(14):2986-2990.
    [32]EB Kley, M. Cumme, LC Wittig, and C. Wu. Adapting existing e-beam writers to write HEBS-glass gray-scale masks [J]. Proc. SPIE,1999,3633:35-45.
    [33]Zhou Z. and Sing H. Le. Fabrication of an improved gray-scale mask for refractive micro-and meso-optics[J]. Optics Letters,2004,29(5):457-458.
    [34]Donald C. O'Shea and Willie S. Rockward. Gray-scale masks for diffractive-optics fabrication:Ⅱ. Spatially filtered halftone screens[J]. Applied Optics,1995,34(32):7518-7526.
    [35]Thomas J. Suleski and Donald C. O'Shea. Gray-scale masks for diffractive-optics fabrication:I. Commercial slide imagers[J]. Applied Optics,1995,34(32):7507-7517.
    [36]Dong-Hee Lee. Optical system with 4μm resolution for maskless lithography using digital micro-mirror device[J]. Journal of the Optical Society of Korea,2010,14(3):266-276.
    [37]Pierre Ambs, Laurent Bigue, Yeshayahu Fainman. Dynamic computer generated holograms displayed on a digital micromirror device[J]. DOMO:Diffractive Optics and Micro-Optics,2002.
    [38]Siegfried Schiller, Ullrich Heisig, Siegfried Panzer. Electron beam technology[M]. New York: John Wiley and Sons,1982.
    [39]C. T. Nottbohm, A. Turchanin, A. Beyer, and A. Golzhauser. Direct e-beam writing of 1 nm thin carbon nanoribbons[J]. J. Vac. Sci. Technol. B.,2009,27(6):3059-3062.
    [40]Multibeam Co. How CEBL Works [EB/OL]. http://www.multibeamcorp.com/technology.htm.
    [41]Paul Petric, Chris Bevis, Mark McCord, et al. Reflective electron beam lithography:A maskless ebeam direct write lithography approach using the reflective electron beam lithography concept[J]. J. Vac. Sci. Technol. B 28, C6C6,2010.
    [42]E. Slot, M.J. Wieland, G. de Boer, et al. MAPPER:high throughput maskless lithography [J]. Porc.SPIE,2008,6921:69211P-9.
    [43]M. T. Gale, G. K. Lang, J. M. Raynor, H. Schutz, and D. Prongue. Fabrication of kinoform structures for optical computing [J]. Applied Optics,1992,31(26):5712-5715.
    [44]James Thorpe Helton. Laser Direct Write Grayscale Photolithography [J]. NNIN REU Research Accomplishments,2005:46-47.
    [45]A.G. Poleshchuk, V. P. Korolkov. Laser writing systems and technologies for fabrication of binary and continuous-relief diffractive optical elements [J]. Proc. SPIE,2007,6732:67320x-1.
    [46]张景和,廖江红,刘伟等.二元光学元件激光直接写设备的研制[J].仪器仪表学报,2001,22(2):154-157.
    [47]Michael R. Wang and Heng Su. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication[J]. Applied Optics,1998,37(32):7568-7576.
    [48]Chuan Fei Guo, Sihai Cao, et al. Grayscale photomask fabricated by laser direct writing in metallic nano-films[J]. Optics Express,2009,17(22):19981-19987.
    [49]W. X. Yu, X. C. Yuan, et al. Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing[J]. Optics Express,2002,10(10):443-448.
    [50]Chuan Fei Guo, Zhuwei Zhang, et al. Laser direct writing of nanoreliefs in Sn nanofilms[J]. Optics Letters,2009,34(18):2820-2822.
    [51]Konstantina Terzaki, Nikos Vasilantonakis, et al.3D conducting nanostructures fabricated using direct laser writing[J]. Optical Materials Express,2011,1(4):586-597.
    [52]Matthieu Bellec, Arnaud Royon, et al. Beat the diffraction limit in 3D direct laser writing in photosensitive glass[J]. Optics Express,2009,17(12):10304-10318.
    [53]Jiubin Tan, Mingguang Shan, et al. Design and fabrication of diffractive microlens arrays with continuous relief for parallel laser direct writing [J]. Applied Optics,2008,47(10):1430-1433.
    [54]R. Seltmann, W. Doleschal, et al. New system for fast submicron optical direct writing [J]. Microelectronic Engineering,1996,30(1):123-127.
    [55]Singh-Gasson S, Green RD, et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array [J]. Nat Biotechnol,1999,17(10):974-978.
    [56]Daniela Radtke and Uwe D. Zeitner. Laser-lithography on non-planar surfaces[J]. Optics Express, 2007,15(3):1167-1174.
    [57]Daniela Radtke, Jacques Duparr'e. Laser lithographic fabrication and characterization of a spherical artificial compound eye[J]. Optics Express,2007,15(6):3067-3077.
    [58]Yongjun Xie, Zhenwu Lu, and Fengyou Li. Fabrication of large diffractive optical elements in thick film on a concave lens surface[J]. Optics Express,2003,11(9):992-995.
    [1]M. T. Gale, M. Rossi, J. Pedersen, H. SchUlz. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists [J]. Opt. Eng.1994,33(11):3556-3566.
    [2]Alexander Poleshchuk, Victor Korolkov, Vadim Cherkashin, et al. Polar coordinate laser writing systems:error analysis of fabricated DOEs[J]. Proc. SPIE,2001,4440:161-172.
    [3]Liang Yiyong, Yang Guoguang. Linewidth control by overexposure in laser lithography[J]. Optica Applicata,2008, XXXVIII(2):399-404.
    [4]Yuen-Chuen Chan, Yee-Loy Lam, Yan Zhou, et al. Development and applications of a laser writing lithography system for maskless patterning [J]. Opt. Eng.,1998,37(9):2521-2530.
    [5]Hideki Ina, Koichi Sentoku, Satoru Oishi, et al. Focus and dose controls, and their application in lithography[J]. Proc. SPIE,2007,6518:651807-8.
    [6]Sergey Babin. Measuring the proximity effects in laser pattern generation [J]. Opt. Eng.,1997, 36(9):2508-2512.
    [7]Yongjun Xie, Zhenwu Lu, Fengyou Li. The analysis of line profile in Laser Direct Writing process [J]. Proc. SPIE,2003,4829:686-687.
    [8]J. R. Salgueiro, J. F. Roman, V. Moreno. System for laser writing to lithograph masks for integrated optics [J]. Opt. Eng.1998,37(4):1115-1223.
    [9]Frederick H. Dill. Optical Lithography [J]. IEEE Trans. Electron Devices,1996.222(7):440-444.
    [10]刘世杰,杜惊雷等.厚层抗蚀剂曝光模型及其参数测量[J].半导体学报,2005,26(5):1065-1071.
    [11]A. Erdmann, C. L. Henderson, C. G. Willson, W. Henke. Influence of optical non-linearities of the photoresist on the photolithographic process:basics [J]. Proc. SPIE,1997,3051:529-540.
    [12]Amy C. Sullivan, Matthew W. Grabowski, et al. Three-dimensional direct-write lithography into photopolymer[J]. Applied Optics,2007,46(3):295-301.
    [13]C. Wang, Y. C. Chan, Y. L. Lam, G. Tan and X. C. Yuan. Control of process for fabricating diffractive optical elements by direct laser writing [J]. Proc. SPIE,2001,4291:25-32.
    [14]Y. Cheng, T. Huang and C. C. Chieng. Thick-film lithography using laser write [J]. Microsystem Technologies,2002,9:17-22.
    [15]TOPTICA Photonics Corporation. iPulse/iBeam manual [M]. Germany:TOPTICA Photonics Corporation,2004.
    [16]S. Teng, L. Liu, Z. Luan, L. Wan. Axial distribution of Gaussian beam limited by a hard-edged aperture [J]. Chin. Optic. Lett.,2004,2(7):276-277.
    [17]Robert D. Guenther. Modern optics [M]. New York:John Wiley,1990.
    [18]D. R. Hall, P. E. Jackson. The physics and technology of laser resonators [M]. Philadelphia: Taylor & Francis, Inc.,1989.
    [19]L. D. Dickson. Characteristics of a propagating gaussian beam [J]. Appl. Opt.,1970,9(8):1854-1861.
    [20]R. G. Schell, G. Tyras. Irradiance from an aperture with a truncated-gaussian field distribution [J]. J. Opt. Soc.Am.,1971,61:31-35.
    [21]D. A. Holmes, J. E. Korka, P. V. Avizonis. Parametric study of apertured focused gaussian beams [J]. Appl. Opt.,1972, 11(3):565-574.
    [22]H. Kogelnik, T. Li. Laser beams and resonators [J]. Appl. Opt.,1966,5(10):1550-1567.
    [23]S. Wang, D. Zhao, Matrix Optics [M]. Berlin:Springer-Verlag,2000.
    [24]M. Born, E. Wolf. Principles of Optics [M]. UK:Cambridge University Press,1997.
    [25]沈亦兵,杨国光,侯西云.激光光刻中焦深概念的新探讨[J].光子学报,1998,27(10):890-895.
    [26]Marvin J. Weber. Handbook of optical materials [M]. New York:CRC Press,2000.
    [27]陈军.光学电磁理论[M].北京:科学出版社,2005.
    [28]Heinrich Kirchauer. Photolithography Simulation [M]. Austria:Osterr. Kunst-u. Kulturverl.,2000.
    [29]F. H. Dill, A. R. Neureuther, J. A. Tuttle and E. J. Walker. Modeling Projection Printing of Positive Photoresists [J]. IEEE Trans. Electr. Dev.,1975,22(7):456-464.
    [30]X. G. Tang, F. H. Gao, Y. K. Guo et al. Analysis and simulation of diffractive imaging field in thick film photoresist by using angular spectrum theory [J].Optic. Comm.,2004,244:123-130.
    [31]D. A. Bernard, Simulation of focus effects in photolithography [J]. IEEE Transact. On Semi-conductor Manufacturing,1988,1:85-97.
    [32]M.Yeung. Modeling aerial images in two and three dimensions [J]. Kodak Microelectr. Seminar, 1986,85:115-126.
    [33]A. K. Wong, A. R. Neureuther. Rigorous three-dimensional time domain finite-difference electro-magnetic simulation for photolithographic applications [J]. IEEE Transact. On Semiconductor Manufacturing,1995,8:419-431.
    [34]Vadim Manuylov, Misha Temkin. Simulation of exposure process in complex nonplanar 2D/3D resist-substrate structures [J]. SPIE,2001,4346:1507-1513.
    [35]Harry J. Levinson. Principles of lithography [M]. Washington:SPIE,2005.
    [36]Wikipedia. Beer-Lambert law [EB/OL].http://en.wikipedia.org/wiki/Beer-Lambert_law.
    [37]F. H. Dill, W. Hornberger, P. S. Hauge, J. M. Shaw. Characterization of positive photoresist [J]. IEEE Trans. Electron. Devices,1975,22:445-452.
    [38]G. G. Yang, Y. B. Shen. Research on laser direct writing system and its lithography properties [J].SPIE,1998,3550:409-418.
    [39]梁宜勇.可变线宽的无掩膜光刻理论与技术研究[D].杭州:浙江大学,2005.
    [40]Jose Ramon Salgueiro, Vicente Moreno, Jesus Linares. Model of linewidth for laser writing on a photoresist [J]. Appl. Opt.,2002,41(5):895-901.
    [41]AZ Electronic Materials. AZ P4000 thick film photoresist data sheet[EB/CD]. Somerville: Clariant Corporation,2003.
    [42]H. F. Wang, G. Q. Yuan, W. L. Tan, L. P. Shi, T. Chong. Spot size and depth of focus in optical data storage system [J]. Opt. Eng.2007,46(6):065201.
    [43]C. A. Mack. Resolution and depth of focus in optical lithography [J]. Microlithographic Techniques in IC Fabrication,1997,3183:14-27.
    [44]J. B. Tan, Z. L. Jin. Depth of focus estimation based on exposure dose distribution [J]. Optic. Comm.,2008,281:2233-2237.
    [1]卓立汉光.重载型电控平移台TSAx-B(F)系列[EB/OL]. http://www.zolix.com.cn/templates/ channel/index_81_83.html.2008.
    [2]RSF Elektronik. MSA 670 Technical data [EB/OL]. http://www.rsf.at/index_en/msa 670.html. 2007.
    [3]徐峰,李庆祥.精密机械设计[M].北京:清华大学出版社,2005.
    [4]李庆祥,王东生,李玉和.现代精密仪器设计[M].北京:清华大学出版社,2004.
    [5]林瑞光.电机与拖动基础[M].杭州:浙江大学出版社,2010.
    [6]William Goltsos and Sharlene Liu. Polar coordinate laser writer for binary optics fabrication [J]. Proc. SPIE,1990,1211:137-146.
    [7]Tom D. Milster and Cynthia L. Vernold. Technique for aligning optical and mechanical axes based on a rotating linear grating [J]. Optical Engineering,1995,34(10):2840-2845.
    [8]Sung-Jin Jeong, Sun-Kyu Lee and Sung-Ho Jeong. Beam alignment with the axis of a rotation stage for laser fabrication of microcircular structures [J]. Optics & Laser Technology,2004,36: 401-408.
    [9]Xiao-Guo Feng and Lian-Chun Sun. Alignment method for adjusting the center of a sphere to its spin axis [J]. OE Letters,2006,45(3):030503-1.
    [10]杨李茗,虞淑环等.衍射光学元件的反应离子束蚀刻研究[J].光子学报,1998,27(2):148-151.
    [1]KIM Sang-ku, PARK Sang-rea, PAIK loon-k. Simultaneous out-of-focus blur estimation and restoration for digital autofocusings ystem [J]. IEEE Transactions on Consumer Electronics,1998, 44(3):1071-1075.
    [2]屈玉福,浦昭邦,赵慧洁等.调焦评价函数灵敏度的影响因素分析[J].光学学报,2005,25(7):902-906.
    [3]Donald K. Cohen, Wing Ho Gee, M. Ludeke, and Julian Lewkowicz. Automatic focus control:the astigmatic lens approach [J]. Appl. Opt,1984,23(4):565-570.
    [4]Hyug-Gyo Rhee, Dong-Ik Kim, and Yun-Woo Lee. Realization and performance evaluation of high speed autofocusing for direct laser lithography [J]. Rev. Sci. Instrum.,2009,80:073103-1.
    [5]W. Y. Hsu et al. Development of the fast astigmatic auto-focus microscope system [J] Meas. Sci. Technol.2009,20:045902-9.
    [6]David G. Kocher. Automated foucault test for focus sensing [J]. Appl. Opt.,1983,22(12): 1887-1892.
    [7]徐端颐.光盘存储系统设计原理[M].北京:国防工业出版社,2000.
    [8]L. Yiyong and Y. Guoguang. Defocusing detection based on dual quadrant detector [J]. Optical Instruments,2004,26:7-11.
    [9]L. Yiyong, T. Feng, L. Jianbo, and Y.Guoguang. Design of high precise focusing system in laser direct writer [J]. J. Phys.,2006,48:1031-1036.
    [10]A. J. Wright, B. A. Patterson, S. P. Poland, and J. M. Girkin. Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror[J]. Opt. Express, 2006,14(1):222-228.
    [11]D. Radtke and D. U. Zeitner. Laser-lithography on non-planar surfaces [J]. Opt. Express,2007,15 (3):1167-1170.
    [12]D. Radtke, J. Duparre, D.U. Zeitner, and Andreas. Laser lithographic fabrication and characterize-ation of a spherical artificial compound eye [J]. Opt. Express,2007,15 (6):3067-3077.
    [13]张建寰,谭久彬.应用共焦显微镜原理测量倾斜工程表面[J].光学学报,2003,23(4):446-450.
    [14]M. Minsky. Microscopy apparatus:US Pat.3013467 [P],1961.
    [15]P. Davidovits and M. D. Egger. Scanning laser microscope [J]. Nature.1969,223:831.
    [16]M. Gu. Principles of three-dimensional imaging in confocal microscopes [M]. Singapore:World Scientific,1996.
    [17]J. B. Luo, Y. Y. Liang and G. G. Yang. Dynamic scan detection of focal spot on nonplanar surfaces: theoretical analysis and realization [J]. Optical Engineering.2011,50(7):073601-7.
    [18]M. Born, E. Wolf. Principles of Optics [M]. UK:Cambridge University Press,1997.
    [19]Shigeharu Kimura and Tony Wilson. Effect of axial pinhole displacement in confocal microscopes [J]. Appl. Opt.,1993,32(13):2257-2261.
    [20]M. Visscher and K. G. Struik. Optical profilometry and its application to mechanically inaccessible surfaces Part I:Principles of focus error detection [J]. Precision Engineering,1994, 16(3):192-198.
    [21]Gilbert Y. Chan. Geometric focus error signal generation with sensors equidistant from the image of the media plane under infinite objective defocus [J]. Appl. Opt.,1986,25(8):1350-1353.
    [22]F.S. Wang, J.B. Tan and W.Q-Zhao. The optical probe using differential confocal technique for surface profile [J]. Proc. SPIE,2000,4222:194-197.
    [23]J.B. Tan and F.S. Wang. Theoretical analysis and property study of optical focus detection based on differential confocal microscopy [J] Meas. Sci. Technol.2002,13:1289-1293.
    [24]C. H. Lee and J. P. Wang. Noninterferometric differential confocal microscopy with 2-nm depth resolution [J] Opt. Commun.1997,135:233-237.
    [25]J. B. Luo, Y. Y. Liang and G. G. Yang. Realization of autofocusing system for laser direct writing on non-planar surfaces [J]. Rev. Sci. Instrum.2012,83:053102-5.
    [26]T. Wilson and A. R. Carlini. Size of the detector in confocal imaging systems [J]. Optics Letters, 1987,12(4):227-229.
    [27]Moise's Cywiak, J. Felix Aguilar, and Bernardino Barrientos. Low-numerical-aperture Gaussian beam confocal system for profiling optically smooth surfaces [J]. Optical Engineering,2005, 44(1):013604-1.
    [1]李欣欣.宏/微两级驱动的大行程高精度二维定位平台基础技术研究[D].杭州:浙江大学,2008.
    [2]H. Z. Liu, B. H. Lu, Y. C. Ding, Y. P. Tang and D. C. Li. A motor-piezo actuator for nano-scale positioning based on dual servo loop and nonlinearity compensation [J]. J. Micromech. Microeng., 2003,13:295-299.
    [3]G. LI, B. WANG, S. DONG, S. L WANG. Design and control of dual-stage feed drive system in ultra-precision machine tools [J]. Optics and Precision Engineering,2009,17(6):1426-1430.
    [4]Heui Jae Pahk, Dong Sung Lee, and Jong Ho Park. Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter implementation [J]. International Journal of Machine Tools & Manufacture,2001,41:51-63.
    [5]贾宇辉,谭久彬.超磁致伸缩微位移驱动系统的研究[J].仪器仪表学报,2000,21(1):38-41.
    [6]孙立宁,孙绍云,曲东升等.大行程高精度宏/微双重驱动机器人系统的研究[J].高技术通讯,2004:50-52.
    [7]C. W. Lee and S. W. Kim. An ultraprecision stage for alignment of wafers in advanced microlithography [J]. Precision Engineering,1997,21:113-122.
    [8]S. Hidenori, H. Hitoshi. Nanometer positioning of a linear motor-driven ultraprecision aerostatic table system with electrorheological fluid dampers [J]. CIRP Annals-Manufacturing Technology, 1999,48(1):289-292.
    [9]T. Yoshiyuki, M. Kenichi. High-response X-Y stage system driven by in-parallel linear motors [J]. CIRP Annals-Manufacturing Technology,1996,45(1):359-362.
    [10]Jaehwan Kim, Jae-Do Kim, Seung-Bok Choi. A hybrid inchworm linear motor [J]. Mechatronics, 2002, (12):525-542.
    [11]D. Jeon, R. Willis. Inchworm controller for fine approach in a scanning tunneling microscope [J]. J. Vac. Sci. Technol. A,1991, (9):2419-2419.
    [12]程树康,刘宝廷.步进电动机及其驱动控制系统[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [13]杨自厚.自动控制原理[M].北京:冶金工业出版社,1994.
    [14]K. J. Astrom and T. Hagglund. Automatic tuning of PID controllers [M], North Carolina: Instrument Society of America,1992.
    [15]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,1998.
    [16]Ron J. Kadlec, Charles R. Watt et al. Optical disk drive with a digital focus and tracking servo system:US,20020136111[P].2002-09-26.
    [17]Sheng-Yunn Wang, Ching-Jiang Hsieh. Apparatus and method for adjusting the pickup head of an optical disc drive to optimal focus point:US,6192010 [P].2001-02-20.
    [18]蔡忠平,徐端颐等.准线形区光盘聚焦自动预搜索机制的研究[J].光电工程,2001,28(1):16-18.
    [19]Tsung-Han Tsai, Chung-Yuan Lin. A new auto-focus method based on focal window searching and tracking approach for digital camera [J]. IEEE International Symposium on Control, Communications and Signal Processing,2008:650-653.
    [20]Liqun Xu, Zi Ye, Jianping Wu et al. Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control [J]. Proceedings of the SPIE,2008: 68342E.
    [21]熊木地,肖文礼等.激光直写设备调焦伺服控制系统的研究[J].光学精密工程,2000,8(1):79-82.
    [1]长春新产业光电技术有限公司Laser671[EB/OL].2009, http://www.cnilaser.com/red_laser671.htm.
    [2]卓立汉光.超薄型电控平移台--TSAx-C系列[EB/OL].2008, http://www.zolix.com.cn/templates /channel/index 81 80.html.
    [3]Physik Instrumente. P-721 PIFOC high-Speed piezo nano-Focussing device with direct metrology feedback [EB/OL].2008, http://www.pi.ws.
    [4]Toptica Photonic AG. iPulse/iBeam manual[M]. Martinsried:Toptica Photonic Co. Ltd,2004.
    [5]T. Wilson and S. J. Hewlett. Superresolution in confocal scanning microscopy [J]. Optics Letters, 1991,16(14):1062-1064.
    [6]Tasso R.M. Sales, G. Michael Morris. Axial superresolution with phase-only pupil filters [J]. Optics Communications,1998,156:227-230.
    [7]I. J. Cox, C. J. R. Sheppard, and T. Wilson. Improvement in resolution by nearly confocal microscopy [J]. Applied Optics,1982,21(5):778-781.
    [8]张正茂,陈峰.光电探测放大器的噪声分析[J].光电技术应用,2012,27(3):37-40.
    [9]陈张玮,李玉和,李庆祥等.光电探测器前级放大电路设计与研究[J].电测与仪表,2005,42(474):32-34.
    [10]张国平,叶嘉雄,李再光.衍射透镜的色散分析[J].光电工程,1997,24(2):23-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700