用户名: 密码: 验证码:
聚合物光学纳米线的功能化及微纳光子器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学纳米线,包括玻璃微纳光纤、半导体纳米线、聚合物纳米线等一维纳米结构,是近年来微纳光子学基础研究及器件应用最具代表性的基本结构单元之一。为了实现光学纳米线功能的多元化,并且拓展光学纳米线的门类和应用领域,我们提出了在聚合物光学纳米线中掺杂准零维(如量子点、纳米颗粒)、一维(如碳纳米管)或者二维(如石墨烯)结构的功能纳米材料。通过直接掺杂手段,在保持聚合物纳米线良好的光学导波特性的同时,实现了纳米线的多功能化,并且利用导波手段研究了纳米线内部高效率的光和物质相互作用。
     本论文的第一章,综述了光学纳米线的研究背景与现状,包括光学纳米线制备方法和器件应用、微纳光纤的导波特性、聚合物纳米线的功能化及相关微纳光子器件研究等等,并总结了光学纳米线作为一维微纳尺度光波导在微纳光子器件应用方面的独特优势。
     本论文的第二章,首先研制了量子点掺杂的聚合物光学纳米线。通过直接拉伸法从量子点掺杂聚合物溶液中制备出量子点分散均匀、光学特性优异的量子点掺杂聚合物纳米线。利用导波的方式研究了量子点掺杂聚合物纳米线的波导损耗(0.2dB/mm)、532nm波长激发光的吸收系数(31cm-1)、荧光自吸收系数(53cm-1)、纳米线中导波荧光光谱红移现象等光学参数和特性,以及相比染料分子高一个数量级的抗光学漂白特性。基于单根导波型量子点掺杂聚合物纳米线,首次验证了一个低功耗(100pW)、快响应速度(90ms)、高灵敏度、长工作寿命的光学纳米线湿度传感器。
     本论文的第三章,基于超声剥离的石墨烯分散液,研制了石墨烯掺杂的聚合物光学纳米线,系统研究了纯聚合物纳米线和石墨烯掺杂聚合物纳米线的结构特性以及拉曼光谱特性。利用导波方式研究了纯聚合物纳米线和石墨烯掺杂聚合物纳米线的连续光(1550nm波长激光)损伤阈值、可见-近红外(600-1600nm)线性吸收特性、光学线性吸收系数(633nm和1550nm波长)以及近红外非线性饱和吸收特性(调制深度~10%)。最后,基于该石墨烯掺杂的聚合物纳米线,研制了一维微纳尺度导波型光学可饱和吸收器和光调制器等。
     本论文的第四章,研究了微纳尺度可集成光源—半导体纳米线激光器。系统地研究了不同CdSe纳米线长度条件下CdSe纳米线多模激光器的激光阈值、多模激光模式数、纵模间隔以及CdSe纳米线多模激光器在不同泵浦条件下的纵模特性,并提出了一种新的控制半导体纳米线激光器激光输出波长的方法。随着单根CdSe纳米线(直径402nm)的长度从289μm变化到8μm,纳米线多模激光器的主峰位置从746nm变化到706nm,跨越约40nm的波长调谐范围。以上实验工作为有可能成为微纳尺度可集成光源—半导体纳米线激光器的设计、模式选择和操控提供了借鉴方案。
     最后在第五章对本论文的工作进行了总结和展望。基于聚合物光学纳米线功能化的研究工作以及成功研制的微纳尺度可集成光源—半导体纳米线激光器,可以实现如光学湿度传感器、光学可饱和吸收器及调制器等一系列导波型一维结构微纳光子器件,该类功能化聚合物光学纳米线及相关微纳光子器件在将来微纳光子集成等方面具有潜在应用价值。
Optical nanofibers/nanowires, including silica and glass nanofibers, semiconductor nanowires, polymer nanofibers, etc. are indispensible building blocks in nanophotonic theoretical research and device/circuit design. Motivated by the realization of optical nanofibers/nanowires with versatile functionalities, by which researchers can expand the categories and practical applications of optical nanofibers/nanowires, we propose to incorporate functionalized nanomateirals (such as quantum dots, nanoparticles, carbon nanotubes and graphene) into polymer nanofibers to fabricate new kinds of optical nanofibers/nanowires with specific functionalities. By means of direct doping, optical nanofibers/nanowires are endowed with more complicated optical characteristics without sacrificing their low-loss optical waveguiding abilities. Additionally, through micromanipulating functionalized nanofibers/nanowires, we can handle and study nanomaterials (e.g., single quantum dot) with simple manipulations and high accuracies, and investigate high-efficient light-matter interaction in nanofibers/nanowires using a waveguiding scheme. Furthermore, based on above works, we successfully realize a series of waveguiding-type one-dimentional nanophotonic devices such as semiconductor nanowire lasers, optical humidity sensors, optical saturable absorbers and modulators.
     In the first chapter of this thesis, we summarize the research background and recent advances of optical nanofibers/nanowires, including systhesis and applications of optical nanofibers/nanowires. optical waveguiding properties of optical nanofibers, functionalization of polymer nanofibers and corresponding nanophotonic device design. In addition, we also emphasize on the unique advantages of optical nanofibers/nanowires in one-dimentional waveguide-type nanophotonic devices and applications.
     In the second chapter, we synthesize optical quality quantum-dot-doped polymer nanofibers by physically drawing solvated polymers doped with CdSe/ZnS quantum dots. Quantum dots are doped into polymer nanofibers with good dispersity while maintaining the excellent structural and mechanical properties of polymer nanofibers. We apply a waveguiding approach to investigate optical properties of quantum-dot-doped polymer nanofibers, including waveguiding loss (0.2dB/mm),absorption coefficient (31cm-1@532nm), self-absorption coefficient (53cm-1), self-absorption induced redshift in waveguiding photoluminescence spectra and the photobleaching characteristics. As an application of the above-mentioned functionalized nanofibers, we first demonstrate a quantum-dot-activated nanofiber optical sensor for humidity detection with extremely low power consumption (100pW), very fast response (90ms). high sensitivity and long-term stability.
     In the third chapter, we synthesize graphene-doped polymer nanofibers based on liquid-phase exfoliated graphene. We carefully compare the structural properties and Raman spectra of graphene-doped polymer nanofibers with pure polymer nanofibers. Similar to the work mentioned in the second part, we adopt a waveguiding scheme to investigate the optical properties of pure polymer nanofibers and graphene-doped polymer nanofibers, including optical damage thresholds (1550-nm continuous-wave laser), visible-near infrared absorption spectra (600nm-1600nm). linear optical absorption coefficients (@633nm and1550nm) and nonlinear saturable absorption properties (modulation depth~10%). Based on single graphene-doped polymer nanofibers. we demonstrate one dimentional waveguide-type nanophotonic devices such as optical saturable absorbers and modulators.
     In the fourth chapter, we investigate multi-longitudinal mode lasing properties in semiconductor nanowire lasers. Based on the enhanced exciton-exciton and exciton-phonon coupling strength in semiconductor nanowires, we propose a new optical mechanism to control the nanowire lasing output wavelengths. The Cadmium Selenide (CdSe) nanowire (diameter-402nm) dominant lasing wavelength is continuously tuned from746nm to706nm as the length of CdSe nanowires decrease from289μm to8μm, spanning a wavelength range of about40nm. In addition, we systematically explore the nanowire-length-dependent lasing thresholds, mode numbers, mode spacing and multi-longitidinal mode lasing characteristics under different pumping influences. Our work is applicable in lasing wavelength selection and manipulation of various semiconductor nanowire lasers.
     Finally in the fifth chapter, the summary and prospect of our work are presented. Based on the research of functionalized polymer nanofibers for nanophotonic devices and applications, as well as the semiconductor nanowire lasers, we successfully demonstrate a series of waveguide-type one-dimentional nanophotonic devices such as single-nanofiber optical humidity sensors, single-nanofiber optical saturable absorbers and optical modulators. These functionalized polymer nanofibers and corresponding nanophotonic devices may find potential applications in future nanophotonic integrated circuits and chips.
引文
[1]C. V. Boys, "On the production, properties, and some suggested uses of the finest thread", Phil. Mag.23,489(1887).
    [2]"N. S. Kapany, "High-resolution fibre optics using sub-micron multiple fibres", Nature 184, 881-883 (1959).
    [3]R. J. Black, F. Gonthier, S. Lacroix, J. Lapierre, and J. Bures, "Tapered fibers:An overview", Proc.SPIE 839,2-19(1987).
    [4]J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. I. Adiabaticity criteria", Proc. IEE 138,343-354 (1991).
    [5]R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, "Tapered single-mode fibres and devices. Ⅱ. Experimental and theoretical quantification", Proc. IEE 138,355-364 (1991).
    [6]T. A. Birks, and Y. W. Li, "The shape of fiber tapers", J. Lightwave Technol.10,432-438 (1992).
    [7]J. Bures, and R. Ghosh, "Power density of the evanescent field in the vicinity of a tapered fiber", J. Opt. Soc. Am. A 16,1992-1996 (1999).
    [8]L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding", Nature 426, 816-819(2003).
    [9]G. Brambilla, V. Finazzi, and D. Richardson, "Ultra-low-loss optical fiber nanotapers", Opt. Express 12,2258-2263 (2004).
    [10]M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires:Self-coupling microloop optical interferometer", Opt. Express 12,3521-3531 (2004).
    [11]G Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires", Electron. Lett. 41,400-402 (2005).
    [12]J. M. Ward. D. G. O'Shea, B. J. Shortt, M. J. Morrissey. K. Deasy, and S. G. N. Chormaic, "Heat-and-pull rig for fiber taper fabrication". Rev. Sci. Instrum.77,083105-083105 (2006).
    [13]L. M. Tong, J. Y. Lou, Z. Z. Ye, G. T. Svacha. and E. Mazur, "Self-modulated taper drawing of silica nanowires", Nanotechnology 16,1445-1448 (2005).
    [14]L. M. Tong, L. L. Hu. J. J. Zhang, J. R. Qiu, Q. Yang. J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye. "Photonic nanowires directly drawn from bulk glasses", Opt. Express 14,82-87 (2006).
    [15]L. M. Tong. J. Y. Lou. R. R. Gattass, S. L. He. X. W. Chen. L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices". Nano Lett.5,259-262 (2005).
    [16]Y. H. Li, and L. M. Tong. "Mach-Zehnder interferometers assembled with optical microfibers or nanofibers", Opt. Lett.33.303-305 (2008).
    [17]S.-S. Wang, Z.-F. Hu, Y.-H. Li. and L.-M. Tong, "All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors". Opt. Lett.34,253-255 (2009).
    [18]M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, "Optical microfiber loop resonator",Appl. Phys. Lett,86 (2005).
    [19]M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The microfiber loop resonator:Theory, experiment, and application". J. Lightwave Technol.24,242-250 (2006).
    [20]X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, "Demonstration of optical microfiber knot resonators", Appl. Phys. Lett.88.223501-223503 (2006).
    [21]F. Xu, and G. Brambilla, "Embedding optical microfiber coil resonators in Teflon". Opt. Lett. 32,2164-2166(2007).
    [22]X. Guo, Y. H. Li, X. S. Jiang, and L. M. Tong, "Demonstration of critical coupling in microfiber loops wrapped around a copper rod", Appl. Phys. Lett.91 (2007).
    [23]P. Wang, L. Zhang, Z. Y. Yang, F. X. Gu, S. S. Wang, Q. Yang, and L. M. Tong, "Fusion spliced microfiber closed-loop resonators", IEEE Photon. Technol. Lett,22,1075-1077 (2010).
    [24]X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, "All-fiber add-drop filters based on microfiber knot resonators", Opt. Lett.32,1710-1712 (2007).
    [25]Y. Chen, Z. Ma, Q. Yang, and L.-M. Tong, "Compact optical short-pass filters based on microfibers", Opt. Lett.33,2565-2567 (2008).
    [26]W. Liang, Y. Y. Huang, Y. Xu, R. K.. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors", Appl. Phys. Lett.86,151122 (2005).
    [27]X. Fang, C. R. Liao, and D. N. Wang, "Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing", Opt. Lett.35,1007-1009 (2010).
    [28]H. F. Xuan, W. Jin, and S. J. Liu, "Long-period gratings in wavelength-scale microfibers", Opt. Lett.35,85-87(2010).
    [29]Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. H. Wang, P. Shum, and X. L. Zhang, "Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating". Opt. Express 18.26345-26350 (2010).
    [30]M. Ding, M. N. Zervas, and G. Brambilla, "A compact broadband microfiber Bragg grating", Opt. Express 19,15621-15626 (2011).
    [31]Y. X. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. K. Yu, and L. M. Tong, "Compact microfiber Bragg gratings with high-index contrast". Opt. Lett.36,3115-3117 (2011).
    [32]Y. Ran, Y. N. Tan, L. P. Sun, S. A. Gao, J. Li, L. Jin. and B. O. Guan, "193nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing", Opt. Express 19, 18577-18583(2011).
    [33]F. L. Kien, K. P. Nayak, and K. Hakuta, "Nanofibers with Bragg gratings from equidistant holes", J. Mod. Opt.59,274-286 (2012).
    [34]J. Y. Lou, L. M. Tong, and Z. Z. Ye, "Modeling of silica nanowires for optical sensing", Opt. Express 13,2135-2140 (2005).
    [35]F. Xu, P. Horak, and G. Brambilla. "Optical microfiber coil resonator refractometric sensor". Opt. Express 15.9385-9385 (2007).
    [36]M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, "Optical liquid ring resonator sensor" Opt. Express 15,14376-14381 (2007).
    [37]X. Guo, and L. M. Tong. "Supported microfiber loops for optical sensing". Opt. Express 16. 14429-14434(2008).
    [38]X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong. "Microfiber knot dye laser based on the evanescent-wave-coupled gain", Appl. Phys. Lett.90 233501 (2007).
    [39]Y. H. Li, G. Vienne. X. S. Jiang. X. Y. Pan. X. Liu. P. F. Gu. and L. M. Tong, "Modeling rare-earth doped microfiber ring lasers", Opt. Express 14,7073-7086 (2006).
    [40]X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, "Demonstration of microfiber knot laser", Appl. Phys. Lett.89,143513 (2006).
    [41]W. Li, P. Wang, Z. F. Hu, and L. M. Tong, "Fusion splicing soft glass microfibers for photonic devices", IEEE Photon. Technol. Lett.23,831-833 (2011).
    [42]R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, "Supercontinuum generation in submicrometer diameter silica fibers", Opt. Express 14,9408-9414 (2006).
    [43]L. M. Tong, J. Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides", Opt. Express 12,1025-1035 (2004).
    [44]K. J. Huang, S. Y. Yang, and L. M. Tong, "Modeling of evanescent coupling between two parallel optical nanowires", Appl. Opt.46,1429-1434 (2007).
    [45]J. Y. Lou, L. M. Tong, and Z. Z. Ye, "Dispersion shifts in optical nanowires with thin dielectric coatings", Opt. Express 14,6993-6998 (2006).
    [46]R. S. Wagner, and W. C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth", Appl. Phys. Lett.4,89-90 (1964).
    [47]A. M. Morales, and C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires", Science 279,208-211 (1998).
    [48]Y. Y. Wu, and P. D. Yang, "Direct observation of vapor-liquid-solid nanowire growth", J. Am. Chem. Soc.123,3165-3166 (2001).
    [49]M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers",Appl. Phys. Lett.80,1058-1060 (2002).
    [50]X. F. Duan, and C. M. Lieber, "General synthesis of compound semiconductor nanowires", Adv. Mater.12,298-302 (2000).
    [51]P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, "General synthesis of manganese-doped Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductor nanowires", Nano Lett.5,1407-1411 (2005).
    [52]J. Johansson, L. S. Karlsson, C. P. T. Svensson, T. Martensson, B. A. Wacaser, K. Deppert, L. Samuelson. and W. Seifert, "Structural properties of (111)B-oriented Ⅲ-Ⅴ nanowires", Nat. Mater.5,574-580 (2006).
    [53]T. Martensson. J. B. Wagner, E. Hilner. A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert. "Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings", Adv. Mater.19.1801-1806(2007).
    [54]T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang. "Complete composition tunability of InGaN nanowires using a combinatorial approach". Nat. Mater.6,951-956 (2007).
    [55]X. J. Zhuang, C. Z. Ning, and A. L. Pan, "Composition and bandgap-graded semiconductor alloy nanowires",Adv. Mater.24,13-33 (2012).
    [56]P. J. Pauzauskie. and P. Yang, "Nanowire photonics", Mater. Today 9,36-45 (2006).
    [57]A.1. Hochbaum, R. Fan, R. R. He. and P. D. Yang, "Controlled growth of Si nanowire arrays for device integration", Nano Lett.5,457-460 (2005).
    [58]A. Formhals, "Process and apparatus for preparing artificial threads". (USA,1934).
    [59]D. H. Reneker, and I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning", Nanotechnology 7,216-223 (1996).
    [60]L. Larrondo, and R. S. J. Manley, "Electrostatic fiber spinning from polymer melts.1. Experimental-observations on fiber formation and properties". J. Polym. Sci., Part B:Polym. Phys.19,909-920(1981).
    [61]L. Larrondo, and R. S. J. Manley, "Electrostatic fiber spinning from polymer melts.2. Examination of the flow field in an electrically driven jet",J. Polym. Sci., Part B:Polym. Phys. 19,921-932(1981).
    [62]L. Larrondo, and R. S. J. Manley, "Electrostatic fiber spinning from polymer melts.3. Electrostatic deformation of a pendant drop of polymer melt", J. Polym. Sci., Part B:Polym. Phys.19,933-940(1981).
    [63]A. Frenot, and I. S. Chronakis, "Polymer nanofibers assembled by electrospinning", Curr. Opin. Colloid Interface Sci.8,64-75 (2003).
    [64]Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, "A review on polymer nanofibers by electrospinning and their applications in nanocomposites", Compos. Sci. Technol.63, 2223-2253 (2003).
    [65]D. Li, and Y. N. Xia, "Electrospinning of nanofibers:Reinventing the wheel?", Adv. Mater.16, 1151-1170(2004).
    [66]T. Subbiah, G. S. Bhat. R. W. Tock, S. Pararneswaran, and S. S. Ramkumar, "Electrospinning of nanofibers",J. Appl. Polym. Sci.96,557-569 (2005).
    [67]D. H. Reneker, and A. L. Yarin, "Electrospinning jets and polymer nanofibers", Polymer 49, 2387-2425 (2008).
    [68]S. A. Harfenist, S. D. Cambron. E. W. Nelson, S. M. Berry. A. W. lsham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, "Direct Drawing of Suspended Filamentary Micro-and Nanostructures from Liquid Polymers", Nano Lett.4,1931-1937 (2004).
    [69]F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, "Polymer single-nanowire optical sensors", Nano Lett.8,2757-2761 (2008).
    [70]F. X. Gu, X. F. Yin, H. K. Yu, P. Wang, and L. M. Tong, "Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures". Opt. Express 17,11230-11235(2009).
    [71]X. Xing, Y. Wang, and B. Li, "Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate)". Opt. Express 16,10815-10822 (2008).
    [72]M. Guo, J. Shi, and B. Li, "Polymer-based micro/nanowire structures for three-dimensional photonic integrations". Opt. Lett.33,2104-2106 (2008).
    [73]X. Xing, H. Zhu, Y. Wang, and B. Li. "Ultracompact photonic coupling splitters twisted by PTT nanowires", Nano Lett.8,2839-2843 (2008).
    [74]F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, "Light-emitting polymer single nanofibers via waveguiding excitation". ACS Nano 4,5332-5338 (2010).
    [75]Q. Yang, X. S. Jiang, F. X. Gu, Z. Ma, J. Y. Zhang, and L. M. Tong. "Polymer micro or nanofibers for optical device applications".J. Appl. Polym. Sci.110.1080-1084(2008).
    [76]J. Shi, M. Guo, and B. Li, "Assembly of arbitrary and vertical optical couplers using flexible polymer micro/nanowires", Appl. Phys. Lett,93 (2008).
    [77]Z. F. Hu, W. Li, Y. G. Ma. and L. M. Tong, "General approach to splicing optical microfibers via polymer nanowires", Opt. Lett.37,4383-4385 (2012).
    [78]Y. Wang, H. Zhu, and B. Li, "Cascaded Mach-Zehnder interferometers assembled by submicrometer PTT wires", IEEE Photon. Technol. Lett.21,1115-1117 (2009).
    [79]P. Wang, F. X. Gu, L. Zhang, and L. M. Tong, "Polymer microfiber rings for high-sensitivity optical humidity sensing", Appl. Opt.50, G7-G10 (2011).
    [80]H. Zhu, Y. Wang, and B. Li, "Tunable refractive index densor with ultracompact dtructure twisted by poly(trimethylene terephthalate) nanowires", ACS Nano 3,3110-3114 (2009).
    [81]F. X. Gu, H. K. Yu, W. Fang, and L. M. Tong, "Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitivity strain sensing", IEEE Photon. Technol. Lett.25,22-24 (2013).
    [82]H. Q. Yu, D. W. Liao, M. B. Johnston, and B. J. Li, "All-optical full-color displays using polymer nanofibers", ACS Nano 5,2020-2025 (2011).
    [83]C. Meng, Y. Xiao, P. Wang, L. Zhang. Y. X. Liu, and L. M. Tong, "Quantum-dot-doped polymer nanofibers for optical sensing", Adv. Mater.23,3770-3773 (2011).
    [84]P. Wang, L. Zhang, Y. N. Xia, L. M. Tong, X. Xu, and Y. B. Ying, "Polymer nanofibers embedded with aligned gold nanorods:a new platform for plasmonic studies and optical sensing", Nano Lett.12,3145-3150 (2012).
    [85]Q. L. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tong, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, "Graphene-polymer nanofiber membrane for ultrafast photonics", Adv. Funct. Mater.20,782-791 (2010).
    [86]A. Camposeo, F. Di Benedetto. R. Stabile, R. Cingolani, and D. Pisignano. "Electrospun dye-doped polymer nanofibers emitting in the near infrared", Appl. Phys. Lett.90,143115 (2007).
    [87]S. Pagliara, A. Camposeo, A. Polini, R. Cingolani, and D. Pisignano, "Electrospun light-emitting nanofibers as excitation source in microfluidic devices", Lab on a Chip 9, 2851-2856(2009).
    [88]A. Camposeo, F. Di Benedetto, R. Stabile, A. A. R. Neves, R. Cingolani, and D. Pisignano, "Laser emission from electrospun polymer nanofibers". Small 5,562-566 (2009).
    [89]Q. H. Song, L. Y. Liu, and L. Xu, "Lasing action in dye doped polymer nanofiber knot resonator".J. Lightwave Technol.27,4374-4376 (2009).
    [90]V. D. Ta, R. Chen. L. Ma, Y. J. Ying, and H. D. Sun, "Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber". Laser Photon. Rev.7,133-139 (2013).
    [91]S. Schlecht, S. Tan. M. Yosef. R. Dersch, J. H. Wendorff. Z. Jia. and A. Schaper, "Toward linear arrays of quantum dots via polymer nnanofibers and nanorods", Chem. Mat.17, 809-814(2005).
    [92]H. Liu. J. B. Edel. L. M. Bellan, and H. G. Craighead, "Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots". Small 2,495-499 (2006).
    [93]M. Li, J. Zhang, H. Zhang. Y. Liu, C. Wang. X. Xu,Y. Tang, and B. Yang, "Electrospinning:a facile method to disperse fluorescent quantum dots in nanofibers without Forster esonance energy transfer", Adv. Funct. Mater.17,3650-3656 (2007).
    [94]R. Tatavarty, E. T. Hwang, J. W. Park. J. H. Kwak. J. O. Lee, and M. B. Gu, "Conductive quantum dot-encapsulated electrospun nanofibers from polystyrene and polystyrene-co-maleic anhydride copolymer blend as gas sensors". React. Funct. Polym.71,104-108 (2011).
    [95]R. Zhang, H. Q. Yu, and B. J. Li, "Active nanowaveguides in polymer doped with CdSe-ZnS core-shell quantum dots", Nanoscale 4,5856-5859 (2012).
    [96]Y. Dror, W. Salalha, R. L. Khalfin, Y. Cohen, A. L. Yarin, and E. Zussman, "Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning", Langmuir 19,7012-7020 (2003).
    [97]W. Salalha, Y. Dror, R. L. Khalfin, Y. Cohen, A. L. Yarin, and E. Zussman, "Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning", Langmuir 20,9852-9855 (2004).
    [98]H. H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, and F. Ko, "Reinforcement and rupture behavior of carbon nanotubes-polymer nanofibers", Appl. Phys. Lett,85,1775-1777 (2004).
    [99]J. Wang, J. H. Dai, and T. Yarlagadda, "Carbon nanotube-conducting-polymer composite nanowires", Langmuir 21,9-12 (2005).
    [100]L. Q. Liu, D. Tasis, M. Prato, and H. D. Wagner, "Tensile mechanics of electrospun multiwalled nanotube/poly(methyl methacrylate) nanofibers". Adv. Mater.19,1228-1233 (2007).
    [101]S. M. Berry, S. Pabba, R. W. Cohn, and R. S. Keynton, "Direct-write drawing of carbon nanotube/polymer composite microfibers". J. Nanomater. (2012).
    [102]M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong. B. R. Huang, K. H. Chen, and L. C. Chen, "Photosensitive gold-nanoparticle-embedded dielectric nanowires", Nat. Mater.5,102-106 (2006).
    [103]K. E. Roskov, K. A. Kozek, W.-C. Wu, R. K. Chhetri, A. L. Oldenburg, R. J. Spontak, and J. B. Tracy, "Long-range alignment of gold nanorods in electrospun polymer nano/microfibers", Langmuir 27,13965-13969(2011).
    [104]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, "One-dimensional nanostructures:Synthesis, characterization, and applications". Adv. Mater.15,353-389 (2003).
    [105]D. Chen, X. Qiao, X. Qiu, J. Chen, and R. Jiang. "Large-scale synthesis of silver nanowires via a solvothermal method",J. Mater. Sci.-Mater. Electron,22,6-13 (2011).
    [106]G. Y. Zhai. and L. M. Tong,"Roughness-induced radiation losses in optical micro or nanofibers", Opt. Express 15,13805-13816 (2007).
    [107]Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu. and Q. H. Gong, "Direct measurement of propagation losses in silver nanowires". Opt. Lett.35,1160-1162 (2010).
    [108]H. K. Yu, S. S. Wang, J. Fu. M. Qiu, Y. H. Li, F. X. Gu, and L. M. Tong, "Modeling bending losses of optical nanofibers or nanowires". Appl. Opt.48,4365-4369 (2009).
    [109]M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, "Nanoribbon waveguides for subwavelength photonics integration". Science 305.1269-1273 (2004).
    [110]S. S. Wang, X. Y. Pan, and L. M. Tong, "Modeling of nanoparticle-induced Rayleigh-Gans scattering for nanofiber optical sensing". Opt. Commun.276,293-297 (2007).
    [111]L. Zhang. F. X. Gu, J. Y. Lou, X. F. Yin. and L. M. Tong, "Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film". Opt. Express 16.13349-13353 (2008).
    [112]L. M. Bellan. J. Kameoka, and H. G. Craighead. "Measurement of the Young's moduli of individual polyethylene oxide and glass nanofibres", Nanotechnology 16,1095-1099 (2005).
    [113]E. Silva, L. M. Tong, S. Yip, and K. J. Van Vliet, "Size effects on the stiffness of silica nanowires", Small 2,239-243 (2006).
    [114]G. Brambilla, and D. N. Payne, "The ultimate strength of glass silica nanowires", Nano Lett.9, 831-835(2009).
    [115]R. Rossetti, S. Nakahara, and L. E. Brus, "Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution", J. Chem. Phys.79,1086-1088 (1983).
    [116]L. E. Brus, "Electron electron and electron-hole interactions in small semiconductor crystallites-the size dependence of the lowest excited electronic state", J. Chem. Phys.80, 4403-4409(1984).
    [117]L. Brus, "Quantum crystallites and nonlinear optics", Appl. Phys. A 53,465-474 (1991).
    [118]C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites", J. Am. Chem. Soc.115,8706-8715 (1993).
    [119]T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmueller, and H. Weller, "CdS nanoclusters:synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift", J. Phys. Chem.98,7665-7673 (1994).
    [120]A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots", Science 271, 933-937(1996).
    [121]S. A. Empedocles, and M. G. Bawendi, "Quantum-confined stark effect in single CdSe nanocrystallite quantum dots". Science 278,2114-2117 (1997).
    [122]P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device", Science 290,2282-2285 (2000).
    [123]C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device", Nature 419,594-597 (2002).
    [124]M. Bruchez Jr, "Semiconductor nanocrystals as fluorescent biological labels", Science 281, 2013-2016(1998).
    [125]W. C. Chan, "Quantum dot bioconjugates for ultrasensitive nonisotopic detection", Science 281,2016-2018(1998).
    [126]J. M. Costa-Fernandez, R. Pereiro, and A. Sanz-Medel, "The use of luminescent quantum dots for optical sensing", TrAC, Trends Anal. Chem.25,207-218 (2006).
    [127]V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, "Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer", Nature 370,354-357 (1994).
    [128]J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, "Full color emission from Ⅱ-Ⅵ semiconductor quantum dot-polymer composites", Adv. Mater.12,1102-1105 (2000).
    [129]V. I. Klimov. A. A. Mikhailovsky. S. Xu, A. Malko,J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "optical gain and stimulated emission in nanocrystal quantum dots",Science 290,314-317 (2000).
    [130]J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, "Preparation of highly luminescent nanocrystals and their application to light-emitting diodes", Adv. Mater.19,1927-1932 (2007).
    [131]K. Kalyanasundaram,E. Borgarello, D. Duonghong. and M. Gratzel, "Cleavage of water by visible-light irradiation of colloidal CdS solutions; inhibition of photocorrosion by RuO:" Angew. Chem. Int. Ed. Engl.20,987-988 (1981).
    [132]X. G. Peng, L. Manna, W. D. Yang, J. Wickham. E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals". Nature 404,59-61 (2000).
    [133]Z. A. Peng, and X. G. Peng, "Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor", J. Am. Chem. Soc.123,183-184 (2001).
    [134]L. H. Qu, and X. G. Peng, "Control of photoluminescence properties of CdSe nanocrystals in growth", J. Am. Chem. Soc.124,2049-2055 (2002).
    [135]W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, "Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals", Chem. Mat.15,2854-2860 (2003).
    [136]M. A. Hines, and P. Guyot-Sionnest, "Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals", J Phys Chem-Us 100,468-471 (1996).
    [137]B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi. R. Ober, K. F. Jensen, and M. G. Bawendi, "(CdSe)ZnS core-shell quantum dots:Synthesis and characterization of a size series of highly luminescent nanocrystallites",J. Phys. Chem. B 101, 9463-9475(1997).
    [138]M. Jones. J. Nedeljkovic, R. J. Ellingson, A. J. Nozik, and G. Rumbles, "Photoenhancement of luminescence in colloidal CdSe quantum dot solutions",J. Phys. Chem. B 107,11346-11352 (2003).
    [139]A. Y. Nazzal. L. H. Qu, X. G. Peng, and M. Xiao. "Photoactivated CdSe nanocrystals as nanosensors for gases", Nano Lett.3,819-822 (2003).
    [140]S. R. Cordero, P. J. Carson, R. A. Estabrook, G. F. Strouse, and S. K. Buratto, "Photo-activated luminescence of CdSe quantum dot monolayers", J. Phys. Chem. B 104,12137-12142 (2000).
    [141]A. L. Pyayt. B. Wiley, Y. N. Xia, A. Chen, and L. Dalton, "Integration of photonic and silver nanowire plasmonic waveguides", Nat. Nanotechnol.3,660-665 (2008).
    [142]M. Achermann, M. A. Petruska. S. Kos. D. L. Smith. D. D. Koleske. and V. I. Klimov, "Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well". Nature 429,642-646 (2004).
    [143]B. Alperson,I. Rubinstein, and G. Hodes. "Identification of surface states on individual CdSe quantum dots by room-temperature conductance spectroscopy". Phys. Rev. B 63 (2001).
    [144]S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, "An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity". Sens. Actuators, B 104.217-222 (2005).
    [145]Y. S. Zhang. K. Yu, D. S. Jiang, Z. Q. Zhu, H. R. Geng, and L. Q. Luo, "Zinc oxide nanorod and nanowire for humidity sensor", Appl. Surf. Sci.242.212-217 (2005).
    [146]R. A. Barry, and P. Wiltzius. "Humidity-sensing inverse opal hydrogels". Langmuir 22. 1369-1374(2006).
    [147]Y. F. Chen, and Z. Rosenzweig, "Luminescent CdS quantum dots as selective ion probes", Anal. Chem.74,5132-5138 (2002).
    [148]C. J. Murphy, "Optical sensing with quantum dots". Anal. Chem.74,520a-526a (2002).
    [149]S. K. Sarkar, N. Chandrasekharan. S. Gorer, and G. Hodes. "Reversible adsorption-enhanced quantum confinement in semiconductor quantum dots", Appl. Phys. Lett.81.5045 (2002).
    [150]H.-Y. Xie, J.-G. Liang, Z.-L. Zhang. Y. Liu. Z.-K. He, and D.-W. Pang. "Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe". Spectrochim. Acta, Part A 60.2527-2530 (2004).
    [151]C. Bo, and Z. Ping, "A new determining method of copper(Ⅲ) ions at ng ml(-1) levels based on quenching of the water-soluble nanocrystals fluorescence", Anal. Bioanal. Chem.381, 986-992 (2005).
    [152]J. M. Costa-Fernandez, "Optical sensors based on luminescent quantum dots", Anal. Bioanal. Chem.384,37-40 (2005).
    [153]W. J. Jin, M. T. Fernandez-Arguelles, J. M. Costa-Fernandez, R. Pereiro, and A. Sanz-Medel, "Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions", Chem. Commun.,883 (2005).
    [154]P. A. S. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, "Optical fiber sensing using quantum dots", Sensors-Basel 7,3489-3534 (2007).
    [155]R. E. Peierls, "Quelques proprietes typiques des corpses solides", Ann. I. H. Poincare 5, 177-222(1935).
    [156]L. D. Landau, "Zur Theorie der phasenumwandlungen II", Phys. Z. Sowjetunion 11,26-35 (1937).
    [157]L. D. Landau, and E. M. Lifshitz, Statistical Physics, Part I (Oxford, Pergamon,1980).
    [158]N. D. Mermin, "Crystalline order in 2 dimensions", Phys. Rev.176,250-& (1968).
    [159]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science 306,666-669 (2004).
    [160]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene", Nature 438,197-200 (2005).
    [161]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based composite materials", Nature 442, 282-286 (2006).
    [162]K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-dimensional atomic crystals", Proc. Nail. Acad. Sci. U.S.A.102.10451-10453 (2005).
    [163]J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov. T. J. Booth, and S. Roth, "The structure of suspended graphene sheets", Nature 446,60-63 (2007).
    [164]A. K. Geim, and K. S. Novoselov, "The rise of graphene", Nat. Mater.6,183-191 (2007).
    [165]A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake. K. S. Novoselov, K. Watanabe. T. Taniguchi, and A. K. Geim, "Micrometer-scale ballistic transport in encapsulated graphene at room temperature", Nano Lett.11,2396-2399 (2011).
    [166]C. Lee, X. Wei, J. W. Kysar, and J. Hone. "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science 321,385-388 (2008).
    [167]A. A. Balandin. S. Ghosh, W. Z. Bao,I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior thermal conductivity of single-layer graphene", Nano Lett.8,902-907 (2008).
    [168]R. R. Nair, P. Blake, A.N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene", Science 320,1308-1308 (2008).
    [169]J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Impermeable atomic membranes from graphene sheets", Nano Lett.8. 2458-2462 (2008).
    [170]J. Moser, A. Barreiro, and A. Bachtold, "Current-induced cleaning of graphene", Appl. Phys. Lett.91 (2007).
    [171]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene", Solid State Commun.146, 351-355(2008).
    [172]S. V. Morozov, K. S. Novoselov, M.I. Katsnelson, F. Schedin, D. C. Elias. J. A. Jaszczak. and A. K. Geim, "Giant intrinsic carrier mobilities in graphene and its bilayer", Phys. Rev. Lett. 100 (2008).
    [173]X. Du, I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene", Nat. Nanotechnol.3,491-495 (2008).
    [174]C. L. Kane, and E. J. Mele, "Quantum spin Hall effect in graphene", Phys. Rev. Lett.95 (2005).
    [175]Y. B. Zhang, Y. W. Tan, H. L. Stormer. and P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene". Nature 438,201-204 (2005).
    [176]T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, "Controlling the electronic structure of bilayer graphene", Science 313,951-954 (2006).
    [177]J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo. and L. M. K. Vandersypen. "Gate-induced insulating state in bilayer graphene devices", Nat. Mater.7,151-157 (2008).
    [178]A. C. Ferrari. J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec. D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene and graphene layers", Phys. Rev. Lett.97 (2006).
    [179]A. C. Ferrari, and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon", Phys. Rev.561,14095-14107 (2000).
    [180]Q. L. Bao. and K. P. Loh, "Graphene photonics, plasmonics, and broadband optoelectronic devices", ACS Nano 6,3677-3694 (2012).
    [181]P. R. Wallace, "The band theory of graphite", Phys. Rev.71,622-634 (1947).
    [182]P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, "Broadband light-induced absorbance change in multilayer graphene", Nano Lett.11,1540-1545 (2011).
    [183]K. Seibert, G. C. Cho, W. Kutt, H. Kurz, D. H. Reitze, J. I. Dadap. H. Ahn, M. C. Downer, and A. M. Malvezzi. "Femtosecond carrier dynamics in graphite", Phys. Rev.B42.2842-2851 (1990).
    [184]J. M. Dawlaty. S. Shivaraman, M. Chandrashekhar. F. Rana, and M. G. Spencer, "Measurement of ultrafast carrier dynamics in epitaxial graphene", Appl. Phys. Lett,92 (2008).
    [185]X. Wang, L. Zhi. and K. Muellen, "Transparent, conductive graphene electrodes for dye-sensitized solar cells". Nano Lett.8.323-327 (2008).
    [186]K. S. Kim, Y. Zhao, H. Jang. S. Y. Lee. J. M. Kim. K. S. Kim. J.-H. Ahn. P. Kim. J.-Y. Choi, and B. H. Hong. "Large-scale pattern growth of graphene films for stretchable transparent electrodes". Nature 457,706-710 (2009).
    [187]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science 324.1312-1314 (2009).
    [188]X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of large-area graphene films for high-performance transparent conductive electrodes", Nano Lett.9,4359-4363 (2009).
    [189]S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nat. Nanotechnol.5, 574-578(2010).
    [190]G. Eda, G Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material", Nat. Nanotechnol.3,270-274 (2008).
    [191]S. A. Mikhailov, and K. Ziegler, "New electromagnetic mode in graphene", Phys. Rev. Lett.99 (2007).
    [192]M. Jablan, H. Buljan, and M. Soljacic, "Plasmonics in graphene at infrared frequencies", Phys. Rev. B 80 (2009).
    [193]F. H. L. Koppens, D. E. Chang, and F. Javier Garcia de Abajo, "Graphene plasmonics:a platform for strong light-matter interactions", Nano Lett.11,3370-3377 (2011).
    [194]Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, "Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers", Adv. Funct. Mater. 19.3077-3083 (2009).
    [195]Z. P. Sun. T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, "Graphene mode-locked ultrafast laser", ACS Nano 4,803-810 (2010).
    [196]D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, "Graphene Q-switched, tunable fiber laser". Appl. Phys. Lett.98,073106 (2011).
    [197]A. Martinez, and S. Yamashita, "10 GHz fundamental mode fiber laser using a graphene saturable absorber", Appl. Phys. Lett.101,041118-041113 (2012).
    [198]F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, "Gate-variable optical transitions in graphene". Science 320,206-209 (2008).
    [199]Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov. "Dirac charge dynamics in graphene by infrared spectroscopy". Nat. Phys.4,532-535 (2008).
    [200]M. Liu. X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju. F. Wang, and X. Zhang, "A graphene-based broadband optical modulator". Nature 474,64-67 (2011).
    [201]M. Liu, X. B. Yin, and X. Zhang, "Double-layer graphene optical modulator", Nano Lett.12, 1482-1485(2012).
    [202]A. Majumdar, J. Kim. J. Vuckovic. and F. Wang, "Electrical control of silicon photonic crystal cavity by graphene", Nano Lett.13,515-518 (2013).
    [203]Z. B. Liu, Y. Wang, X. L. Zhang, Y. F. Xu, Y. S. Chen, and J. G. Tian, "Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes", Appl. Phys. Lett.94 (2009).
    [204]M. Feng, H. B. Zhan, and Y. Chen, "Nonlinear optical and optical limiting properties of graphene families". Appl. Phys. Lett.96 (2010).
    [205]G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, "Giant broadband nonlinear optical absorption response in dispersed graphene single sheets", Nat. Photon.5,554-560 (2011).
    [206]T. Mueller, F. Xia, M. Freitag, J. Tsang, and P. Avouris. "Role of contacts in graphene transistors:A scanning photocurrent study", Phys. Rev. B 79,245430 (2009).
    [207]F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, "Ultrafast graphene photodetector", Nat. Nanotechnol.4,839-843 (2009).
    [208]F. N. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, "Photocurrent imaging and efficient photon detection in a graphene transistor", Nano Lett.9,1039-1044 (2009).
    [209]T. Mueller, F. N. Xia, and P. Avouris, "Graphene photodetectors for high-speed optical communications", Nat. Photon.4,297-301 (2010).
    [210]M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang. A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, "Microcavity-integrated graphene photodetector", Nano Lett.12,2773-2777 (2012).
    [211]Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni. C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, "Broadband graphene polarizer", Nat. Photon.5,411-415 (2011).
    [212]D. S. Chemla, D. A. B. Miller. P. W. Smith, A. C. Gossard, and W. Wiegmann, "Room-temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures". IEEE J. Quantum Electron.20.265-275 (1984).
    [213]D. S. Chemla, and D. A. B. Miller, "Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures", J. Opt. Soc. Am. B:Opt. Phys.2,1155-1173 (1985).
    [214]Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, "Graphene mode-lockers for fiber lasers functioned with evanescent field interaction",.Appl. Phys. Lett.96,051122 (2010).
    [215]G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski. L. Lipinska, and K. M. Abramski, "Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser", Opt. Express 20, 19463-19473(2012).
    [216]S. J. Koester, and M. Li, "High-speed waveguide-coupled graphene-on-graphene optical modulators".Appl. Phys. Lett.100,171107-171104 (2012).
    [217]H. Li, Y. Anugrah, S. J. Koester, and M. Li, "Optical absorption in graphene integrated on silicon waveguides", Appl. Phys. Lett.101,111110-111115 (2012).
    [218]M. Sheikbahae. A. A. Said. T. H. Wei, D. J. Hagan, and E. W. Vanstryland, "Sensitive measurement of optical nonlinearities using a single beam", IEEE J. Quantum Electron.26, 760-769(1990).
    [219]L. W. Tutt, and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials", Prog. Quantum Electron.17, 299-338(1993).
    [220]M. S. Dresselhaus. and G. Dresselhaus. "Intercalation compounds of graphite". Adv. Phys.30. 139-326(1981).
    [221]H. Shioyama, "Cleavage of graphite to graphene". J. Mater. Sci. Lett.20,499-500 (2001).
    [222]L. M. Viculis, J. J. Mack, and R. B. Kaner, "A chemical route to carbon nanoscrolls". Science 299,1361-1361 (2003).
    [223]S. Horiuchi, T. Gotou, M. Fujiwara, T. Asaka, T. Yokosawa, and Y. Matsui, "Single graphene sheet detected in a carbon nanofilm", Appl. Phys. Lett.84,2403-2405 (2004).
    [224]C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics", J. Phys. Chem. B 108,19912-19916(2004).
    [225]C. Virojanadara, M. Syvaejarvi, R. Yakimova, L. I. Johansson, A. A. Zakharov, and T. Balasubramanian, "Homogeneous large-area graphene layer growth on 6H-SiC(0001)", Phys. Rev. B 78 (2008).
    [226]Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, "100-GHz transistors from wafer-scale epitaxial graphene", Science 327,662-662 (2010).
    [227]W. S. Hummers, and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc.80, 1339-1339(1958).
    [228]D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide", Chem. Soc. Rev.39,228-240 (2010).
    [229]S. Pei, and H.-M. Cheng, "The reduction of graphene oxide", Carbon 50,3210-3228 (2012).
    [230]J. N. Coleman, "Liquid exfoliation of defect-free graphene", Acc. Chem. Res.46,14-22 (2013).
    [231]Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe. Z. Sun, S. De,I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-yield production of graphene by liquid-phase exfoliation of graphite", Nat. Nanotechnol.3,563-568 (2008).
    [232]U. Khan, A. O'Neill, M. Lotya, S. De, and J. N. Coleman, "High-concentration solvent exfoliation of graphene", Small 6,864-871 (2010).
    [233]D. Li, M. B. Mueller, S. Gilje, R. B. Kaner,and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nat. Nanotechnol.3,101-105 (2008).
    [234]A. A. Green, and M. C. Hersam, "Solution phase production of graphene with controlled thickness via density differentiation", Nano Lett.9,4031-4036 (2009).
    [235]M. Lotya, Y. Hernandez. P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. M. Wang,l. T. McGovern. G. S. Duesberg. and J. N. Coleman, "Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions",/Am. Chem. Soc.131,3611-3620(2009).
    [236]K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene", Nature 490.192-200 (2012).
    [237]K. S. Novoselov, "Graphene:materials in the flatland (Nobel Lecture)", Angew. Chem. Int. Ed. 50,6986-7002(2011).
    [238]D. Popa, Z. Sun. F. Torrisi, T. Hasan. F. Wang, and A. C. Ferrari. "Sub 200 fs pulse generation from a graphene mode-locked fiber laser". Appl. Phys. Lett.97.203106 (2010).
    [239]M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room-temperature ultraviolet nanowire nanolasers", Science 292.1897-1899 (2001).
    [240]J. C. Johnson, H.-J. Choi. K. P. Knutsen. R. D. Schaller, P. Yang, and R. J. Saykally, "Single gallium nitride nanowire lasers", Nat. Mater.1,106-110 (2002).
    [241]S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber. "GaN nanowire lasers with low lasing thresholds", Appl. Phys. Lett.87,173111 (2005).
    [242]R. Agarwal, C. J. Barrelet, and C. M. Lieber, "Lasing in Single Cadmium Sulfide Nanowire Optical Cavities", Nano Lett.5,917-920 (2005).
    [243]Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, "Single-Nanowire Single-Mode Laser", Nano Lett.11,1122-1126 (2011).
    [244]J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. Yang, "Single nanowire lasers", J. Phys. Chem. B 105,11387-11390 (2001).
    [245]P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, "Semiconductor nanowire ring resonator laser", Phys. Rev. Lett.96,143903 (2006).
    [246]A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, "Semiconductor nanowire laser and nanowire waveguide electro-optic modulators", Appl. Phys. Lett.87,151103-151103 (2005).
    [247]X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven lasers", Nature 421,241-245 (2003).
    [248]Y. Xiao, C. Meng, X. Q. Wu, and L. M. Tong, "Single mode lasing in coupled nanowires", Appl. Phys. Lett.99,023109 (2011).
    [249]A. E. Siegman, Lasers (Oxford University Press, Oxford.1986).
    [250]S. S. Wang, Z. F. Hu, H. K. Yu. W. Fang. M. Qiu. and L. M. Tong, "Endface reflectivities of optical nanowires", Opt. Express 17.10881-10886 (2009).
    [251]M. A. Zimmler, J. Bao, F. Capasso, S. Muller. and C. Ronning, "Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation", Appl. Phys. Lett.93,051101-051103 (2008).
    [252]A. V. Maslov, and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser", Appl. Phys. Lett.83,1237-1239 (2003).
    [253]A. V. Maslov, and C. Z. Ning, "Far-field emission of a semiconductor nanowire laser". Opt. Lett.29,572-574 (2004).
    [254]A. V. Maslov, and C. Z. Ning, "Modal gain in a semiconductor nanowire laser with anisotropic bandstructure", IEEE J. Quantum Electron.40.1389-1397(2004).
    [255]A. V. Maslov, M. I. Bakunov, and C. Z. Ning, "Distribution of optical emission between guided modes and free space in a semiconductor nanowire", J. Appl. Phys.99,024314-024310 (2006).
    [256]E. D. Hinkley, and P. L. Kelley, "Detection of Air Pollutants with Tunable Diode Lasers". Science 171,635-639 (1971).
    [257]C. R. Pidgeon, and M. J. Colles, "Recent developments in tunable lasers for spectroscopy" Nature 279,377-381 (1979).
    [258]F. Delorme. "Widely tunable 1.55-um lasers for wavelength-division-multiplexed optical fiber communications", IEEE J. Quantum Electron.34.1706-1716(1998).
    [259]L. A. Coldren, "Monolithic tunable diode lasers". IEEE J. Sel. Top. Quantum Electron.6. 988-999 (2000).
    [260]T. Chu, N. Fujioka. and M. Ishizaka, "Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators". Opt. Express 17.14063-14068 (2009).
    [261]Y. Liu, J. A. Zapien, Y. Y. Shan. C. Y. Geng. C. S. Lee. and S. T. Lee, "Wavelength-controlled lasing in ZnxCdl-xS single-crystal nanoribbons", Adv. Mater.17,1372-1377 (2005).
    [262]A. Pan, H. Yang, R. Liu, R. Yu, B. Zou, and Z. Wang, "Color-Tunable Photoluminescence of Alloyed CdSxSel-xNanobelts", J.,Am. Chem. Soc.127,15692-15693 (2005).
    [263]Y. K. Liu, J. A. Zapien, Y. Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, "Wavelength-tunable lasing in single-crystal CdS 1-X Se X nanoribbons", Nanotechnology 18,365606 (2007).
    [264]T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, "Complete composition tunability of inGaN nanowires using a combinatorial approach", Nat. Mater,6,951-956 (2007).
    [265]F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, "Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers", Nat. Mater. 7,701-706(2008).
    [266]A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, "Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip", Nano Lett.9,784-788 (2009).
    [267]F. X. Gu, Z. Y. Yang, H. K. Yu, J. Y. Xu, P. Wang, L. M. Tong, and A. L. Pan, "Spatial bandgap engineering along single alloy nanowires", J. Am. Chem. Soc.133,2037-2039 (2011).
    [268]Z. Y. Yang, J. Y. Xu, P. Wang, X. J. Zhuang, A. L. Pan, and L. M. Tong, "On-nanowire spatial band gap design for white light emission", Nano Lett.11,5085-5089 (2011).
    [269]C. Y. Luan, Y. K. Liu, Y. Jiang, J. S. Jie, I. Bello, S. T. Lee, and J. A. Zapien, "Composition tuning of room-temperature nanolasers", Vacuum 86,737-741 (2012).
    [270]J. Y. Xu, L. Ma, P. F. Guo, X. J. Zhuang, X. L. Zhu, W. Hu, X. F. Duan, and A. L. Pan, "Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures", J. Am. Chem. Soc.134,12394-12397 (2012).
    [271]C. Ma, Y. Ding, D. Moore, X. Wang, and Z. L. Wang, "Single-crystal CdSe nanosaws", J. Am. Chem. Soc.126,708-709 (2003).
    [272]J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, "Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process", Adv. Mater.25,833-837 (2013).
    [273]A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou, "Optical waveguide through CdS nanoribbons". Small 1,980-983 (2005).
    [274]F. Urbach, "The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids", Phys. Rev.92,1324-1324 (1953).
    [275]S. John, C. Soukoulis, M. H. Cohen, and E. N. Economou, "Theory of electron band tails and the Urbach optical-absorption edge". Phys. Rev. Lett.57,1777-1780 (1986).
    [276]X. Liu. Q. Zhang, Q. Xiong, and T. C. Sum. "Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption", Nano Lett.13,1080-1085 (2013).
    [277]L. Chen, and E. Towe, "Coupled optoelectronic modeling and simulation of nanowire lasers" J. Appl. Phys.100,044305 (2006).
    [278]B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang, "Lasing mechanism of ZnO nanowires/nanobelts at room temperature",J. Phys. Chem. B 110,12865-12873 (2006).
    [279]U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, "Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers", Appl. Phys. Lett.83.4095 (2003).
    [280]J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, "CdSe quantum dot microdisk laser", Appl. Phys. Lett.89,231104 (2006).
    [281]C. M. Lai, H. M. Wu, P. C. Huang, S. L. Wang, and L. H. Peng, "Single mode stimulated emission from prismlike gallium nitride submicron cavities", Appl. Phys. Lett,90,141106 (2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700