光伏并网发电系统若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用现代电力电子技术、数字信号处理技术和先进控制理论的光伏发电系统目前已经成为研究热点,它被视为解决能源危机的最有效和最具潜力的途径之一。本文以光伏并网发电系统为研究对象,针对系统中逆变器拓扑、并网电流控制以及提高系统可靠性等几个关键技术进行了深入研究,以提高光伏并网发电系统的性能。论文的主要内容如下:
     1、深入研究一种新型逆变器——Z源逆变器。本文分析了Z源逆变器的电路拓扑,研究了Z源逆变器的各个状态变量之间存在的关系,提出在非理想条件下Z源逆变器直通矢量的最佳工作范围。本文阐述了Z源逆变器小信号动态模型,首次建立起基于动态相量法的Z源逆变器大信号模型,推导出Z源逆变器的时不变状态空间方程。与Z源逆变器的小信号模型相比较,本文建立的大信号模型可以更为准确地反应Z源逆变器的实际工作电压、电流状况。本文给出了Z源逆变器的小信号模型、大信号模型和实际电路的仿真对比结果。
     2、借助于零极点图和Bode图分析方法,本文分析了Z源逆变器的非最小相位特性。考虑到光伏系统特性、Z源逆变器控制逻辑要求及非最小相位特性,本文提出了一种基于固定开关频率的滑模控制器,以改善系统的动态性能,增强鲁棒性。本文详细阐述了滑模控制器的设计过程,利用小信号法对该采用滑模控制器的闭环系统稳定性进行了分析,确定了控制器的参数选取原则。仿真和实验结果表明在滑模控制器作用下,直流侧非最小相位特性对系统产生的影响被消除,提高了直流母线电压质量,保证了并网电流不发生畸变。这种对Z源网络电压的控制方法可以进一步推广到其他类型Z源功率变换器中。
     3、并网电流控制技术在并网发电系统中具有重要地位。采用T型并网滤波器可以提高并网电流质量。但是由于T型滤波器增加了系统阶数,不恰当的控制方法会导致并网电流谐振。本文重点分析了不同处阻尼对T型滤波器滤波效果影响,利用非线性控制中的重要理论——无源控制(PBC)理论,提出将“互联与阻尼配置无源控制(IDA-PBC)”策略应用到采用T型滤波器的并网逆变系统中,从而在保证并网电流质量前提下,实现了系统的全局稳定。该控制策略从能量平衡的角度出发,具有算法简单、物理意义明确的特点。仿真和实验结果均表明在该控制策略作用下,系统的动、静态性能俱佳,实现了系统的全局稳定。
     4、电力系统普遍存在的传导干扰会通过电力线等进入供电子系统,可能导致光伏并网发电系统无法正常运行;同时供电子系统一般都要求与电力系统进行电气隔离。为了提高光伏并网发电系统的可靠性,本文提出一种具有抗传导干扰的变压器IFT(Interference-Free Transformer)。IFT采用具有气隙分路的磁路结构,从而在变压器一次侧和二次侧之间等效出一个降压电感。这个电感与一个并联谐振电路相串联以实现对高频差模干扰的抑制。此外,两个绕向相反的绕组与一次侧绕组串联以实现对共模干扰的抑制。本文推导出能真实反映IFT特性的等效电路模型,并给出了IFT具体的设计和优化方法。最后,本文通过Matlab/Simulink软件对IFT的等效电路的仿真和样机实验,验证了IFT对传导干扰的抑制效果。
     5、光伏并网发电系统需要快速地获得电网电压的基波初相和频率。常用的硬件锁相环存在漂移、抖动、依赖过零检测等缺点。本文提出了一种基于软件的幅值、相位、频率一体化检测算法。在启动阶段,输入信号及其基波正交信号送入相位校正环节,对输出信号的相位和幅值进行控制。当系统进入稳态附近后,控制方法切换到用频率间接控制相位的方式,从而得到稳定的幅值、相位、频率信号。该算法在兼顾动态和稳态性能的同时,避免了实时正弦值计算,非常适合在DSP等数字信号处理器上应用。本文采用Matlab进行了仿真,并以TMS320C2812DSP实现了该算法。
The grid-connected photovoltaic (PV) system which uses power electronics technology,digital signal processing and advanced control theory has been focused currently. It is one ofthe most effective and potential solutions to combat the energy crisis. In this thesis, invertertopologies, grid-connected current control methods and systematic reliability etc, all of whichare important to the performance of the grid-connected PV system, are discussed. At the sametime some new methods are proposed to improve the PV system performance. The maincontents of the thesis are as below:
     1. The thesis studied a new inverter, namely Z-source inverter. In the thesis the topology ofthe Z-source inverter is analyzed and the relationships of the all state variables arerevealed. Research is done on the best range of the shoot-through state in the nonidealcondition. The small-signal model of Z-source expatiates. The large-signal model of theZ-source inverter which is based on the dynamic phasor method is proposed firstly and itstime-invariant state-space equations are deducted. Compared to the small-signal model,the proposed large-signal model can reflect more accurate of its voltage and current. Thesimulation results of the small-signal model, the large-signal model and the actual circuitsare contrasted and analyzed.
     2. With the help of the pole and zero trajectories and the Bode diagram, the non-minimum-phase characteristic of Z-source inverter is studied in the thesis. According to thenon-minimum-phase characteristic presented in the DC-side and the functional demandsof the system, two constant-frequency sliding-mode controllers are proposed to guaranteethe system robustness. By using the controllers, the effects caused by thenon-minimum-phase characteristic are mitigated. The quality of grid-connected current isensured. The design process of the controllers is depicted. Also, a small-signal modelingmethod is employed to analyze stability of the close-loop system and its parameters arecalculated. The correctness and validity of the inverter and proposed controllers areproved by simulation and experimental results. Furthermore, the control method to theDC-side voltage of Z-source can also been used in other sorts of Z-source inverter and converter.
     3. The current control method plays an important role to quality of the grid-connected PVsystem. Using T filter, the quality of the grid-connected current can be improved.However, due to T filter the systematic ranks are increased, improper control arithmeticwill cause grid-connected current resonance. In this thesis, the filtering performance isparticularly analyzed when the damping is imposed in different location on the T filter.One kind of passivity-based control theory, namely Interconnection and DampingAssignment Passivity-based Control (IDA-PBC), is proposed to improve the quality ofgrid-connected current and to realize the global stability. This simple control strategy,which is based on energy balancing, has a clear physical meaning. Simulation andexperimental results of this method verify that the static and dynamics characteristics ofthe system are fine and global stabilities are realized.
     4. The grid-connected PV system would not operate normally if the conduction-interferences,which exist universally in the power system, come into the power-supply subsystem viathe power line. Meanwhile, it is necessary that the power-supply subsystem is isolatedfrom the power source. In order to improve the systematic reliability, a novelInterference-free Transformer (IFT) is proposed to suppress conduction-interference. Thefabrication of IFT is materialized through an air-gap shunt added to the magnetic circuit ofthis transformer, while an equivalent step-down inductor can be obtained between theprimary and the secondary windings. The inductor is connected with a parallelresonance-circuit in series to form a filter-network which makes the high-frequencydifference-mode (DM) interferences be attenuated. Two windings in opposite directionsare connected in series with the primary winding to suppress the common-mode (CM)interferences. A design procedure is proposed, and a prototype is built and analyzed. Thesimulation and experimental results validate the analysis and the optimizing method forthe design of the proposed transformer.
     5. Grid voltage information, such as the frequency and phase angle, is very important ingrid-connected PV system. There are some drawbacks in hardware phase-locked loop(PLL). This thesis proposes a novel software algorithm that can detects the frequency,phase and amplitude of the grid voltage simultaneously. In the start-up stage, both thegrid-voltage signal and its orthogonal signal are sent to a software phase control loop todetermine the phase and amplitude of the output. After the algorithm steps into theneighborhood of steady status, the algorithm adopts indirectly phase control method andfinally obtains stable the amplitude, frequency and phase of the input signal. The control method can meet the demands of the static state and dynamic, and also avoid to calculatethe sine value in real-time. This algorithm shows practical to be planted in MCUs andDSPs. Simulation and experimental results verify its validity.
引文
[1]赵争鸣,刘建政,孙晓瑛等.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [2]禹华军.光伏并网发电与电网无功功率补偿一体化技术的研究[D]:[博士学位论文].上海:上海交通大学,2005.
    [3]赵为.太阳能并网发电系统的研究[D]:[博士学位论文].合肥:合肥工业大学,2003.
    [4]昌金铭.国内外光伏发电的新进展[J].中国建设动态(阳光能源).2007,(1):28-31.
    [5] M. Liserre, R. Teodorescu, F. Blaabjerg. Stability of photovoltaic and wind turbine grid-connectedinverters for a large set of grid impedance values[J]. IEEE Transactions on Power Electronics.2006,21(1):263-271.
    [6] R. H. Bonn. Developing a "next generation" PV inverter[C]. New Orleans, LA, United States:Institute of Electrical and Electronics Engineers Inc.,2002:1352-1355.
    [7]董密,罗安.光伏并网发电系统中逆变器的设计与控制方法[J].电力系统自动化.2006,20:97-102.
    [8]郭卫农,陈坚.基于状态观测器的逆变器数字双环控制技术研究[J].中国电机工程学报.2002,22(9):64-68.
    [9] M. Calais, J. Myrzik, T. Spooner, et al. Inverters for single-phase grid connected photovoltaicsystems-An overview[C]. Cairns, Australia: Institute of Electrical and Electronics Engineers Inc.,2002:1995-2000.
    [10] K. K. H Becker, VU Hoffmann, U Rindelhardt, G.Heilscher. Five years of operational experiencein the German1000-Roofs-PV programme—results of monitoring and system inspection[C]. Proc.14th European Photovoltaic Solar Energy Conference. Barcelona, Spain: Jul.1997:1677–1680.
    [11] M. Meinhardt, T. O'Donnell, H. Schneider, et al. Miniaturized`low profile' Module IntegratedConverter for photovoltaic applications with integrated magnetic components[J]. ConferenceProceedings-IEEE Applied Power Electronics Conference and Exposition-APEC. vol.1.1999,1:305-311.
    [12] T. Boutot, C. Liuchen. Development of a single-phase inverter for small wind turbines[C].1998:305-308vol.1.
    [13]陈道炼. DC-AC逆变技术及其应用[M].北京:机械工业出版社,2005.
    [14] N. Kasa, T. Iida, L. Chen. Flyback inverter controlled by sensorless current MPPT for photovoltaicpower system[J]. IEEE Transactions on Industrial Electronics.2005,52(4):1145-1152.
    [15] T. Hirao, T. Shimizu, M. Ishikawa, et al. A modified modulation control of a single-phase inverterwith enhanced power decoupling for a photovoltaic AC module[C]. Dresden, Germany: Institute ofElectrical and Electronics Engineers Computer Society, Piscataway, NJ08855-1331, United States,2005:
    [16] N. Kasa, T. Iida, H. Iwamoto. Inverter using buck-boost type chopper circuits for popularsmall-scale photovoltaic power system[C]. San Jose, CA, USA: Institute of Electrical andElectronics Engineers Computer Society, Los Alamitos, CA, USA,1999:185-190.
    [17] N. Kasa, T. Iida, H. Iwamoto. Maximum power point tracking with capacitor identifier forphotovoltaic power system[J]. IEE Proceedings: Electric Power Applications.2000,147(6):497-502.
    [18] M. Kusakawa, H. Nagayoshi, K. Kamisako, et al. Further improvement of a transformerless,voltage-boosting inverter for AC modules[J]. Solar Energy Materials and Solar Cells.2001,67(1-4):379-387.
    [19] J. M. A. Myrzik. Novel inverter topologies for single-phase stand-alone or grid-connectedphotovoltaic systems[C]. Denpassar, Bali: Institute of Electrical and Electronics Engineers Inc.,2001:103-108.
    [20] H. Watanabe, T. Shimizu, G. Kimura. A novel utility interactive photovoltaic inverter withgeneration control circuit[C]. T. Shimizu, Industrial Electronics Society,1998. IECON '98.Proceedings of the24th Annual Conference of the IEEE.1998:721-725.
    [21] K. Ogura, T. Nishida, E. Hiraki, et al. Time-sharing boost chopper cascaded dual modesingle-phase sinewave inverter for solar photovoltaic power generation system[C]. IEEE AnnualPower Electronics Specialists Conference. Aachen, Germany: Institute of Electrical andElectronics Engineers Inc., Piscataway, NJ08855-1331, United States,2004:4763-4767.
    [22] N. A. Ahmed, H. W. Lee, M. Nakaoka, et al. Dual-mode time-sharing one-stage single-phasepower conditioner using sinewave tracked soft switching PWM boost chopper[C]. Kowloon, HongKong, China: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ08855-1331,United States,2005:1612-1617.
    [23] F. Z. Peng. A generalized multilevel inverter topology with self voltage balancing[J]. IEEETransactions on Industry Applications.2001,37(2):611-618.
    [24]何湘宁,"国家自然科学基金(59947006)."
    [25] V. G. Agelidis, D. M. Baker, W. B. Lawrance, et al. Multilevel PWM inverter topology forphotovoltaic applications[C]. Guimaraes, Portugal: IEEE, Piscataway, NJ, USA,1997:589-594.
    [26] S.-J. Park, F.-S. Kang, M. H. Lee, et al. A new single-phase five-level PWM inverter employing adeadbeat control scheme[J]. IEEE Transactions on Power Electronics.2003,18(3):831-843.
    [27]陈阿莲,何湘宁,吴洪洋等.基于基本单元串--并(并--串)思想生成多电平变换器拓扑的方法[J].电工技术学报.2004,19(2):41-46.
    [28]陈阿莲.新型多电平逆变器组合拓扑结构和多电平逆变器的容错技术[D]:[博士学位论文].杭州:浙江大学,2005.
    [29] F. Z. Peng, J.-S. Lai, J. W. McKeever, et al. Multilevel voltage-source inverter with separate DCsources for static var generation[J]. IEEE Transactions on Industry Applications.1996,32(5):1130-1138.
    [30]刘凤君.正弦波逆变器[M].北京:科学出版社,2002.
    [31]熊宇.电流型多电平变流器拓扑和控制策略的研究[D]:[博士学位论文].杭州:浙江大学,2005.
    [32] S. Iwata, S. Masukawa, S. Iida. A simplified cascade current-source inverter interconnected to asingle-phase three-wire distribution system and Its application to electric energy storage systemswith batteries[J]. Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi).2005,150(2):50-61.
    [33] P. G. Barbosa, H. A. C. Braga, M. d. C. B. Rodrigues, et al. Boost current multilevel inverter andIts application on single-phase grid-connected photovoltaic systems[J]. IEEE Transactions onPower Electronics.2006,21(4):1116-1124.
    [34]王兆安,杨君,刘进军.谐波抑制与无功功率补偿(第二版)[J].北京:机械工业出版社.2006:
    [35]陈坚.电力电子学—电力电子变换和控制技术[M].北京:高等教育出版社,2004.
    [36]王兆安,黄俊.电力电子技术(第四版)[M].北京:机械工业出版社,2005.
    [37]王英,张纯江,陈辉明.三相PWM整流器新型相位幅值控制数学模型及其控制策略[J].中国电机工程学报.2003,23(11):85-89.
    [38]屈克庆,陈国呈,孙承波.基于幅相控制方式的零电压软开关三相PWM变流器[J].电工技术学报.2004,19(5):15-20.
    [39]李春龙,沈颂华,卢家林等.具有延时补偿的数字控制在PWM整流器中的应用[J].中国电机工程学报.2007,27(7):94-97.
    [40]高军,姜桂宾.系统辨识在UPS逆变器无差拍控制中的应用[J].电工电能新技术.2002,21(2):5-8.
    [41] Y. A. R. I. Mohamed, E. F. El-Saadany. An Improved Deadbeat Current Control Scheme With aNovel Adaptive Self-Tuning Load Model for a Three-Phase PWM Voltage-Source Inverter[J].Industrial Electronics, IEEE Transactions on.2007,54(2):747-759.
    [42] G. Chen, K. M. Smedley. Steady-state and dynamic study of one-cycle-controlled three-phasepower-factor correction[J]. IEEE Transactions on Industrial Electronics.2005,52(2):355-362.
    [43] Y. Chen, K. M. Smedley. A cost-effective single-stage inverter with maximum power pointtracking[J]. IEEE Transactions on Power Electronics.2004,19(5):1289-1294.
    [44] K. Smedley, T. Jin. One-Cycle Control and its applications in power quality control and renewablepower generation[C]. San Francisco, CA, United States: Institute of Electrical and ElectronicsEngineers Inc., New York, NY10016-5997, United States,2005:2999-3007.
    [45]周雒维,彭容,杜雄.单周控制双Buck型电压源换流器[J].中国电机工程学报.2005,25(17):11-14.
    [46]费万民,吕征宇,钱挺.基于互补策略的新型单周控制有源滤波器[J].电力系统自动化.2003,27(3):50-53.
    [47]李剑,康勇,陈坚. A HYBRID FUZZY-REPETITIVE CONTROL SCHEME FOR400HZ CVCFINVERTERS[J].中国电机工程学报.2005,25(9):55-61.
    [48]陈宏.基于重复控制理论的逆变电源控制技术研究[D]:[博士学位论文].南京:南京航空航天大学,2003.
    [49]张凯,彭力,熊健等.基于状态反馈与重复控制的逆变器控制技术[J].中国电机工程学报.2006,26(10):56-62.
    [50]张建功,刘邦银,段善旭等.基于独立光伏系统的三相三电平逆变器[J].高电压技术.2006,32(11):103-106.
    [51] Y.-Y. Tzou, L.-H. Ho, R.-S. Ou. Fuzzy control of a closed-loop regulated PWM inverter underlarge load variations[C]. Maui, Hawaii, USA: Publ by IEEE, Los Alamitos, CA, USA,1993:267-272.
    [52]邵松涛.新型三相光伏并网发电系统的研究与设计[D]:[硕士学位论文].上海:上海交通大学,2007.
    [53] B. K. Bose. Fuzzy logic and neural networks in power electronics and drives[J]. IEEE IndustryApplications Magazine.2000,6(3):57-63.
    [54] F. Jurado, M. Valverde. Genetic fuzzy control applied to the inverter of solid oxide fuel cell forpower quality improvement[J]. Electric Power Systems Research.2005,76(1-3):93-105.
    [55] B.-R. Lin, R. G. Hoft. Neural networks and fuzzy logic in power electronics[J]. ControlEngineering Practice.1994,2(1):113-121.
    [56]龚春英,沈忠亭,李春燕等.神经网络在逆变器控制中的应用[J].电工技术学报.2004,19(2):98-102.
    [57]邓卫华,张波,胡宗波等. CCM Buck变换器的状态反馈精确线性化的非线性解耦控制研究[J].中国电机工程学报.2004,24(5):120-125.
    [58]邓卫华,张波,丘东元等.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报.2005,25(7):97-103.
    [59]邓卫华,张波,丘东元等.电流连续型Boost变换器状态反馈精确线性化与非线性PID控制研究[J].中国电机工程学报.2004,24(8):45-50.
    [60] A. S. Hodel, S. T. Hung. Solution and applications of the Lyapunov equation for control systems[J].IEEE Transactions on Industrial Electronics.1992,39(3):194-202.
    [61] H. Komurcugil, O. Kukrer. Control strategy for single-phase PWM ac/dc voltage-source convertersbased on Lyapunov's direct method[J]. International Journal of Electronics.2000,87(12):1485-1498.
    [62] H. Komurcugil, O. Kukrer. A new control strategy for single-phase shunt active power filters usinga Lyapunov function[J]. IEEE Transactions on Industrial Electronics.2006,53(1):305-312.
    [63] H. Komurcugil, O. Kukrer. Globally stable control of three-phase three-wire shunt active powerfilters[J]. Electrical Engineering.2007,89(5):411-418.
    [64]孟永庆,苏彦民,刘正.三电平中点箝位整流器系统建模及基于李亚普诺夫直接法的控制方法研究[J].中国电机工程学报.2005,25(24):79-84.
    [65]周卫平,吴正国,刘大明,杨宣访.有源电力滤波器变趋近律滑模变结构控制[J].中国电机工程学报.2005,25(23):91-94.
    [66] M. Castilla, L. G. de Vicuna, M. Lopez, et al. On the design of sliding mode control schemes forquantum resonant converters[J]. IEEE Transactions on Power Electronics.2000,15(6):960-973.
    [67] P. Mattavelli, L. Rossetto, G. Spiazzi. Small-signal analysis of DC-DC converters with slidingmode control[J]. IEEE Transactions on Power Electronics.1997,12(1):96-102.
    [68] S.-C. Tan, Y. M. Lai, C. K. Tse, et al. A fixed-frequency pulsewidth modulation basedquasi-sliding-mode controller for buck converters[J]. IEEE Transactions on Power Electronics.2005,20(6):1379-1392.
    [69] Y. He, F. L. Luo. Design and analysis of adaptive sliding-mode-like controller for DC-DCconverters[J]. IEE Proceedings: Electric Power Applications.2006,153(3):401-410.
    [70] S.-C. Tan, Y. M. Lai, C. K. Tse. A unified approach to the design of PWM-based sliding-modevoltage controllers for basic DC-DC converters in continuous conduction mode[J]. IEEETransactions on Circuits and Systems I: Regular Papers.2006,53(8):1816-1827.
    [71] S.-C. Tan, Y. M. Lai, M. K. H. Cheung, et al. On the practical design of a sliding mode voltagecontrolled buck converter[J]. IEEE Transactions on Power Electronics.2005,20(2):425-437.
    [72] A. J. Van der Schaft. L2-Gain and Passivity Techniques in Nonlinear Control[M]. Book L2-Gainand Passivity Techniques in Nonlinear Control. Springer-Verlag New York, Inc. Secaucus, NJ,USA,1996.
    [73]陈菊明,刘锋,梅生伟.基于无源化方法的三相四线制APF控制器策略[J].电力系统自动化.2006,30(8):32-36.
    [74] A. Dell'aquila, M. Liserre, V. G. Monopoli, et al. An energy-based control for an n-H-bridgesmultilevel active rectifier[J]. IEEE Transactions on Industrial Electronics.2005,52(3):670-678.
    [75] J. M. A. Scherpen, D. Jeltsema, J. B. Klaassens. Lagrangian modeling of switching electricalnetworks[J]. Systems and Control Letters.2003,48(5):365-374.
    [76]王江,曾启明.非线性无源控制原理及在电力电子变换器中的应用[J].控制理论与应用.2004,21(4):575-578.
    [77]吴磊涛,杨兆华,胥布工. DC/DC开关变换器的无源控制方法[J].电工技术学报.2004,19(4):66-69.
    [78] R. Ortega, A. Van der Schaft, B. Maschke, et al. Interconnection and damping assignmentpassivity-based control of port-controlled Hamiltonian systems[J]. Automatica.2002,38(4):585-596.
    [79] G. Escobar, A. J. van der Schaft, R. Ortega. Hamiltonian viewpoint in the modeling of switchingpower converters[J]. Automatica.1999,35(3):445-452.
    [80] C. Batlle, A. Doria-Cerezo, E. Fossas. IDA-PBC controller for a bidirectional power flowfull-bridge rectifier[C]. Seville, Spain: Institute of Electrical and Electronics Engineers ComputerSociety, Piscataway, NJ08855-1331, United States,2005:422-426.
    [81] F. Z. Peng. Z-source inverter[J]. IEEE Transactions on Industry Applications.2003,39(2):504-510.
    [82] K. Holland, M. Shen, F. Z. Peng. Z-source inverter control for traction drive of fuel cell-Batteryhybrid vehicles[C]. Kowloon, Hong Kong, China: Institute of Electrical and Electronics EngineersInc., Piscataway, NJ08855-1331, United States,2005:1651-1656.
    [83] P. C. Loh, S. W. Lim, F. Gao, et al. Three-level Z-source inverters using a single LC impedancenetwork[J]. IEEE Transactions on Power Electronics.2007,22(2):706-711.
    [84] D. Xinping, Q. Zhaoming, X. Yeyuan, et al. Three-phase Z-source rectifier[J]. PESC Record-IEEE Annual Power Electronics Specialists Conference.2005,2005:494-500.
    [85] Y. Huang, M. Shen, F. Z. Peng, et al. Z-source inverter for residential photovoltaic systems[J].IEEE Transactions on Power Electronics.2006,21(6):1776-1782.
    [86] F. Z. Peng, M. Shen, K. Holland. Application of Z-source inverter for traction drive of fuelcell-battery hybrid electric vehicles[J]. IEEE Transactions on Power Electronics.2007,22(3):1054-1061.
    [87] P. C. Loh, F. Blaabjerg, C. P. Wong. Comparative evaluation of pulsewidth modulation strategiesfor Z-source neutral-point-clamped inverter[J]. IEEE Transactions on Power Electronics.2007,22(3):1005-1013.
    [88] X. P. Fang, Z. M. Qian, F. Z. Peng. Single-phase Z-source PWM AC-AC converters[J]. IEEEPower Electronics Letters.2005,3(4):121-124.
    [89] Y. Tang, S. Xie, C. Zhang. Z-source AC-AC converters solving commutation problem[J]. IEEETransactions on Power Electronics.2007,22(6):2146-2154.
    [90]汤雨,谢少军,张超华.单相四开关Z源AC-AC变换器[J].南京航空航天大学学报.2007,39(5):576-581.
    [91]光伏系统并网技术要求[S].中华人民共和国国家标准GB/T19939-2005,2005.
    [92] Limits for harmonic current emissions (equipment input current<16A per phase)[S].IEC6000–3–2Document,1998.
    [93] IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems[S].IEEE Std929-2000,2000.
    [94] M. Lindgren, J. Svensson. Connecting fast switching voltage-source converters to the grid-harmonic distortion and its reduction[C]. IEEE Strock Power Tech Conference, Stockholm.1995:191-195.
    [95]张承慧,叶颖,陈阿莲等.基于输出电流控制的光伏并网逆变电源[J].电工技术学报.2007,22(8):41-45.
    [96] V. Blasko, V. Kaura. Novel control to actively damp resonance in input LC filter of a three-phasevoltage source converter[J]. IEEE Transactions on Industry Applications.1997,33(2):542-550.
    [97] E. Wu, P. W. Lehn. Digital current control of a voltage source converter with active damping ofLCL resonance[J]. IEEE Transactions on Power Electronics.2006,21(5):1364-1373.
    [98] B. Bolsens, K. De Brabandere, J. Van Den Keybus, et al. Model-based generation of low distortioncurrents in grid-coupled PWM-inverters using an LCL output filter[J]. IEEE Transactions onPower Electronics.2006,21(4):1032-1040.
    [99] T. Abeyasekera, C. M. Johnson, D. J. Atkinson, et al. Suppression of line voltage related distortionin current controlled grid connected inverters[J]. IEEE Transactions on Power Electronics.2005,20(6):1393-1401.
    [100]张强,张崇巍,张兴等.风力发电用大功率并网逆变器研究[J].中国电机工程学报.2007,16(27):54-59.
    [101] M. Liserre, A. Blaabjerg, F. D. E. ed Elettronica. Genetic algorithm-based design of the activedamping for an LCL-filter three-phase active rectifier[J]. Power Electronics, IEEE Transactions on.2004,19(1):76-86.
    [102] L. A. Serpa, S. Ponnaluri, P. M. Barbosa, et al. A modified direct power control strategy allowingthe connection of three-phase inverters to the grid through LCL filters[J]. IEEE Transactions onIndustry Applications.2007,43(5):1388-1400.
    [103] P. A. Dahono, Y. R. Bahar, Y. Sato, et al. Damping of transient oscillations on the output LC filterof PWM inverters by using a virtual resistor[C]. Denpassar, Bali: Institute of Electrical andElectronics Engineers Inc.,2001:403-407.
    [104] M. Liserre, F. Blaabjerg, S. Hansen. Design and control of an LCL-filter-based three-phase activerectifier[J]. IEEE Transactions on Industry Applications.2005,41(5):1281-1291.
    [105] M. Liserre, F. Blaabjerg, A. Dell'aquila. Step-by-step design procedure for a grid-connectedthree-phase PWM voltage source converter[J]. International Journal of Electronics.2004,91(8):445-460.
    [106]伍家驹,张朝燕,任吉林等.一种用于PWM逆变器的非对称T型滤波器的设计方法[J].中国电机工程学报.2005,25(14):35-40.
    [107]伍家驹,谢波,伍声宇等.基于数据可视化技术的逆变器用T型滤波器优化设计方法[J].中国电机工程学报.2006,26(22):85-91.
    [108]姚刚,王钢.电力系统自动化设备的电磁兼容技术[J].电力系统及其自动化学报.2000,12(4):52-57.
    [109] S. G. Jalali, R. H. Lasseter. Harmonic interaction of power systems with static switching circuits[C].Boston, MA, USA: Publ by IEEE, Piscataway, NJ, USA,1991:330-337.
    [110] K. Kostov. Analysis and Design of EMI Filters for DC-DC Converters Using Chain Parameters[C].EPE2003, Toulouse, France.(From CD).
    [111]刘新宇. EMI电源滤波器关键技术研究[D]:[硕士学位论文].西安:西安电子科技大学,2002.
    [112]刘晓东,陈宗祥,叶芃生.基于气隙磁分路和谐振电路抗谐波干扰变压器的研究[J].电工技术学报.2005,20(12):13-17.
    [1] F. Z. Peng. Z-source inverter[J]. IEEE Transactions on Industry Applications.2003,39(2):504-510.
    [2] M. Shen, F. Z. Peng. Operation modes and characteristics of the Z-source inverter with smallinductance[C]. Kowloon, Hong Kong, China: Institute of Electrical and Electronics Engineers Inc.,Piscataway, NJ08855-1331, United States,2005.1253-1260.
    [3] P. C. Loh, D. M. Vilathgamuwa, C. J. Gajanayake, et al. Transient modeling and analysis ofpulse-width modulated Z-source inverter[J]. IEEE Transactions on Power Electronics.2007,22(2):498-507.
    [4] D. Xinping, Q. Zhaoming, X. Yeyuan, et al. Three-phase Z-source rectifier[J]. PESC Record-IEEE Annual Power Electronics Specialists Conference.2005,2005:494-500.
    [5] Y. Huang, M. Shen, F. Z. Peng, et al. Z-source inverter for residential photovoltaic systems[J].IEEE Transactions on Power Electronics.2006,21(6):1776-1782.
    [6]房绪鹏. Z源逆变器研究[D]:[博士学位论文].杭州:浙江大学,2005.
    [7] C. J. Gajanayake, D. M. Vilathgamuwa, P. C. Loh. Small-signal and signal-flow-graph modeling ofswitched Z-source impedance network[J]. IEEE Power Electronics Letters.2005,3(3):111-116.
    [8]陈威. Z源逆变器的信号流图建模与控制分析[D]:[硕士学位论文].合肥:合肥工业大学,2007.
    [9]蔡宣三,龚绍文.高频功率电子学[M].北京:科学出版社,1993.
    [10]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2006.
    [11] S. R. Sanders, J. M. Noworolski, X. Z. Liu, et al. Generalized averaging method for powerconversion circuits[J]. IEEE Transactions on Power Electronics.1991,6(2):251-259.
    [12]戚庆茹,焦连伟,陈寿孙等.运用动态相量法对电力电子装置建模与仿真初探[J].电力系统自动化.2003,27(9):6-10.
    [13]何瑞文,蔡泽祥.结合谐波特征的可控串补动态相量法建模与特性分析[J].中国电机工程学报.2005,25(5):28-32.
    [14] J. Mahdavi, A. Emaadi, M. D. Bellar, et al. Analysis of power electronic converters using thegeneralized state-space averaging approach[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications.1997,44(8):767-770.
    [15] A. Emadi. Modeling and analysis of multiconverter dc power electronic systems using thegeneralized state-space averaging method[J]. IEEE Transactions on Industrial Electronics.2004,51(3):661-668.
    [16]戚庆茹,焦连伟,严正等.高压直流输电动态相量建模与仿真[J].中国电机工程学报.2003,23(12):28-32.
    [1] S. B. Kjaer, J. K. Pedersen, F. Blaabjerg. A review of single-phase grid-connected inverters forphotovoltaic modules[J]. IEEE Transactions on Industry Applications.2005,41(5):1292-1306.
    [2] M. Meinhardt, T. O'Donnell, H. Schneider, et al. Miniaturized`low profile' Module IntegratedConverter for photovoltaic applications with integrated magnetic components[J]. ConferenceProceedings-IEEE Applied Power Electronics Conference and Exposition-APEC. vol.1.1999,1:305-311.
    [3] B. M. T. Ho, H. S.-H. Chung. An integrated inverter with maximum power tracking for grid-connectedPV systems[J]. IEEE Transactions on Power Electronics.2005,20(4):953-962.
    [4] Y. T. Tan, D. S. Kirschen, N. Jenkins. A model of PV generation suitable for stability analysis[J]. IEEETransactions on Energy Conversion.2004,19(4):748-755.
    [5] Y. C. Kuo, T. J. Liang, J. F. Chen. Novel maximum-power-point-tracking controller for photovoltaicenergy conversion system[J]. IEEE Transactions on Industrial Electronics.2001,48(3):594-601.
    [6]吴理博,赵争鸣,刘建政等.单级式光伏并网逆变系统中的最大功率点跟踪算法稳定性研究[J].中国电机工程学报.2006,26(6):73-77.
    [7] L. Poh Chiang, L. Sok Wei, G. Feng, et al. Three-Level Z-Source Inverters Using a Single LCImpedance Network[J]. Power Electronics, IEEE Transactions on.2007,22(2):706-711.
    [8] F. Z. Peng, A. Joseph, J. Wang, et al. Z-source inverter for motor drives[J]. IEEE Transactions on PowerElectronics.2005,20(4):857-863.
    [9] P. C. Loh, D. M. Vilathgamuwa, C. J. Gajanayake, et al. Z-source current-type inverters: Digitalmodulation and logic implementation[J]. IEEE Transactions on Power Electronics.2007,22(1):169-177.
    [10] P. C. Loh, N. Duan, C. Liang, et al. Z-Source B4Inverters[C]. Power Electronics SpecialistsConference,2007. PESC2007. IEEE.2007:1363-1369.
    [11]王利民,钱照明,彭方正. Z源直流变换器[J].电气应用.2005,24(2):123-125.
    [12]张海文,陈宗祥,潘俊民.一种新型带Z源的Cuk电路[J].电力电子技术.2007,41(7):17-18.
    [13] X. Ding, Z. Qian, Y. Xie, et al. A novel ZVS Z-source rectifier[C]. Dallas, TX, United States: Instituteof Electrical and Electronics Engineers Inc., Piscataway, NJ08855-1331, United States,2006:951-955.
    [14] D. Xinping, Q. Zhaoming, X. Yeyuan, et al. Three-phase Z-source rectifier[J]. PESC Record-IEEEAnnual Power Electronics Specialists Conference.2005,2005:494-500.
    [15] Y. Tang, S. Xie, C. Zhang. Z-source AC-AC converters solving commutation problem[J]. IEEETransactions on Power Electronics.2007,22(6):2146-2154.
    [16] X. P. Fang, Z. M. Qian, F. Z. Peng. Single-phase Z-source PWM AC-AC converters[J]. IEEE PowerElectronics Letters.2005,3(4):121-124.
    [17] C. J. Gajanayake, D. M. Vilathgamuwa, P. C. Loh. Small-signal and signal-flow-graph modeling ofswitched Z-source impedance network[J]. IEEE Power Electronics Letters.2005,3(3):111-116.
    [18] P. C. Loh, D. M. Vilathgamuwa, C. J. Gajanayake, et al. Transient modeling and analysis of pulse-widthmodulated Z-source inverter[J]. IEEE Transactions on Power Electronics.2007,22(2):498-507.
    [19]邢岩,蔡宣三.高频功率开关变换技术[M].北京:机械工业出版社,2006.
    [20] X. Ding, Z. Qian, S. Yang, et al. A PID Control Strategy for DC-link Boost Voltage in Z-sourceInverter[C]. Applied Power Electronics Conference, APEC2007-Twenty Second Annual IEEE.2007:1145-1148.
    [21] T. Quang-Vinh, C. Tae-Won, A. Jung-Ryol, et al. Algorithms for Controlling Both the DC Boost and ACOutput Voltage of Z-Source Inverter[J]. Industrial Electronics, IEEE Transactions on.2007,54(5):2745-2750.
    [22] C. J. Gajanayake, D. M. Vilathgamuwa, L. Poh Chiang. Modeling and design of multi-loop closed loopcontroller for Z-source inverter for Distributed Generation[C]. D. M. Vilathgamuwa, Power ElectronicsSpecialists Conference,2006. PESC '06.37th IEEE.2006:1-7.
    [23] Y. Huang, M. Shen, F. Z. Peng, et al. Z-source inverter for residential photovoltaic systems[J]. IEEETransactions on Power Electronics.2006,21(6):1776-1782.
    [24]许颇.基于Z源型逆变器的光伏并网发电系统的研究[D]:[博士学位论文].合肥:合肥工业大学,2006.
    [25] S. Sakamoto, T. Izumi, T. Yokoyama, et al. A new method for digital PLL control using estimatedquadrature two phase frequency detection[C]. T. Izumi, Power Conversion Conference,2002. PCCOsaka2002. Proceedings of the.2002:671-676.
    [26] J. W. Choi, Y. K. Kim, H. G. Kim. Digital PLL control for single-phase photovoltaic system[J]. IEEProceedings: Electric Power Applications.2006,153(1):40-46.
    [27]纪飞峰,解大,陈陈.应用数字信号处理器的基波相位和频率校正检测方法[J].电网技术.2005,29(24):54-58.
    [28]房绪鹏. Z源逆变器研究[D]:[博士学位论文].杭州:浙江大学,2005.
    [29] X. Ding, Z. Qian, S. Yang, et al. A High-Performance Z-Source Inverter Operating with Small Inductorat Wide-Range Load[C]. Z. Qian, Applied Power Electronics Conference, APEC2007-Twenty SecondAnnual IEEE.2007:615-620.
    [30]纪飞峰.有源电力滤波器新技术的研究与应用[D]:[博士学位论文].上海:上海交通大学,2006.
    [31]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995.
    [32]高为炳.变结构控制理论基础[M].合肥:中国科学技术出版社,1990.
    [33] R. Guclu. Sliding mode and PID control of a structural system against earthquake[J]. Mathematical andComputer Modelling.2006,44(1-2):210-217.
    [34]张希.永磁直线同步电机驱动的精密定位系统的研究[D]:[博士学位论文].上海:上海交通大学,2007.
    [35] R. Gupta, A. Ghosh. Frequency-domain characterization of sliding mode control of an inverter used inDSTATCOM application[J]. IEEE Transactions on Circuits and Systems I: Regular Papers.2006,53(3):662-676.
    [36] B. Nicolas, M. Fadel, Y. Cheron. Fixed-frequency sliding mode control of a single-phase voltagesourceinverter with input filter[C]. Industrial Electronics,1996. ISIE'96., Proceedings of the IEEEInternational Symposium on.1996:470-475.
    [37] R. Venkataramanan, A. Sabanovic, S. Cuk. SLIDING MODE CONTROL OF DC-TO-DCCONVERTERS[C]. San Francisco, CA, USA: IEEE, New York, NY, USA,1985:251-258.
    [38] H. J. Sira-Ramirez, M. Ilic. A geometric approach to the feedback control of switch mode[J]. Circuitsand Systems, IEEE Transactions on.1988,35(10):1291-1298.
    [39] S.-C. Tan, Y. M. Lai, C. K. Tse, et al. A fixed-frequency pulsewidth modulation basedquasi-sliding-mode controller for buck converters[J]. IEEE Transactions on Power Electronics.2005,20(6):1379-1392.
    [40] S.-C. Tan, Y. M. Lai, C. K. Tse. A unified approach to the design of PWM-based sliding-mode voltagecontrollers for basic DC-DC converters in continuous conduction mode[J]. IEEE Transactions onCircuits and Systems I: Regular Papers.2006,53(8):1816-1827.
    [41] Y. He, F. L. Luo. Design and analysis of adaptive sliding-mode-like controller for DC-DC converters[J].IEE Proceedings: Electric Power Applications.2006,153(3):401-410.
    [42] Y. He, F. L. Luo. Sliding-mode control for dc-dc converters with constant switching frequency[J]. IEEProceedings: Control Theory and Applications.2006,153(1):37-45.
    [43] T. J. Liang, Y. C. Kuo, J. F. Chen. Single-stage photovoltaic energy conversion system[C]. Institution ofElectrical Engineers,2001:339-344.
    [1] V. Blasko, V. Kaura. Novel control to actively damp resonance in input LC filter of a three-phasevoltage source converter[J]. IEEE Transactions on Industry Applications.1997,33(2):542-550.
    [2] L. A. Serpa, S. Ponnaluri, P. M. Barbosa, et al. A Modified Direct Power Control StrategyAllowing the Connection of Three-Phase Inverters to the Grid Through LCL Filters[J]. IndustryApplications, IEEE Transactions on.2007,43(5):1388-1400.
    [3] D. N. Zmood, D. G. Holmes, G. H. Bode. Frequency-domain analysis of three-phase linear currentregulators[J]. IEEE Transactions on Industry Applications.2001,37(2):601-610.
    [4] P. C. Loh, D. G. Holmes. Analysis of multiloop control strategies for LC/CL/LCL-filteredvoltage-source and current-source inverters[J]. IEEE Transactions on Industry Applications.2005,41(2):644-654.
    [5] E. Wu, P. W. Lehn. Digital current control of a voltage source converter with active damping ofLCL resonance[J]. IEEE Transactions on Power Electronics.2006,21(5):1364-1373.
    [6] B. Bolsens, K. De Brabandere, J. Van Den Keybus, et al. Model-based generation of low distortioncurrents in grid-coupled PWM-inverters using an LCL output filter[J]. IEEE Transactions onPower Electronics.2006,21(4):1032-1040.
    [7] P. A. Dahono. A Method to Damp Oscillations on the Input LC Filter of Current-Type AC-DCPWM Converters by Using a Virtual Resistor[C]. Yokohama, Japan: Institute of Electrical andElectronics Engineers Inc.,2003:757-761.
    [8] P. A. Dahono. A control method to damp oscillation in the input LC filter of AC-DC PWMconverters[C]. Cairns, Australia: Institute of Electrical and Electronics Engineers Inc.,2002:1630-1635.
    [9] M. Liserre, R. Teodorescu, F. Blaabjerg. Stability of photovoltaic and wind turbine grid-connectedinverters for a large set of grid impedance values[J]. IEEE Transactions on Power Electronics.2006,21(1):263-271.
    [10]申铁龙.机器人鲁棒控制基础[M].清华大学出版社,2000.
    [11] H. Sira-Ramirez, R. A. Perez-Moreno, R. Ortega, et al. Passivity-based controllers for thestabilization of DC-to-DC power converters[J]. Automatica.1997,33(4):499-513.
    [12] G. Escobar, A. J. van der Schaft, R. Ortega. Hamiltonian viewpoint in the modeling of switchingpower converters[J]. Automatica.1999,35(3):445-452.
    [13] C. Gaviria, E. Fossas, R. Grino. Robust controller for a full-bridge rectifier using the IDA approachand GSSA modeling[J]. IEEE Transactions on Circuits and Systems I: Regular Papers.2005,52(3):609-616.
    [14] T.-S. Lee. Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-sourceconverters[J]. IEEE Transactions on Industrial Electronics.2004,51(4):892-902.
    [15]陈菊明,刘锋,梅生伟.基于无源化方法的三相四线制APF控制器策略[J].2006,30(8):32-36.
    [16]张强,张崇巍,张兴等.风力发电用大功率并网逆变器研究[J].中国电机工程学报.2007,16(27):54-59.
    [17] M. Liserre, F. Blaabjerg, A. Dell'aquila. Step-by-step design procedure for a grid-connectedthree-phase PWM voltage source converter[J]. International Journal of Electronics.2004,91(8):445-460.
    [18]张强.风力发电并网变流器工程问题研究[D]:[博士学位论文].合肥:合肥工业大学,2006.
    [19] M. Liserre, F. Blaabjerg, S. Hansen. Design and control of an LCL-filter-based three-phase activerectifier[J]. IEEE Transactions on Industry Applications.2005,41(5):1281-1291.
    [20] T. Abeyasekera, C. M. Johnson, D. J. Atkinson, et al. Suppression of line voltage related distortionin current controlled grid connected inverters[J]. IEEE Transactions on Power Electronics.2005,20(6):1393-1401.
    [21]何良,赵继敏,谢海先.三相电压型脉宽调制整流器的LCL滤波器设计[J].电网技术.2006,30:51-53.
    [22] A. J. Van der Schaft. L2-Gain and Passivity Techniques in Nonlinear Control[M]. Springer-VerlagNew York, Inc. Secaucus, NJ, USA,1996.
    [23] R. Ortega, I. Mareels. Energy-balancing passivity-based control[C]. American Control Conference,2000. Proceedings of the2000.2000:1265-1270.
    [24] R. Ortega, A. Van der Schaft, B. Maschke, et al. Interconnection and damping assignmentpassivity-based control of port-controlled Hamiltonian systems[J]. Automatica.2002,38(4):585-596.
    [25] H. Rodriguez, R. Ortega, G. Escobar, et al. A robustly stable output feedback saturated controllerfor the boost DC-to-DC converter[J]. Systems and Control Letters.2000,40(1):1-8.
    [26]田伟,于海生,于金鹏. Cuk变换器的能量成型控制与仿真研究[J].青岛大学学报(工程技术版).2006,21(4):60-65.
    [27]于海生,赵克友,郭雷等.基于端口受控哈密顿方法的PMSM最大转矩/电流控制[J].中国电机工程学报.2006,26(008):82-87.
    [28]苟兴华.理论力学引论[M].成都:四川大学出版社,1988.
    [29]于海生.交流电机的能量成型与非线性控制研究[D]:[博士学位论文].山东大学,2006.
    [30] R. Ortega, A. J. Van Der Schaft, I. Mareels, et al. Putting energy back in control[J]. ControlSystems Magazine, IEEE.2001,21(2):18-33.
    [31]孙元章,彭疆南.基于Hamiltonian理论的受控电力系统暂态稳定分析方法[J].电网技术.2002,26(9):1-6.
    [32] V. Petrovic, R. Ortega, A. M. Stankovic. Interconnection and damping assignment approach tocontrol of PM synchronous motors[J]. IEEE Transactions on Control Systems Technology.2001,9(6):811-820.
    [33] M. Liserre, F. Blaabjerg, S. Hansen. Design and control of an LCL-filter-based three-phase activerectifier[J]. Industry Applications, IEEE Transactions on.2005,41(5):1281-1291.
    [34] M. Liserre, A. Dell'Aquila, F. Blaabjerg. Genetic algorithm-based design of the active damping foran LCL-filter three-phase active rectifier[J]. Power Electronics, IEEE Transactions on.2004,19(1):76-86.
    [1]刘晓东,陈宗祥,叶芃生.基于气隙磁分路和谐振电路抗谐波干扰变压器的研究[J].电工技术学报.2005,20(012):13-17.
    [2] J. D. van Wyk, F. C. Lee, Z. Liang, et al. Integrating active, passive and EMI-filter functions inpower electronics systems: A case study of some technologies[J]. IEEE Transactions on PowerElectronics.2005,20(3):523-536.
    [3] S. Ye, Y.-F. Liu. EMI filter design method for communication power sub-system[C]. ConferenceProceedings-IEEE Applied Power Electronics Conference and Exposition-APEC. Miami Beach,FL, United States: Institute of Electrical and Electronics Engineers Inc.,2003:483-489.
    [4] Y.-C. Son, S.-K. Sul. A New Active Common-Mode EMI Filter for PWM Inverter[J]. IEEETransactions on Power Electronics.2003,18(6):1309-1314.
    [5] I. Takahashi, A. Ogata, H. Kanazawa. Active EMI filter for switching noise of high frequencyinverters[C]. Proceedings of the Power Conversion Conference PCC. Nagaoka, Jpn: IEEE,Piscataway, NJ, USA,1997:331-334.
    [6] D. Zhang, D. Y. Chen, D. Sable. New method to characterize EMI filters[C]. ConferenceProceedings-IEEE Applied Power Electronics Conference and Exposition-APEC. Anaheim, CA,USA: IEEE, Piscataway, NJ, USA,1998:929-933.
    [7] M. G. J. Lind, W. Xiao, W. G. Dunford. Modeling of a constant voltage transformer[J]. IEEETransactions on Circuits and Systems I: Regular Papers.2006,53(2):409-418.
    [8]王凤仁.交流稳压电源CVT非线性特性的研究与优化设计[D]:[博士学位论文].西安:西安交通大学,1995.
    [9] E. F. Fuchs, M. A. S. Masoum, D. J. Roesler. Large signal nonlinear model of anisotropictransformers for nonsinusoidal operation--I:λ-i characteristic[J]. IEEE Transactions onPower Delivery.1991,6(1):174-186.
    [10] M. A. S. Masoum, E. F. Fuchs, D. J. Roesler. Large signal nonlinear model of anisotropictransformers for nonsinusoidal operation--II: Magnetizing and core-loss currents[J]. IEEETransactions on Power Delivery.1991,6(4):1509-1516.
    [11] N. Subramanian. Analysis and design of a new breed of constant voltage transformers[J]. IEEETransactions on Magnetics.1997,33(5pt1):3337-3339.
    [12] C. W. T. McLyman, W. T. McLyman. Transformer and Inductor Design Handbook[M]. CRC Press,2004.
    [13]程利军.几种瞬变骚扰抗扰度试验分析[J].继电器.2002,(9):35-38.
    [14] GB/T17626.4-1998.电磁兼容—试验和测量技术:电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验[S]1998.
    [15]姚世全.电磁兼容标准实施指南[M].北京:中国标准出版社,1999.
    [16]白同云,吕晓德.电磁兼容设计[M].北京:北京邮电大学出版社,2001.
    [17] B. Cormier, W. Boxleitner. Electrical fast transient (EFT) testing--An overview[C]. IEEEInternational Symposium on Electromagnetic Compatibility. Cherry Hill, NJ, USA: Publ by IEEE,Piscataway, NJ, USA,1991:291-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700