用户名: 密码: 验证码:
五自由度磁悬浮开关磁阻电机最小二乘支持向量机自检测与逆控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮电机集传统电机旋转与磁轴承悬浮功能于一体,以同时产生驱动负载的电磁转矩和支承转子的悬浮力为目标,打破了传统电机仅为了产生电磁转矩而必须保持气隙磁场平衡的思路,开辟了高速电机研究领域的新方向。磁悬浮开关磁阻电机将磁悬浮技术与开关磁阻电机相结合,在继承一般磁悬浮电机无摩擦、无磨损、轴向空间利用率高、转子临界转速大等优点基础上,充分发挥了开关磁阻电机的高速优越性以及对恶劣环境的适应性,同时通过径向力的主动控制,有效改善了开关磁阻电机因不平衡磁拉力造成的振动和噪声问题,成为目前磁悬浮电机领域一个新的研究热点。本文以一台五自由度磁悬浮开关磁阻电机为研究对象,在对其电磁-动力学特性进行精确化建模与分析基础上,针对系统内部存在的多自由度、强耦合、非线性特性以及传感器带来的价格昂贵、可靠性低、动态性能差等问题,开展了五自由度磁悬浮开关磁阻电机最小二乘支持向量机自检测与逆控制研究。论文主要研究工作及取得的成果如下:
     1)给出了五自由度磁悬浮开关磁阻电机总体拓扑结构,设计了一种新型三磁极交直流供电式径向-轴向混合磁轴承,分析了该磁轴承径向和轴向悬浮工作原理;介绍了磁悬浮开关磁阻电机基本结构及其悬浮力和转矩产生机理,设计了磁悬浮开关磁阻电机和径向-轴向混合磁轴承的关键电磁结构参数,给出了设计结果并研制了一台完整的五自由度磁悬浮开关磁阻电机实验样机。
     2)基于平动-转动坐标系构建了五自由度磁悬浮开关磁阻电机转子动力学模型,依据动力学模型定性分析了转子支承特性;针对磁轴承传统平衡位置附近近似线性化模型的不足,采用等效磁路法构建了径向-轴向混合磁轴承大气隙范围内精确悬浮力模型;考虑到转子径向偏心和耦合对模型的影响,结合等效磁路、有限元分析和虚位移定理构建了磁悬浮开关磁阻电机偏心耦合下的精确化悬浮力和转矩模型;并利用Matlab和Ansoft仿真软件对模型的耦合非线性进行定性和定量分析。
     3)针对五自由度磁悬浮开关磁阻电机所用传感器带来的一系列问题,将最小二乘支持向量机(LS-SVM)与状态观测器设计理论相结合,研究了基于LS-SVM观测器的磁悬浮开关磁阻电机转子位移位置自检测方法。构建了磁悬浮开关磁阻电机状态空间模型,阐述了位移位置LS-SVM观测器设计原理,采用Lyapunov稳定性理论证明了位移位置观测器的稳定性,通过LS-SVM离线训练和在线学习获得了磁悬浮开关磁阻电机位移位置观测器。仿真表明LS-SVM观测器不依赖于磁悬浮开关磁阻电机精确数学模型和具体运行参数,实现简单,观测精度高,可为磁悬浮开关磁阻电机无传感器运行提供实时准确的位移和位置反馈信息。
     4)为实现五自由度磁悬浮开关磁阻电机磁轴承支承端转子位移的实时高精自检测,开展了基于粒子群优化LS-SVM的磁轴承转子位移预测建模研究。借助径向-轴向混合磁轴承大气隙范围内的精确悬浮力模型进行闭环采样仿真,通过采集具有代表性和遍历性的输入输出样本数据,离线训练LS-SVM获得了磁轴承转子位移预测模型,针对LS-SVM超参数选取问题,采用粒子群优化算法对其进行自动寻优,以提高转子位移预测模型的预测能力:对比仿真结果验证了所建位移预测模型实现了五自由度磁悬浮开关磁阻电机磁轴承支承端转子径向和轴向位移的自检测。
     5)针对磁悬浮开关磁阻电机电磁转矩和悬浮力模型的耦合非线性,将LS-SVM辨识建模方法与逆系统线性化解耦控制原理相结合,研究了基于LS-VM逆系统的磁悬浮开关磁阻电机解耦控制。分析了磁悬浮开关磁阻电机电磁转矩和悬浮力模型的可逆性,采用自适应遗传算法优化LS-SVM构建了磁悬浮开关磁阻电机逆辨识模型:将遗传优化的LS-SVM逆模型与对象串联构造伪线性复合系统,实现了磁悬浮开关磁阻电机电磁转矩与悬浮力的线性化和解耦;在此基础上,对线性化解耦后的伪线性复合系统设计了内模控制器,提高了控制系统的鲁棒性和抗干扰能力。
     6)为解决磁轴承现有控制方法只适合于平衡位置附近线性化模型的局限性,进一步将LS-SVM逆系统方法用于五自由度磁悬浮开关磁阻电机支承磁轴承的大气隙范围内非线性解耦控制中。分析了磁轴承大气隙范围内悬浮力模型的可逆性;给出了遗传优化LS-SVM的逆模型辨识步骤;将辨识得到的LS-SVM逆模型作为前馈补偿环节,通过引入改进的PID反馈控制环节,构建了磁轴承复合解耦控制系统;对比仿真结果表明所提LS-SVM逆系统方法具有较好的动、静态性能,可实现五自由度磁悬浮开关磁阻电机支承磁轴承大气隙范围内高性能非线性解耦控制。
     7)针对五自由度磁悬浮开关磁阻电机高速运行控制需要,分别以dSPACE和DSP为控制核心设计了两套高速数字控制系统,并对数字系统结构、功率变换器拓扑、驱动与缓冲电路、位移与位置检测电路、电流与电压检测电路进行了设计和器件选型,为五自由度磁悬浮开关磁阻电机高性能控制算法的实现创造了硬件条件。
Bearingless motor combines the functions of a motor and a magnetic bearing together within the same stator frame. It can produce the driving torque and suspension force on the rotor simultaneously so that there is no mechanical contact between the stator and rotor. Therefore, it pioneers a new field in the study of high-speed motor. Bearingless switched reluctance motor (BSRM) is a novel bearingless motor, which integrates the bearingless technology to the switched reluctance motor (SRM). It not only inherits the advantages of bearingless motor, but also enhances the high-speed performance and adaptability to atrocious surroundings of the SRM. Moreover, by the actively control of rotor radial displacement, it also provides a new approach to solve the problem of vibration and noises caused by asymmetric magnetic pull in the SRM. Therefore, BSRM becomes a worldwide research hotspot in the study of bearingless motor.
     The dissertation focuses mainly on the theory and realization of a five degree of freedom BSRM (5-DOF-BSRM), including the working principle and experimental prototype, the accurate analytical expression of torque and suspension force, the self-sensing algorithm of rotor position and displacement, the nonlinear decoupling control method and the digital control system design. The main researches and the corresponding results are as follows:
     1) The topological structure of5-DOF-BSRM is introduced, and a novel AC-DC3-DOF radial-axial hybrid magnetic bearing (HMB) is designed and the working principle of radial-axial HMB is introduced. Then, the stracture of three phase12/8pole double windings BSRM is introduced and the principle of torque and radial force production in BSRM is analyzed. Besides, the major electromagnetic and structure parameters of5-DOF-BSRM are designed and the experimental prototype of integrated5-DOF-BSRM is presented.
     2) The rotor dynamics model of5-DOF-BSRM is built in translational and rotational coordinate system and the rotor support characteristics are analyzed. The nonlinear suspension force model of radial-axial HMB in large air gap is deduced by equivalent magnetic circuit. Meanwhile, the torque and radial force model of BSRM in the case of eccentric and coupling is deduced based equivalent magnetic circuit, finite element analysis and virtual displacement principl. In addition, the coupling and nonlinear features are analyzed qualitatively and quantitatively in Matlab and Ansoft.
     3) To realize the self-sensing control for BSRM, a designing method of rotor displacement and position observers using least squares support vector machine (LS-SVM) is proposed. The state space model of BSRM is built and the design principle of LS-SVM observer is described. the stability of LS-SVM observer is proved by Lyapunov stability theory. Through offline training and online learning, the observers of BSRM are obtained. The findings show that the proposed method can observe the actual rotor displacement and position accurately, independent of mathematical model and specific parameters.
     4) To realize the rotor displacement self-sensing for radial-axial HMB, a predictive modeling method of rotor displacement for radial-axial HMB using LS-SVM optimized by particle swarm optimization (PSO) is presented. Through the collection of representative input/output data based on the nonlinear force model, the prediction model of radial-axial HMB is obtained by training LS-SVM. PSO is used to optimize LS-SVM parameters to improve the performance of the prediction model. The findings show that the prediction model can accurately predict the rotor displacement.
     5) In view of the coupling and nonlinear characteristic in model of BSRM, LS-SVM inverse model identification and decoupling control approach is proposed. The reversibility of the BSRM model is analyzed, and the adaptive genetic algorithm (AGA) is adopted to optimize LS-SVM to build the inverse model of BSRM. Then through the combining of LS-SVM inverse model and BSRM, BSRM is realized linearization and decoupling. Besides, the internal model controller is designed to achieve strong robustness and anti-interference ability for the decoupling control system.
     6) LS-SVM inverse-control method is employed to large air gap nonlinear control of radial-axial HMB. The reversibility of radial-axial HMB model is proved, and identification procedures of LS-SVM inverse model are elaborated, and the identification performance of LS-SVM inverse model is tested. Then the linearization and decoupling of radial-axial HMB is realized to series the LS-SVM inverse model with radial-axial HMB. On this basis, an improved PID controller is designed to achieve closed-loop feedback control, which improves the dynamic and static performance of LS-SVM inverse-control method.
     7) Two experimental systems for5-DOF-BSRM are presented based on digital control platform using dSPACE and DSP respectively. The control platform structure, power converter, drive and buffer circuit, displacement and position detection circuit, current and voltage detection circuit are introduced detailly, which establishes a solid foundation for developing the high performance control of the5-DOF-BSRM further.
引文
[1]Earnshaw S. On the nature of the molecular forces which regulate the constitution of the luminiferous ether[J]. Transaction of the Cambridge Philosophical Society,1842,7(3):97-112.
    [2]Kemper H. Overhead suspension railway with wheelless vehicles employing magnetic suspension from iron rails[P]. Germany, Nos.643316 and 644302,1937.
    [3]Kemper H. Suspension by electromagnetic forces:a possibility for a radically new method of transportation[J]. ETZ,1938,59:391-395.
    [4]嵇尚华,张维煜,黄振跃,等.交流主动磁轴承参数设计与优化[J].中国电机工程学报,2011,31(21):150-158.
    [5]Bachovchin K D, Hoburg J F, Post R F. Stable levitation of a passive magnetic bearing[J], IEEE Transactions on Magnetics,2013,49(1):609-617.
    [6]Mukhopadhyay S C, Ohji T, Iwahara M, et al. Modeling and control of a new horizontal-shaft hybrid-type magnetic bearing[J]. IEEE Transactions on Industrial Electronics,2000,47(1):100-108.
    [7]杨静,虞烈,谢敬.永磁偏置磁轴承动特性研究[J].中国电机工程学报,2005,25(5):122-125.
    [8]Xu Yanliang, Dun Yueqin, Wang Xiuhe, et al. Analysis of hybrid magnetic bearing with a permanent magnet in the rotor by FEM[J]. IEEE Transactions on Magnetics,2006,42(4):1363-1366.
    [9]Li J, Longxiang X, Chaowii J. Research on a low power consumption six-pole heteropolar hybrid magnetic bearing[J]. IEEE Transactions on Magnetics,2013.
    [10]Fang Jiancheng, Sun Jinji, Xu Yanliang. et al, A new structure for permanent- magnet- biased axial hybrid magnetic bearings[J]. IEEE Transactions on Magnetics,2009,45(12):5319-5325.
    [11]Hou Eryong, Liu Kun. Investigation of axial carrying capacity of radial hybrid magnetic bearing[J]. IEEE Transactions on Magnetics,2012,48(1):38-46.
    [12]Hou Eryong, Liu Kun, A novel structure for low-loss radial hybrid magnetic bearing[J]. IEEE Transactions on Magnetics,2011,47(12):4725-4733.
    [13]Fang Jiancheng, Sun Jinji, Liu Hu, et al. A novel 3-DOF axial hybrid magnetic bearing[J]. IEEE Transactions on Magnetics,2010,46(12):4034-4045.
    [14]Sortore C K, Allaire P E, Maslen E H, et al. Permanent magnet biased magnetic bearings:design, construction and testing[C].2nd International Symposium on Magnetic Bearings, Japan,1990:175-182.
    [15]Hawkins L A., Brian T. Murphy, John Kajs. Application of permanent magnet bias magnetic bearings to an energy storage flywheel[C].5th Symposium on Magnetic Suspension Technology,1999:1-15.
    [16]赵旭升,邓智泉,梅磊,等.永磁偏置磁轴承的研究现状及其发展[J].电工技术学报.2009,24(9):9-20.
    [17]李冰,邓智泉,严仰光,一种新颖的永磁偏置三自由度电磁轴承[J].南京航空航天大学学报,2003.35(1):81-85.
    [18]梅磊,邓智泉,赵旭升.等.基于磁通量计算的混合型轴向-径向磁悬浮轴承参数设计[.J].中国电 机工程学报,2009,29(24):115-120.
    [19]赵雪山,李冰,邓智泉,等.永磁偏置径向轴向磁轴承的H∞控制研究[J].机电设备,2003,(5):12-16.
    [20]刘贤兴,朱烷秋,全力,等.三自由度永磁偏置混合磁轴承数控系统研究[J].中国机械工程,2004,15(24):2225-2228.
    [21]孙玉坤,朱烷秋,蔡兰.三自由度混合磁悬浮轴承耦合特性[J].江苏大学学报,2006,27(4):342-346.
    [22]朱熀秋,邓智泉,袁寿其,等.永磁偏置径向-轴向磁悬浮轴承工作原理和参数设计[J].中国电机工程学报,2002,22(9):54-58.
    [23]邬清海,朱熀秋.三自由度双磁极面混合磁轴承参数设计与性能分析[J].中国机械工程,2009,20(12):1477-1483.
    [24]Xie Z Y, Zhu H Q, Sun Y K. Structure and control of AC-DC three DOF hybrid magnetic bearing[C]. 8th International Conference on Electrical Machines and Systems, China,2005,3:1801-1806.
    [25]Patrick T.McMullen, Huynh Co S, et al. Combination radial-axial magnetic bearing[C].7th International Symposium on Magnetic Bearings. ETH, Zurich,2000:473-478.
    [26]朱熀秋,张仲,诸德宏,等.交直流三自由度混合磁轴承结构与有限分析[J].中国电机工程学报,2007,27(12):77-81.
    [27]谢志意.交直流三自由度混合磁轴承应用基础理论研究[硕士学位论文],镇江:江苏大学,2006.
    [28]Blumenstock K, Brown C L. Novel integrated radial and axial magnetic bearing[C].7th International Symposium on Magnetic Bearings. ETH Zurich,2000:467-471.
    [29]Blumenstock K. Combination axial and trust magnetic bearing.US,6359357,2002.
    [30]赵旭升.永磁偏置磁悬浮轴承的研究[博士学位论文],南京:南京航空航天大学,2006.
    [31]Studer P A. A practical magnetic bearing[J]. IEEE Transactions on Magnetics,1977,13(5):1155-1157.
    [32]Downer J, Goldie J, Gondhalkar V, et al. Aerospace applications of magnetic bearings[J].2nd International Symposium on Magnetic Suspension Technology. USA:NASA Conference Publication, 1993:3-26.
    [33]Pichot M A, Kajs J P, Murphy B R, et al. Active magnetic bearings for energy storage systems for combat vehicles[J]. IEEE Transactions on Magnetics,2001,37(1):318-323.
    [34]Murphy B T, Ouroua H, Caprio M T, et al. Permanent magnet bias, homopolar magnetic bearings for a 130kW-hr composite flywheel[C].9th International Symposium on Magnetic Bearings, USA: University of Kentucky,2004:66-72.
    [35]McMullen P T, Huynh C S. Magnetic bearing providing radial and axial load support for a shaft[P], USA, Invention Patent, US005514924A,1996-5-7.
    [36]Calnetix's Magnetic Power Drive-MPD100, Availabe from:www.calnetix.com.
    [37]Imoberdorf P, Zwyssig C, Round S D, et al. Combined radial-axial magnetic bearing for a 1 kW, 500.000 rpm permanent magnet machine[C].22nd IEEE Applied Power Electronics Conference, USA: IEEE.2007:1434-1440.
    [38]赵旭升,徐建中,冯遵安.一种异极性永磁偏置轴向径向磁轴承[P],中国,发明专利,CN201326646,2009-10-14.
    [39]赵旭升,邓智泉,刘程子,等,一种永磁偏置轴向径向磁轴承[P].中国,发明专利,CN101539167,2009-09-23.
    [40]赵旭升,蒋汝根,王永红,等.低损耗永磁偏置轴向径向磁轴承[P].中国,发明专利,CN 101235848,2008-08-06.
    [41]赵旭升,邓智泉,王晓琳,等.永磁偏置轴向径向磁轴承[P].中国,发明专利,CN101149077,2008-03-26.
    [42]赵旭升,邓智泉,汪波.一种磁悬浮开关磁阻电机用轴向径向磁轴承[J].北京航空航天大学学报,2011,37(08):973-978.
    [43]汪波,邓智泉,赵旭升,等.基于精确磁路的永磁偏置轴向径向磁轴承设计[J].中国机械工程,2012,23(17):2036-2040+2047.
    [44]诸德宏,程新,张维煜,等.径向-轴向共用偏磁磁通的主动磁轴承及其控制方法[P].中国,发明专利,CN101666353,2010-03-10.
    [45]邬清海,朱熀秋.一种外转子径向-轴向三自由度混合磁轴承[P].中国,发明专利,CN101392795,2009-03-25.
    [46]朱烷秋,邬清海,吴熙,等.径向四极二相交流驱动的径向-轴向混合磁轴承[P].中国,发明专利,CN201121656,2008-09-24.
    [47]朱幌秋,张仲,吴熙.三自由度锥形定转子交直流混合磁轴承[P].中国,发明专利,CN201121655,2008-09-24.
    [48]费德成,孙玉坤,朱熀秋,等.三自由度双薄片三相交流混合磁轴承[P].中国,发明专利,CN101074700,2007-11-21.
    [49]费德成,孙玉坤,朱熀秋,等.三自由度交流混合磁轴承[P].中国,发明专利,CN101038011,2007-09-19.
    [50]李同华.朱烷秋.永磁偏置径向-轴向磁轴承控制系统设计与实现[J].机电产品开发与创新,2005,18(1):5-7.
    [51]朱志莹,孙玉坤.群优化支持向量机的磁轴承转子位移预测建模[J].中国电机工程学报,2012,32(33):118-123+184.
    [52]Fang Jiancheng, Sun Jinji, Liu Hu, et al. A novel 3-DOF axial hybrid magnetic bearing[J]. IEEE Transactions on Magnetics,2010,46(12):4034-4045.
    [53]Huang L, Zhao G Z, Nian H, et al. Modeling and design of permanent magnet biased radial-axial magnetic bearing by extended circuit theory[C]. Proceeding of International Conference on Electrical Machines and Systems, Korea:IEEE,2007:1502-1507.
    [54]Bosch R. Development of a bearingless motor [J]. Proceeding of International Conference on Electrical Machines,1988:373-375.
    [55]Bichsel J. Beitraege zum lagerlosen Elektromotor [D]. Zuerich, Switzerland:Eidgenoessische Technische Hochschule (ETH),1990.
    [56]Chiba A, Chida K, Fukao T. Principles and characteristics of a reluctance motor with windings of magnetic bearing[C]. Proceeding of International Conference on Power Electronics. Tokyo.1990: 919-926.
    [57]Schoeb R, Beitrage zur lagerlosen Asynchronmachine [D]. Zurich, Switzerland:Eidgenoessische Technische Hochschule (ETH),1993.
    [58]Okada Y, Ohishi T, Dlzjima K. Levitation control of permanent magnet (PM) type rotating motor[C]. Proceddings of MAG'92, Magnetic Bearings, Magnetic Drives and Dry Gas Seals Conference & Exhibition, Alexandria, VA, US,1992:157-165.
    [59]Barletta N, Schoeb R. Principle and application of a bearingless slice motor[C].5th International Symposium on Magnetic Bearings, Kanazawa, Japan,1996:313-318.
    [60]Shimada K, Takemoto M, Chiba A, and Fukao T, Radial forces in switched reluctance type bearingless motors[C]. Proceeding of 9th Symposium on Electromagnetics and Dynamics,1997:547-552.
    [61]Nenninger K, Amrhein W, Silber S, et al. Bearingless single-phase PM motor with low-cost rotary angle sensor[C].6th International Symposium on Magnetic Suspension Technology, Turin, Italy,2001.
    [62]Takenaga T, Kubota Y, Chiba A, et al. A principle and a design of a consequent-pole bearingless motor[C]. The 8th International Symposium on Magnetic Bearing.2002:259-264.
    [63]Amemiya J, Chiba A, Dorrell D G, et al. Basic characteristics of a consequent-pole-type bearingless motor [J]. IEEE Transactions on Magnetics,2005,41(1):82-89.
    [64]Wang Baoguo etc. Modeling and analysis of levitation force considering air-gap eccentricity in a bearingless induction motor[C]. Proceeding of the 5th International Conference on Electrical Machine and Systems,2001, pp:934-937.
    [65]曹建荣,虞烈,谢友柏.磁悬浮电动机的状态反馈线性化控制[J].中国电机工程学报,2001.21(9):22-26.
    [66]年珩,贺益康.感应型无轴承电机磁悬浮力解析模型及其反馈控制[J].中国电机工程学报,2003.23(11):139-144.
    [67]贺益康,年珩,阮秉涛.感应型无轴承电机的优化气隙磁场定向控制[J].中国电机工程学报,2004,24(6):116-121.
    [68]Zhou Yuan, He Yikang, Nian Heng. The integrated mathematic model of a permanent magnet type bearingless motor[C]. The 8th International Conference on Electrical Machines and Systems,2005: 898-902.
    [69]年珩,贺益康.永磁型无轴承电机控制系统研究[J].电力电子技术,2007,41(02):85-87.
    [70]Nian Heng, He Yikang, Huang Lei, et al. Sensorless operation of an inset pm bearingless motor implemented by the combination approach of mras and HF signal injection[C]. IEEE 6th World Congress on Intelligent Control and Automation. Dalian.2006.
    [71]孙玉坤,吴建兵,项倩雯.基于有限元法的磁悬浮开关磁阻电机数学模型[J].中国电机工程学报.2007.27(12):33-40.
    [72]孙晓东,朱规秋.基于神经网络逆系统理论无轴承异步电动机解耦控制[J].电工技术学报,2010. (01):43-49.
    [73]孙晓东,朱熀秋,张涛,等.无轴承永磁同步电机径向悬浮力动态解耦控制[J].电机与控制学报,2011,(11):21-26.
    [74]邓智泉,王晓琳,张宏荃,等.无轴承异步电机的转子磁场定向控制[J].中国电机工程学报,2003,23(03):89-92.
    [75]邓智泉,王晓琳,李冰,等.无轴承异步电机悬浮子系统独立控制的研究,中国电机工程学报,2003,23(09):107-111.
    [76]邓智泉,仇志坚,王晓琳,等.无轴承永磁同步电机的转子磁场定向控制研究[J].中国电机工程学报,2005,25(01):104-108.
    [77]仇志坚,邓智泉,王晓琳,等.计及偏心及洛伦兹力的永磁型无轴承电机建模与控制研究[J].中国电机工程学报,2007,27(09):64-70.
    [78]孟令孔,邓智泉,王晓琳,等.无轴承永磁同步电机悬浮子系统的LQG/LTR控制器设计[J].航空学报,2007,28(02):385-390.
    [79]廖启新,邓智泉,王晓琳.无轴承薄片电机磁体形状优化设计及系统实现[J].中国电机工程学报,2007,27(12)28-32.
    [80]邓智泉,杨钢,张媛,等.一种新型的无轴承开关磁阻电机数学模型[J].中国电机工程学报,2005,(09):139-146.
    [81]杨钢,邓智泉,曹鑫,等.基于三相半桥功率变换器的无轴承开关磁阻电机绕组结构分析[J].中国电机工程学报,2008,28(27):95-103.
    [82]Higuchi T, Kawakatsu H, Iwasawa T. A study on magnetic suspension of switched reluctance motor[C]. in Conf. Rec. IEEJ Annu. Meeting,1989, pp:(6-122)-(6-123).
    [83]Takemoto M, Shimada K, Chiba A, et al. A design and characteristics of switched reluctance type bearingless motors[C]. Proceedings of the 4th International Symposium on Magnetic Suspension Technology,1998:49-63.
    [84]Takemoto M, Suzuki H, Chiba A, et al. Improved analysis of a bearingless switched reluctance motor[J]. IEEE Transactions on Industry Applications,2001.37(1):26-34.
    [85]Takemoto M, Chiba A, Akagi H, et al. Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation[J]. IEEE Transactions on Industry Applications, 2004,40(1):103-112.
    [86]Takemoto M, Chiba A, Fukao T. A method of determining the advanced angle of square-wave currents in a bearingless switched reluctance motor[J]. IEEE Transactions on Industry Applications,2001, 37(6):1702-1709.
    [87]Takemoto M, Chiba A, Fukao T. A new control method of bearingless switched reluctance motors using square-wave currents[C]. Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting, Singapore, CD-ROM.2000:375-380.
    [88]Takemoto M, Chiba A, Fukao T. A Feed-forward compensator for vibration reduction considering magnetic attraction force in bearingless switched reluctance motors[C].7th International Symposium on Magnetic Bearings, ETH Zurich,2000:395-400.
    [89]Gang Yang, Zhiquan Deng, Xin Cao, et al. Optimal winding arrangements of a bearingless switched reluctance motor[J]. IEEE Transactions on Power Electronics,2008,23(6):3056-3066.
    [90]Yan Yang, Zhiquan Deng, Gang Yang, et al. A control strategy for bearingless switched- reluctance motors[J]. IEEE Transactions on Power Electronics,2010,25(11):2807-2819.
    [91]Xin Cao, Zhiquan Deng. A full-period generating mode for bearingless switched reluctance generators[J]. IEEE Transactions on Applied Superconductivity,2010,20(3):1072-1076.
    [92]曹鑫,邓智泉,杨钢,等.新型无轴承开关磁阻电机双相导通数学模型[J].电工技术学报,2006,21(4):50-56.
    [93]曹鑫,邓智泉,杨钢,等.无轴承开关磁阻电机麦克斯韦应力法数学模型[J].中国电机工程学报,2009,29(3):78-83.
    [94]刘泽远.无轴承开关磁阻电机的电磁基础研究[博士学位论文].南京,南京航空航天大学,2010.
    [95]庄铮,邓智泉,曹鑫,等.无轴承开关磁阻全周期发电机输出功率的建模与优化控制[J].电工技术学报,2012,27(7):41-47.
    [96]杨钢.无轴承开关磁阻电动机的基础研究[博士学位论文].南京,南京航空航天大学,2008.
    [97]杨钢,邓智泉,曹鑫,等.无轴承开关磁阻电机平均悬浮力控制策略[J].航空学报,2009,30(3):505-511.
    [98]曹鑫,邓智泉,杨钢,等.一种无轴承开关磁阻电机独立控制策略[J].中国电机工程学报,2008,28(24):94-100.
    [99]Xin Cao, Zhiquan Deng, Gang Yang, et al. Independent control of average torque and radial force in bearingless switched-reluctance motors with hybrid excitations[J]. IEEE Transactions on Power Electronics,2009,24(5):1376-1385.
    [100]张倩影,邓智泉,杨艳.无轴承开关磁阻电机转子质量偏心补偿控制[J].中国电机工程学报,2011,31(21):128-134.
    [101]Yukun Sun, Gaohong Xu, Qianwen Xiang, et al. A new decoupling control strategy for bearingless switched reluctance motors based on improved mathematical model[C]. International Conference on Electrical Machines and Systems,2011:1-5.
    [102]Qianwen Xiang, Xinhua Zhang, Yukun Sun. Calculation of BSRM's inductance with PSO-BPNN[C]. 30th Chinese Control Conference,2011:1424-1427.
    [103]Yukun Sun, Yunhong Zhou, Yonghong Huang. Modeling and radial displacement sensorless method for a hybrid-stator bearingless switched reluctance motor[C]. Advanced Materials Research, Materials Science and Information Technology,2012, (433):2987-2990.
    [104]Zhiying Zhu, Yukun Sun, Yonghong Huang, et al.Displacement self-sensing of bearingless switched reluctance motors based on LS-SVM[J]. Przeglad Elektrotechniczny,2012,88(12a):310-313.
    [105]孙玉坤,刘羡飞,王德明,等.基于有限元分析的磁悬浮开关磁阻电机数学模型的全角度拓展[J].电工技术学报,2007,22(9):34-39.
    [106]项倩雯.孙玉坤,张新华,磁悬浮开关磁阻电机建模与参数优化设计[J].电机与控制学报, 2011,15(4):74-79.
    [107]张亮,孙玉坤.基于微分几何的磁悬浮开关磁阻电机径向力的变结构控制[J].中国电机工程学报,2006,26(19):121-126.
    [108]孙玉坤,任元,黄永红.磁悬浮开关磁阻电机悬浮力与旋转力的神经网络逆解耦控制[J].中国电机工程学报,2008,(09):81-85.
    [109]朱志莹,孙玉坤,黄永红.磁悬浮开关磁阻电机逆动力学建模与控制[J].电机与控制学报,2011,15(3):74-79+85.
    [110]周云红,孙玉坤,嵇小辅,等.磁悬浮开关磁阻电机径向位移自检测[J].中国电机工程学报,2012,32(6):150-155.
    [111]朱志莹,孙玉坤,嵇小辅,等.磁悬浮开关磁阻电机转子位移/位置观测器设计[J].中国电机工程学报,2012,32(12):83-89.
    [112]曹家勇,周祖德,陈幼平等.开关磁阻型动力磁轴承瞬时转矩控制策略的研究[J].机械工程学报,2004,40(5):23-29.
    [113]Jianbo Sun, Qionghua Zhan, Liming Liu. Modelling and control of bearingless switched reluctance motor based on artificial neural network[C]. Proceedings of 31st Annual Conference on Industrial Electronics Society,2005:1638-1644.
    [114]王秋蓉,葛宝明.无轴承开关磁阻电机磁场及力特性的分析[J].电机与控制学报,2007,11(3):217-220.
    [115]李倬,葛宝明.一种改进的无轴承开关磁阻电机数学模型[J].电机与控制学报,2009,13(6):850-856.
    [116]王秋蓉,葛宝明.无轴承开关磁阻电机的转矩与径向力特性分析[J].北京交通大学学报,2007,31(2):107-110.
    [117]王喜莲,葛宝明,赵楠.磁浮开关磁阻电机悬浮力的反馈线性化PID控制[J].中国电机工程学报,2009,29(15):114-118.
    [118]王喜莲,葛宝明.磁浮开关磁阻电机悬浮力的变结构控制[J].北京交通大学学报,2010,34(2):119-123.
    [119]Chen L, Hofmann W. Design procedure of bearingless high-speed switched reluctance motors[C]. International Symposium on Power Electronics Electrical Drives Automation and Motion, 2010:1442-1447.
    [120]Chen L, Hofmann W. Analysis of radial forces based on rotor eccentricity of bearingless switched reluctance motors[C]. International Conference on Electrical Machines,2010:1-6.
    [121]Chen L. Hofmann W. Modelling and control of one bearingless 8/6 switched reluctance motor with single layer of winding structure[C]. Proceedings of 14th European Conference on Power Electronics and Applications,2011:1-9.
    [122]Chen L, Hofmann W. Speed Regulation Technique of One Bearingless 8/6 Switched Reluctance Motor With Simpler Single Winding Structure[J]. IEEE Transactions on Industrial Electronics,2012, 59(6):2592-2600.
    [123]Lin F C, Yang S M. Self-bearing control of a switched reluctance motor using sinusoidal currents[J]. IEEE Transactions on Power Electronics,2007,.22(6):2518-2526.
    [124]Lin F C, Yang S M. An approach to producing controlled radial force in a switched reluctance motor[J]. IEEE Transactions on Industrial Electronics,2007,54(4):2137-2146.
    [125]Lin F C, Yang S M. Radial force control of a switched reluctance motor with two-phase sinusoidal excitations[J]. Industry Applications Conference,2006,3:1171-1177.
    [126]Lin F C, Yang S M. Modeling and control of radial force in switched reluctance motor[J]. Power Electronics Specialists Conference,2006:1-7.
    [127]Choi B B, Siebert M. A bearingless switched reluctance motor for high specific power applications[C]. Presented at 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference Exhibit, Sacramento,2006.
    [128]Morrison C R, Siebert M W, Ho E J. Electromagnetic forces in a hybrid magnetic-bearing switched-reluctance motor[J]. IEEE Transactions on Magnetics,2008,44(12):4626-4638.
    [129]Huijun Wang, Wang Y, Liu X, et al. Design of novel bearingless switched reluctance motor[J]. IET Electric Power Applications,2012,6(2):73-81.
    [130]Zhenyao Xu, Dong-Hee Lee, Fengge Zhang, et al. Hybrid pole type bearingless switched reluctance motor with short flux path[C].2011 International Conference on Electrical Machines and Systems, 2011:1-6.
    [131]Zhenyao Xu, Fengge Zhang, Jin-Woo Ahn. Design and analysis of a novel 12/14 hybrid pole type bearingless switched reluctance motor[C]. IEEE International Symposium on Industrial Electronics, pp.1922-1927,2012.
    [132]Wei Peng, Fengge Zhang, Jin-Woo Ahn. Design and control of a novel bearingless SRM with double stator[C]. IEEE International Symposium on Industrial Electronics,2012:1928-1933.
    [133]Wei Peng, Dong-Hee Lee, Fengge Zhang, et al. Design and characteristic analysis of a novel bearingless SRM with double stator[C]. International Conference on Electrical Machines and Systems,2011:1-6.
    [134]Matsuda K, Okada Y, Tani J. Self-sensing magnetic bearings using the differential transformer Principle [J]. Transactions of the Japan Society of Mechanical Engineers, Part C, Series C,1997, 63(609):1441-1447.
    [135]Noh M D, Malsen E H. Self-sensing magnetic bearings using parameter estimation [J]. IEEE Transactions on Instrumentation and Measurement,1997,46(1):45-50.
    [136]Yim J S, Sul S K, Ahn H J, et al. Sensorless position control of active magnetic bearings based on high frequency signal injection with digital signal processing [C]. Applied Power Electronics Conference and Exposition.California,2004:1351-1354.
    [137]Vischer D, Bleuler H. Self-sensing active magnetic levitation[J]. IEEE Transaction on Magnetics,1993,29(2):1276-281.
    [138]Garcia P, Guerrero J M, Briz F, et al. Sensorless control of three-pole active magnetic bearings using saliency-tracking methods[J]. IEEE Transactions on Industry Applications,2010,46(4):1476-1484.
    [139]Garcia P, Guerrero J M, Briz F, et al. Impact of saturation, current command selection, and leakage flux on the performance of sensorless-controlled three-pole active magnetic bearings[J]. IEEE Transactions on Industry Applications,2011,47(4):1732-1740.
    [140]Sivadasan K K. Analysis of self-sensing active magnetic bearings working on inductance measurement principle [J]. IEEE Transactions on Magnetics,1996,32(2):329-334.
    [141]Matsuda K, Kijimoto S, Kanemitsu Y. Self-sensing three-pole magnetic bearing using a kalman filter[C], SICE-ICASE International Joint Conference,2006:1590-1594.
    [142]Mizuno T, Araki K, Bleuler H. Stability analysis of self-sensing magnetic bearing controllers[J]. IEEE Transactions on Control Systems Technology,1996,4(5):572-579.
    [143]Rundell A E, Drakunov S V, DeCarlo R A. A sliding mode observer and controller for stabilization of rotational motion of a vertical shaft magnetic bearing[J]. IEEE Transactions on Control Systems Technology,1996,4(5):598-608.
    [144]Deshpande M, Badrilal M. Sensorless control of magnetic levitation system using sliding mode controller[C], International Conference on Computer Applications and Industrial Electronics,2010: 9-14.
    [145]Chiba A, Santisteban J A, A PWM harmonics elimination method in simultaneous estimation of magnetic field and displacements in bearingless induction motors[J]. IEEE Transactions on Industry Applications,2012,48(1):124-131.
    [146]Tera T, Yamauchi Y, Chiba A, et al. Performances of bearingless and sensorless induction motor drive based on mutual inductances and rotor displacements estimation[J]. IEEE Transactions on Industrial Electronics,2006,53(1):187-194.
    [147]Tsukada N, Onaka T, Asama J, et al. Novel coil arrangement of an integrated displacement sensor with reduced influence of suspension fluxes for a wide gap bearingless motor[J]. IEEE Transactions on Industry Applications,2010,46(6):2304-2310.
    [148]黄雷.永磁型无轴承电机系统的无传感器运行研究[博士学位论文].杭州,浙江大学,2008.
    [149]年珩,贺益康.永磁型无轴承电机无径向位移传感器运行研究[J].电工电能新技术.2006,25(4):15-18.
    [150]Muronoi K. Andoh N, Chiba A, et al. Characteristics of Induction type Self-Sensing Bearingless Motors[C]. Proc. IPEC-Tokyo 2000:2109-2114.
    [151]曹昌平,无轴承感应电机的无径向位移传感器运行研究[硕士学位论文].西安,西北工业大学,2007.
    [152]张汉年,孙刚,刘合祥,无轴承同步磁阻电机高频信号注入法无位移传感器控制[J],微电机,2012,(01):67-70.
    [153]柏仓,黄守道,管晓文,孙延昭,无轴承永磁同步电机无位移传感器系统建模与仿真[J].电气传动,2009,(09):60-63.
    [154]T.Kuwajima, T.Nobe, A.Chiba, et al. An estimation of the Rotor Displacements of bearingless motors based on a high frequency equivalent circuit[J]. Proceedings of the International Conference on Power Electronics and Drive Systems,2001:725-731.
    [155]年珩,贺益康,秦峰,等.永磁型无轴承电机的无传感器运行研究[J].中国电机工程学报,2004,24(11):101-105.
    [156]Nian Heng, He Yikang, Huang Lei, et al. Sensorless operation of an inset PM bearingless motor implemented by the combination approach of MRAS and HF signal injection[C]. IEEE 6th World Congress on Intelligent Control and Automation,2006:8163-8167.
    [157]年珩,贺益康,黄雷.内插式永磁无轴承电机转子位置/位移综合自检测[J].中国电机工程学报,2007,27(9):52-58.
    [158]程帅,姜海博,黄进,等.基于滑模观测器的单绕组多相无轴承电机无位置传感器控制[J].电工技术学报,2012,(07):71-77.
    [159]朱烷秋,陈朝亮,邓建明,等.无轴承永磁同步电机无速度传感器控制系统[J].电机与控制应用,2008,(05):18-22+42.
    [160]于焰均.无速度传感器的无轴承异步电机定子磁场定向控制的研究[硕士学位论文].镇江,江苏大学,2009.
    [161]许波,朱熀秋,姬伟,等.改进型平方根无迹卡尔曼滤波及其在无轴承永磁同步电机无速度传感器运行中的应用[J].控制理论与应用,2012,29(01):53-58.
    [162]高剑,黄守道,马晓枫,等.基于交互式MRAS策略的无轴承异步电机无速度传感器矢量控制系统[J].电工技术学报,2008,23(11):41-46.
    [163]Nguyen D Q, Ueno S. Improvement of sensorless speed control for nonsalient type axial gap self-bearing motor using sliding mode observer[C].2010 International Conference on Industrial Technology, Chile,2010:373-378.
    [164]孙海军.基于灰色模型永磁无轴承电机无位置传感器控制方法研究[博士学位论文].沈阳,沈阳工业大学,2010.
    [165]孙海军,李润霞,郭庆鼎,等.参数在线辨识永磁无轴承电机无传感器控制[J].系统仿真学报,2009,21(13):4045-4049.
    [166]孙晓东,朱熀秋,杨泽斌.基于左逆系统的无轴承异步电机无速度传感器运行[J].控制与决策,2012,27(08):1256-1260.
    [167]Sun X, Chen L, Yang Z, et al. Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer[J]. IEEE/ASME Transactions on Mechatronics, doi: 10.1109/TMECH.2012.2202123.
    [168]Vapnik V, The nature of statistical learning theory[M]. New York:Springer-Verlag,1999.
    [169]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Network Letters,1999,9(3):293-300.
    [170]Suykens J A K, Vandewalle J. Recurrent least squares support vector machines[J]. IEEE Transactions on Circuits and Systems-Ⅰ.2000,47(7):1109-1114.
    [171]Suykens J A K. Support vector machines:a nonlinear modeling and control perspective[J]. European Journal of Control,2001,7(2-3):311-327.
    [172]高为炳,非线性控制系统导论[M].北京:科学出版社,1988.
    [173]冯纯伯,非线性控制系统分析与设计[M].南京:东南大学出版社,1990.
    [174]Isidori A. Nonlinear Control System[M].2nd Ed. Berlin:Springer-Verlag,1989.
    [175]程代展.非线性系统的几何理论[M].科学出版社,1988.
    [176]Brockett R W, Millman R S, Sussmann H. Differential geometric control theory[M]. Birhauser: Boston,1983.
    [177]Hermann R, Krener A J. Nonlinear controllability and observability[J]. IEEE Transactions on Automatic Control,1977,22(5):728-740.
    [178]Isidori A, Krener A J, Gori-Giorgi C, et al. Nonlinear decoupling via feedback:A differential geometric approach[J]. IEEE Transactions on Automatic Control,1981,26(2):331-345.
    [179]卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1993.
    [180]李春文,冯元琨.多变量非线性控制的逆系统方法[M].北京:清华大学出版社,1991.
    [181]诸德宏,洪益州,朱幌秋.基于α逆系统理论磁轴承数学模型及控制系统[J].电机与控制学报,2009,13(4):496-501.
    [182]张婷婷,朱熀秋.无轴承同步磁阻电机逆系统的解耦控制[J].控制理论与应用,2011,28(04):545-550.
    [183]孙玉坤,费德成,朱烷秋.基于α阶逆系统五自由度无轴承永磁电机解耦控制[J].中国电机工程学报,2006,26(01):120-126.
    [184]戴先中.多变量非线性系统的神经网络逆控制方法[M].北京:科学出版社,2005.
    [185]于霜,刘国海,梅从立,等.生物发酵过程的在线神经网络逆解耦控制[J].计算机与应用化学,2012,29(09):1127-1130.
    [186]戴先中,张腾,张凯锋,等.发电机励磁与汽门系统解耦控制的神经网络逆系统方法[J].中国电机工程学报,2002.22(11):75-80.
    [187]戴先中,刘国海.张兴华.恒压频比变频调速系统的神经网络逆控制[J].中国电机工程学报,2005,15(07):109-114.
    [188]钟伟民.皮道映,孙优贤.基于支持向量机的直接逆模型辨识[J].控制理论与应用,2005,22(2):307-310.
    [189]孙长银,穆朝絮,李训铭.一类非线性逆系统的加权最小二乘支持向量机辨识方法[J].中国科学(F辑:信息科学),2009.39(4):431-440.
    [190]陈红,王广军,王志杰,等.基于最小二乘支持向量机的模糊辨识及其在热工对象逆系统建模中的应用[J],中国电机工程学报,2010,30(29):103-106.
    [191]宋夫华,李平.支持向量机α阶逆系统控制——离散非线性系统[J].浙江大学学报(工学版),2006.40(12):2098-2102.
    [192]宋夫华,李平.支持向量机α阶逆系统控制——连续非线性系统[J].浙江人学学报(工学版),2007,41(3):356-389.
    [193]程启明.杜许峰,郭瑞青,等.基于最小二乘支持向量机的多变量逆系统控制方法及应用[J]. 中国电机工程学报,2008,28(35):96-101.
    [194]宋夫华,李平.基于支持向量机α阶逆系统方法的非线性内模控制[J].自动化学报,2007,33(7):778-779.
    [195]朱烷秋,曹莉,刁小燕,等.基于支持向量机逆系统的无轴承同步磁阻电机解耦控制[J].信息与控制,2012,41(04):485-491.
    [196]邹花蕾,刁小燕,朱熀秋,等.基于支持向量机逆系统的无轴承同步磁阻电机解耦控制[A].中国控制会议,2010:6.
    [197]刘国海,张锦,赵文祥,等.两电机变频系统的支持向量机广义逆内模解耦控制[J].中国电机工程学报.2011,31(6):85-91.
    [198]刘国海,张懿,魏海峰,等.基于自抗扰控制器的两电机变频调速系统最小二乘支持向量机逆控制[J].中国电机工程学报,2012,32(06):138-144.
    [199]Potgieter C, Hope W, Gregory E. Magnetic bearing controls for a high speed, high power switched reluctance machine (SRM) starter/generator. SAE Power Systems Conference, USA:Society of Automotive Engineers,2000:3665-3671.
    [200]吴建华.开关磁阻电机设计与应用[M].北京,机械工业出版社,2000.
    [201]胡业发,周祖德,江征风.磁力轴承的基础理论与应用[M].机械工业出版社,2006.
    [202]王小平,曹立明.遗传算法:理论、应用与软件实现[M],西安:西安交通大学出版社,2002.
    [203]尚万峰,赵升吨,申亚京.遗传优化的最小二乘支持向量机在开关磁阻电机建模中的应用[J].中国电机工程学报,2009,19(12):65-69.
    [204]Tang Ming, Zhu Changsheng. New method of position estimation for self-sensing active magnetic bearings based on artificial neural network[C]. International Conference on Electrical and Control Engineering,2010:1355-1358.
    [205]夏长亮,王明超,史婷娜,等.基于神经网络的开关磁阻电机无位置传感器控制[J].中国电机工程学报,2005.25(13):123-128.
    [206]Mese E, Torrey D A. An approach for sensorless position estimation for switched reluctance motors using artifical neural networks[J]. IEEE Transactions on Power Electronics.2002,17(1):66-75.
    [207]夏长亮,贺子鸣,周亚娜,等.基于支持向量机的开关磁阻电机转子位置估计[J].电工技术学报,2007,22(10):12-17.
    [208]Kennedy J, Eberhart R C, Shi Y H. Swarm intelligence [M]. San Francisco:Morgan Kaufman Publisher,2001:1943-1948.
    [209]丁征宇.基于dSPACE的单自由度磁悬浮平台快速控制原型研究[硕士学位论文].长沙,中南大学,2010.
    [210]陈小飞.磁悬浮飞轮系统振动分析与抑制控制研究[博士学位论文].长沙,国防科学技术大学,2011.
    [211]苏奎峰,吕强,耿庆峰,等.TMS320F2812原理与开发[M].北京:电子工业出版社,2005.
    [212]薛梅.开关磁阻电机非线性建模方法及智能控制策略研究[博士学位论文].天津.天津大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700